STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIX, Number 3, September 2004

DIFFERENTIAL SUBORDINATION AND STARLIKENESS
OF ANALYTIC FUNCTIONS

R. AGHALARY AND S. B. JOSHI

Abstract. In the present paper by using the method of differential sub-
ordination we aim to prove some classical results in univalent function
theory. In particular we give some new sufficient condition for an analytic
function to be starlike and convex in the unit disc U. Also by applying
Ruscheweyh derivative we investigate some argument properties of some

subclasses of univalent functions.

1. Introduction

Let A denote the class of functions of the form
flz)=z+ Zanz"
n=2

which are analytic in the unit disc U = {z : |2| < 1}. For f and g which are analytic
in U, we say that f is subordinate to g,written f(z) < g(2), if there exists an analytic
function w in U such that w(0) =0, |w(z)| < 1 and f(z) = g(w(z)).

For 0 < b < a, the function p € A is said to be in P(a,b) if and only if

Ip(z) —al <b, zeU.

Without loss of generality we omit the trivial case p(z) = 1 and assume that |1—a| < b.
For —1 < B < A <1, the function p € A is said to be in P[A, B] if and only if

1+ Az

1+ Bz
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Here the symbol ’ <’ stands for subordination.For 0 < b < a, there is a correspondence
between P(a,b) and P[A, B], namely
¥ —a’+a 1—a

b b
Two subclasses of P(a,b) and P[A, B] that have been studied extensively by other
authors (e.g.see [2] )are P(1,b) and P[A, —1].

P(a,b) =P

The object of the present paper is to investigate some argument properties of analytic
functions. We also obtain new sufficient condition for starlikeness and convexity.
First we introduce a subordination criterion for p(z) which is subordinate to

14z n
11—z .

To establishing our main results,we shall need the following results, which are due to

Miller and Mocanu [4], Nunokawa [5] and Miller and Mocanu [4], respectively.
Lemma 1.1. Let h be a convex function in U and let X be analytic in U with RA\(z) >
0. If q is analytic in U and q(0) = h(0), then
q(2) + A(z)2q'(2) < h(2),
implies
q(z) < h(z) (z€U).
Lemma 1.2. Let q be analytic in U with ¢(0) = 0 and q(z) # 0 in U. Suppose that

there exists a point zg € U such that

™
Jargg(z)| < 5 for |2 < J2o] (1)
and
T
|arg q(z0)] = 5, 2)

where 0 < n < 1. Then we have

Zoq/(zo) .
=ikn, 3
Q(Zo) ( )
where

k> ta+2) wh (20) = 2 (4)

_2Cl a when arngo—Q,

-1 1 -7
k< S(a+=) when argg(z) = — o, (5)
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and

3=

q(z0)" = tia (a>0). (6)

Lemma 1.3. Let F be analytic in U and let G be analytic and univalent on U,
with F(0) = G(0). If F is not subordinate to G, then there exist points zo € U and
& € U, and m > 1 for which F(|z| < |z0]) C G(|z] < |20]), F(20) = G(&) and
20" (20) = m&G' (&o)-

2. Main Results

We now state and prove our main results.

Lemma 2.1. Let p be analytic in U with p(0) = 1. If

A , 7r
— — < >
arg {p(z) + S(z)Zp (z)” < 25 (0<d<1,A>0),
for some S(z) where S(z) € P(a,b), then

v
|argp(z)| < 57

where n (0 <n < 1) is the solution of the equation

(7)

2 _ K2
5t 2 tan! (Aﬂ Wb)
s

a? + ab + Anb

Proof. Let h(z) = (%f;)é, we observe that h is convex and h(0) = 1. Applying
Lemma 1.1 for this h with A\(z) = %, we see that $p(z) > 0 in U and hence
p(z) # 0 in U. If there exists a point zg € U such that the conditions (1) and (2) are
satisfied, then (by Lemma 1.2) we obtain (3) under the restrictions (4),(5) and (6).

Since S(z) € P(a,b) we have

wherea —b<r<a+b and =Zsin™'(2)<¢ < Zsin”'(2)
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At first, suppose that p(zo)% =ia (a>0), we obtain

arg |p(z0) +

A zop'(20)
S(z0) p(20) )
= gn + arg <1 + r;\gd)ink)

Ank cos(5 @) >
7+ Anksin(5¢)
(2

-
T _1 [ Ancos(sin )
—n+ tan — a7
2" ( a+b+ /\ng

= zn + tan™! 7)\77 a> b
2 a? + ab+ Anb

A ,
- 1
SC) 20p"(20) argp(zo) + arg ( +

S —|—tan*1

v

™
= 39

This is a contradiction to the assumption of our lemma.

Next, suppose that p(z9) = —ia (a > 0). Applying the same method as the above,

we have
, _oom [ Anvae? —b?
arg |p(zo) + S(ZO)ZOP (z0)| = 9 n — tan <a2—|—ab+)\nb
—T
= —9
2 )

where ¢ is given by (7) which contradict the assumption. This completes the proof of

our lemma.
Theorem 2.2. Let n be as defined by (7). Let M(z) = 2" + ... and N(z) = 2™ + ...
be analytic in U and such that, N satisfies

zN'(2)
N(z)

€ P(a,b).

Then

N(Z)Jr/\N’(z) 2

arg{(l)\)M(z) M’(z)” o

mmplies

2l

M(2) ™
arg N(z) ’ < =
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Proof. Consider the function p(z) = AA{(()) and let S(z) = Zﬁ;g). Then by hypothesis,

p is analytic and p(0) = 1. Hence all the conditions of Lemma 2.1 are satisfied. Now
it is elementary to show that

ME) | M)
N(z) N'(2)

A
(1=2) =p(2) + S (2)-

And hence Theorem 2.2 follows from Lemma 2.1.

The v —th order Ruscheweyh Derivative [6] D” of a function f € A is defined

by :
D*f(z) = ﬁ ff(2) =2+ ;Bk(l/)akzk7
where
B = LENCE V- v k= 1)

(k—1)!
The operator '+” stands for the convolution or Hadamard product of two power series

f(z) =32, a;z" and g(z) = > o biz" defined by
(Fr)(e) = 1) vg(s) = 3 aibict.
i=1
From the definition of D¥ and the properties of convolution ’+" follows the identity
2(D"f(2)) = (1 +v)D'™" f(2) — vD" f(2). (8)

Corollary 2.3. Let f € A. If

DYf(z)  (Df(R)]| _ =
arg {(1 - )\)D#g(z) +)\(D“g(z))/} < 55, v>0,u>0,2>0,0<06<1)
for some g where D*g(z) € P[A,B],(-1 < B < A<1), then
DUfz)| _
arg oy | < 37

where n, (0 < n < 1) is the solution of the equation

A7 cos (sin_1 ﬁ;ABB)
. 9)
1+A A-B (
1+5 T Mi-AB

1

2
d=mn+ —tan~
™

Proof. 1f we let @ = =286 = 4=8 M(2) = D" f(z) and N(z) = D#g(z) then in

this case 7 is given by (9) and the corollary now follows from Theorem 2.2.

Taking B — A and g(z) = z in Corollary 2.3, we have
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Corollary 2.4. Let f € A. If

arg [(1 - A)%(Z) —I—)\(D”f(z))’} < gé, (r>0,A>0,0<6d<1),
then
argDuic(Z)‘ < g R

where 1, (0 < n < 1) is the solution of the equation
2, 1
0 =n4+ —tan™ " .
™

By using the same technique as in the proof of Lemma 2.1, we obtain

Theorem 2.5. Let f € A.If

arg {(1 - )\)w + )\(D”Hf(z))’} < 35, (v>0,A>0,0<6<1),
then
ang | (1= 2L a0 sy || < B

where n, (0 < n < 1) is the solution of the equation

2 n
5= Ztan! )
ot tan <1+u)

Corollary 2.6. Let f € A. If

farg(f'(2) + A= ()] < 54,

then
f(2)

z

arg [(1- 02 ara)| | < 3

2

where n, (0 < n < 1) is the solution of the equation

2
§=n+ =tan"'n.
0
We note that, by making use of Theorem 2.3, one can construct several new results

for Bazilevic functions.

8
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Theorem 2.7. Let f € A. If

- [(1 - A)D”i“(z) N )\(D”J;(Z))/} < %5, (v>0,A>0,0<06>1)
then

where 11, M2 are the solutions of the equations
2 -1
0 =mn1 + —tan" " Anq, (10)
T
and

(11)

2 2 tan—1 \
5=+ 2tan—"my + 2 tan~! (H”) .
i s 1%

Proof. Using Corollary 2.4 and Theorem 2.5, we obtain

"f(2)
— 12
arg P < 27]13 ( )
and
Dy—l
arg%@ < g’l’]g, (13)

where 77 and 72 are defined by (10) and (11). Hence by using (12) and (13) we get
our result.

Letting v =1 and A = 1 in Theorem 2.7 we have
Corollary 2.8. Let f € A. If
arg(f/(=) + 2f"(2)] < 56, (0<6<1)

then

7T
< 5(771 +12)

i)

where n1 and 19 are the solutions of the equations
2
§=mn + = tan" 'y,
0

and

2 2
d=mn2+ — tan™! 2 + — tanfl(ng + tan™! 772).
™ ™
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Lemma 2.9. Let A be a function defined on U satisfies

. o T
n= inf (?R)\(z) cot 25|JA(,Z)\) >0, (14)
and let
5 T on . w 1
B(n,8) = (to)° |cos =6 — —sin =d(tg + —) | , (15)
2 2 2 to

. cot T \/col——
be such that 268(n,d) +n > 0 with to = t 30+ n(tf+26<)5+772(1 2

If p be analytic in U with p(0) = 1,satisfies
Rlp(2) + A(=)2p'(2)] > B(n,9)

then

s
|arg p(z)| < 56.

Proof. Let h(z) = (}J_ri)‘;, we observe that h is convex and h(0) = 1. Applying
Lemma 1.1 for this h with A(z), we see that $p(z) > 0 and hence p(z) # 0 in U. For
completing the proof of lemma we need only to show that p(z) < h(z). If p(z) is not
subordinate to h, then by Lemma 1.3 there exist points zg € U and & € 9U, and

m > 1 such that

p(lz] C |20]) € q(U),p(20) = q(&) and  zop'(20) = m&oq' (€o).

Since p(z9) # 0,&o # %1, by letting X and Y be the real and imaginary part of
Az0),from (14), we find that

X+cotgéY2Xfcotg5|Y|2n>O,

and
0 T
XfcotgéYZXfcot 55|Y| >n>0. (16)
Further if we put ix = }fgg and use the above observations, we obtain
. mo o 14 a?
p(20) + Mz0)zo0p' (20) = (iz)° |1+ z%(X +4Y) xx

For = # 0,

10
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R(p(20) + M(z0)z0p' (20))

2

)ﬁ) ifr >0
)1‘+72) ife <0

x

|2|° (cos 26 +isin g

|z|° (cos 36 —isin §

2

|z|? [cos”éfm—‘ssa (X + cot Z6Y) LE ] } ifr>0

(X — cot Z6Y) L= } ife <O.

s
2
|z[° [cos 26— ™gin T o

Therefore, for  # 0, since A(zg) satisfies (14) and m > 1, we obtain

/ G om .m
R(p(20) + Mz0)200' (20)) < |z|° {cos 55 — 5 sin 5(5 <| | + z |)] f(z))

Since f(t) with ¢ = |z| attains its maximum value at point

cot 56 + /cot® 56 4+ n?(1 — 62)
n(l+9)

to =

We have

R(p(20) + A(20)200(20)) < f(|z]) < f(to) = B(n, ).
This is contradiction with our assumption. Hence we must have p(z) < h(z). This
completes the proof.
Theorem 2.10. Let 3(n,0) be as defined by (15) so that 26(n,0) +n > 0. Let
M(z) = 2"+ ... and N(z) = 2" + ... be analytic in U such that for some a € C, N

satisfies
~aN(z) < tan s §RozN(z) 3
’\SZN’(Z) =ty 2N'(2) )
Then
M(z)  M'(2)
(11— > ,0),
-5 4o | > an.0)
implies
M(z) ™
arg N(z) ‘ < 55.
Proof. Consider the function p(z) = %('z) and let \(2) = ZO‘JJ\;[,((ZZ)) Then by hypothesis,p
is analytic and p(0) = 1 and all conditions of Lemma 2.9 are satisfied.Now it is
elementary to show that,
M(z)  M'(z)

(1-a)

N W) TP AR R,

11
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and hence Theorem 2.10 follows from Lemma 2.9.

Taking M (z) = D" f(z) and N(z) = z in Theorem 2.10 we have.

Corollary 2.11. Let f € A, and let o be complex number satisfies

[Sa < (tan gé)?}?a.

Then
R |- o sy > 8000) 0 <6< 102 0)
implies
arg ”5(2) %5,

where n = [Ra — cot 56|Sal].
Theorem 2.12. Let f € A. If

D™ f(z)
z

R|(1-N) + /\(D1+”f(z))’} >B(n,6) (0<6<1,vr>0X1eC)

then

arg [(1 -}) 7D”£(z)

where 5(n, ) is defined by (15) with n = H%

+ )\(D”f(z))’} < ga,

Proof. Suppose

pz) = (12T

It is clear that p is analytic and p(0) = 1. Differentiating of (17) with respect to

+ MDY f(2))- (17)

z,multiplying by z and using the identity (8) we obtain

DV f(z)
z

(1=2) +ADf(2)) = p(2) +

2 (2). (18)

Hence the result follows from(18) and Lemma 2.9.

To prove our next theorem, we shall need the following result, which is due to Miller
and Mocanu [3].

Lemma 2.13. Let 2 be a set in the complex plane C and suppose that the function
Y : C?x U — C satisfies Y(ix,y,z) ¢ , for all real z,y with y < —# and z € U.If
the function zp € A satisfies ¥(p(z),zp'(2),2) € Q,z € U, then Rp(z) > 0 holds for
all z € U.

12
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Theorem 2.14. Let f € A and v > 1. Also let § =~ 0.638324 and v > 0 be the roots
of the equations (respectively)

d tan gé =1, (19)
and
yzutang(é—v). (20)
Ifa>1 and
DV —(1 =312 -1
! <(1 - O‘)y * O‘(Dyf(z))/> ~1 —((1 —al)()éé?o)z) - i)’ 2y
then
DV f(z)
*(5=7y) > )
where {(a) = 01 1—itt” and [ is the smallest positive root of the equation
2,/lv@ - B) + 3)Bv+ 5 — 125
OB+ 3lov e s -l -

|1 — v+ 20V 2
Proof. From (21) and using the well-known result of Hallenbeck and Ruscheweyh [1]
with identity

DY (2) . (lef(z)>/: <1_1> eré [va(z) +az<DVf(Z)>I] 7

z z @ z z z
we observe
D D '
m[ﬂz)+z( f(z))]x). (24)
z z
Applying Corollary 2.11 to (20) we get
arg b () < Z(S,
z 2

where 0 is defined by (19).
Now by using the identity D) - p=lDF %(D”flf(z))’ and Corollary 2.4 we

z 14 z
obtain
Dufl
f@)| _m ,.

arg )

where 7 is defined by (20).
13
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Dv=1f(z)
tion and some algebraic simplifications, (24) deduces to

Setting p(z) = ( Df(z) ﬂ) ﬁ7 F(z) = Duiif(z% and by performing differentia-

RY(p(2), 2p'(2),2) > 0

where

P(r,s,2) = F(z) (B0 +0—Brv+r[(1-06)(1—-v)+26(1-p)])
+ F(2) (7"21/(1 —B)%+ (1 - B)s) .

Let us now put F(z) = X +¢Y and apply Lemma 2.13.Then for all z,y real and z € U

we have
R(iz,y,z) = X ((B°v+ B~ Bv) —v(l—p)*a® + (1~ B)y)
- Y[l =51 -v)+26(1 - p)].
From this we observe that

Ry (iz,y, 2) < —(az® + bz + ¢),

for all z real,y < 7(%%”2) and z € U, where

(1-5)
2

a_X[V(l—ﬂ)2+ ],b_Y[(1—5)(1—u)+2,6(1—ﬁ)u} and

cX{ﬂy(lﬂ)ﬂ+12/6 .

Therefore R (iz, y, z) < 0 if and only if b? < 4ac this indeed equivalent to
2/ -9+Hov i -5l 4
[1—v+ 26 T g
Hence if 3 be the smallest root of the equation (23) then Ry (iz,y,z) < 0 and so by

|arg F(2)] <

Lemma 2.13 we obtain $p(z) > 0 which is desired conclution.Therefore the proof is

complete.

Corollary 2.15. Let f € A and § ~ 0.638324 and v = 0.39747 be the roots of the

equations (respectively),
5tang5:1 and vztang(é—v).

14
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If
R(f'(2) +21"(2)) > 0,

zf’(Z))
R > 3,
( f(z)
where B ~ 0.46085 is the smallest positive root of the equation
JE-m(+i-2)
= tan —~.

3 an oy

Corollary 2.16. Let f € A and § =~ 0.638324 and v ~ 0.4864 be the smallest roots

then

of the equations (respectively),
6tang(5:1 and 7:2tang(§—7).

if
R(F/(2) + 221" () + 3220 (2)) > 0,

then

R <1 + Zﬁ;i’;}) >920 -1,

where 3~ 0.57669 is the the smallest positive root of the equation

Wfa-mleri-)
161 :tangfy.

ProofPut v = 2 in Theorem 2.14.
We also note that by using Corollary 2.15 one can get the other new sufficient condition

for convexity such as

Corollary 2.17. Let f € A and § ~ 0.638324 and v = 0.39747 be the roots of the

equations, (respectively)
6tan%6:1 and vztang(é—v).

If
R(f'(2) +32f"(2) + 22" (2)) > 0.
15
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o1+ 280 -4

where B ~ 0.46085 is the smallest positive root of the equation
JE-o(s+i-15)
= tan —.
3 an oy
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