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ON STRONGLY NONLINEAR PARABOLIC FUNCTIONAL
DIFFERENTIAL EQUATIONS OF DIVERGENCE FORM

LÁSZLÓ SIMON

Abstract. We consider initial boundary value problems for second order

strongly nonlinear parabolic equations where also the main part contains

functional dependence on the unknown function.

Introduction

This investigation was motivated by works [4], [5] of M. Chipot on ”nonlocal

evolution problems” for the equation

Dtu−
n∑

i,j=1

Di[aij(l(u(·, t))Diu] + a0(l(u(·, t))u = f in Ω×R+ (0.1)

where Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary,

n∑
i,j=1

aij(ζ)ξiξj ≥ λ|ξ|2 for all ξ ∈ Rn, ζ ∈ R

with some constant λ > 0,

l(u(·, t)) =
∫

Ω

g(x)u(x, t)dx

with a given function g ∈ L2(Ω). Existence and asymptotic properties (as t→∞) of

solutions of initial-boundary value problems for (0.1) were proved. That problem was

motivated by diffusion process (for heat or population), where the diffusion coefficient

depends on a nonlocal quantity.

Received by the editors: 13.10.2004.

This work was supported by the Hungarian National Foundation for Scientific Research under grant

OTKA T 031807.

97
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Our aim is to consider similar problems for quasilinear parabolic functional

differential equations of the form

Dtu−
n∑

i=1

Di[ai(t, x, u(t, x), Du(t, x);u)] + a0(t, x, u(t, x), Du(t, x);u)+ (0.2)

b(t, x, u(t, x);u) = f in QT0 = (0, T0)× Ω

with homogeneous Dirichlet boundary and initial conditions, where the functions

ai : QT0 ×Rn+1 × Lp(0, T0;V ) → R

(with V = W 1,p
0 (Ω), 2 ≤ p < ∞) satisfy conditions which are generalizations of

conditions for strongly nonlinear parabolic differential equations, considered in [3],

[7], [8] by using the theory of monotone type operators; ai have polynomial (p − 1

power) growth with respect to u(t, x), Du(t, x) and b may be quickly increasing in

u(t, x).

1. Existence in [0, T0]

Let Ω ⊂ Rn be a bounded domain having the uniform C1 regularity property

(see [1]) and V = W 1,p
0 (Ω) the usual Sobolev space of real valued functions which is

the completion of C∞0 (Ω) with respect to the norm

‖ u ‖=
[∫

Ω

(|Du|p + |u|p)
]1/p

.

Denote by Lp(0, T0;V ) the Banach space of the set of measurable functions u :

(0, T0) → V such that ‖ u ‖p is integrable and define the norm by

‖ u ‖p
Lp(0,T0;V )=

∫ T0

0

‖ u(t) ‖p
V dt.

The dual space of Lp(0, T0;V ) is Lq(0, T0;V ?) where 1/p + 1/q = 1 and V ?

is the dual space of V (see, e.g., [6], [11]).

Assume that

I. The functions ai : QT ×Rn+1×Lp(0, T0;V ) → R satisfy the Carathéodory

conditions for arbitrary fixed v ∈ Lp(0, T0;V ) (i = 0, 1, ..., n).
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II. There exist bounded (nonlinear) operators g1 : Lp(0, T0;V ) → R+ = and

k1 : Lp(0, T0;V ) → Lq(QT0) such that

|ai(t, x, ζ0, ζ; v)| ≤ g1(v)[|ζ0|p−1 + |ζ|p−1] + [k1(v)](t, x)

for a.e. (t, x) ∈ QT0 , each (ζ0, ζ) ∈ Rn+1 and v ∈ Lp(0, T0;V ).

III.
∑n

i=1[ai(t, x, ζ0, ζ; v)− ai(t, x, ζ0, ζ?; v)](ζi − ζ?
i ) > 0 if ζ 6= ζ?.

IV. There exist bounded operators g2 : Lp(0, T0;V ) → R+, k2 :

Lp(0, T0;V ) → L1(QT0) such that
n∑

i=0

ai(t, x, ζ0, ζ; v)ζi ≥ g2(v)[|ζ0|p + |ζ|p]− [k2(v)](t, x)

for a.e. (t, x) ∈ QT0 , all (ζ0, ζ) ∈ Rn+1, v ∈ Lp(0, T0;V ) and g2(v) ≥ c2 with some

constant c2 > 0,

lim
‖v‖X→∞

‖ k2(v) ‖L1(QT0 )

‖ v ‖p
X

= 0 (1.3)

where we used the notation X = Lp(0, T0;V ). Further, if the sequence (vk)is bounded

in Lp(0, T0;V ) and convergent in Lp(QT0) then the sequence [k2(vk)](t, x)is equiinte-

grable in QT0 .

V. If (uk) → u weakly in Lp(0, T0;V ) and strongly in Lp(QT0) then

lim
k→∞

‖ ai(t, x, uk(t, x), Duk(t, x);uk)− ai(t, x, uk(t, x), Duk(t, x);u) ‖Lq(QT0 )= 0.

VI. b : QT0 × R × Lp(0, T0;V ) satisfies the Carathéodory condition for each

fixed v ∈ LP (0, T0;V ),

0 ≤ b(t, x, ζ0; v)ζ0 ≤ ψ(ζ0)ζ0 ≤ const[b(t, x, ζ0; v)ζ0 + 1]

with some continuous nondecreasing function ψ with ψ(0) = 0.

VII. If (uk) → u in the norm of Lp(QT0) then for a suitable subsequence

b(t, x, uk(t, x);uk) → b(t, x, u(t, x);u) for a.e. (t, x) ∈ QT0 .

Theorem 1.1. Assume I - VII. Then for any f ∈ Lq(0, T0;V ?) there exists

u ∈ Lp(0, T0;V ) ∩ C([0, T0];L2(Ω)) such that u(0) = 0,

b(t, x, u(t, x);u), u(t, x)b(t, x, u(t, x);u) ∈ L1(QT0),
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u is a distributional solution of (0.2). Further, for arbitrary T ∈ [0, T0],

v ∈ Lp(0, T0;V ) ∩ C1([0, T0];L2(Ω)) with v(0) = 0, v ∈ L∞(QT0)

we have ∫ T

0

〈Dtv(t), u(t)− v(t)〉dt+ (1.4)

∫
QT

[
n∑

i=1

ai(t, x, u,Du;u)(Diu−Div) + a0(t, x, u,Du;u)(u− v)

]
dtdx+

1
2
‖ u(T )− v(T ) ‖2

L2(Ω) +
∫

QT

b(t, x, u(t, x);u)(u− v)dtdx =

∫ T

0

〈f(t), u(t)− v(t)〉dt.

Proof. Define

bk(t, x, ζ0; v) = b(t, x, ζ0; v) if b(t, x, ζ0; v) < k,

bk(t, x, ζ0; v) = k if b(t, x, ζ0; v) ≥ k,

bk(t, x, ζ0; v) = −k if b(t, x, ζ0; v) ≤ −k,

[A(u), v]T =∫
QT

[
n∑

i=1

ai(t, x, u(t, x), Du(t, x);u)Div + a0(t, x, u(t, x), Du(t, x);u)v

]
dtdx,

[Bk(u), v]T =
∫

QT

bk(t, x, u(t, x);u)vdtdx, u, v ∈ X = Lp(0, T0;V );

with a fixed u0 ∈ X

[Ãu0(u), v]T =∫
QT

[
n∑

i=1

ai(t, x, u(t, x), Du(t, x);u0)Div + a0(t, x, u(t, x), Du(t, x);u0)v

]
dtdx.

It is not difficult to show that by I, II, IV (for fixed k)

(A+Bk) : Lp(0, T0;V ) → Lq(0, T0;V ?)

is bounded (i.e. it maps bounded sets into bounded sets) and coercive, i.e.

lim
‖v‖X→∞

[(A+Bk)(v), v]T0

‖ v ‖X
= +∞.
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Further, it is well known (see, e.g., [2]) that Ãu0 : X → X? is demicontinuous (i.e. if

(uj) → u strongly in X then (Ãu0(uj)) → Ãu0(u) weakly in X?) and pseudomonotone

with respect to

D(L) = {v ∈ X : Dtv ∈ X?, v(0) = 0},

i.e. if

(uj) → u weakly in X, (Dtuj) → Dtu weakly in X? and

lim sup
j→∞

[Ãu0(uj), uj − u]T0 ≤ 0

then

lim
j→∞

[Ãu0(uj), uj − u]T0 = 0 and (Ãu0(uj)) → Ãu0(u) weakly in X?.

By using assumption V, it is easy to show that also A+Bk : X → X? is demicontin-

uous and pseudomonotone with respect to D(L) (see [10]).

Consequently, for each k there exists uk ∈ D(L) such that

Dtuk + (A+Bk)(uk) = f in [0, T0]. (1.5)

(See, e.g., [2].) Applying (1.5) to v = uk, we obtain by IV and Hölder’s inequality for

any T ∈ [0, T0]

1
2
‖ uk(T ) ‖2

L2(Ω) +c2 ‖ uk ‖p
Lp(0,T ;V ) −

∫
QT

k2(uk)dtdx+ (1.6)

[Bk(uk), uk]T ≤‖ f ‖Lq(0,T ;V ?)‖ uk ‖Lp(0,T ;V ) .

According to VI [Bk(uk), uk]T ≥ 0, thus (1.3), (1.6), II imply that

‖ uk ‖Lp(0,T0;V ), ‖ A(uk) ‖p
Lp(0,T0;V ?), [Bk(uk), uk]T0 are bounded. (1.7)

Consequently, (1.6) and boundedness of k2 imply that

‖ uk ‖L∞(0,T0;L2(Ω)) is bounded. (1.8)

By using VI, |bk| ≤ |b| ≤ |ψ|, we find

|bk(t, x, uk(t, x);uk)| ≤ [ψ(1) + ψ(−1)|+ bk(t, x, uk(t, x);uk)uk
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which implies by (1.7) that∫
QT0

|bk(t, x, uk(t, x);uk)|dtdx is bounded. (1.9)

According to (1.5)

Dtuk = [f −A(uk)]−Bk(uk)) (1.10)

where the first term is bounded in Lq(0, T ;V ?) and the second term is bounded in

L1(QT0). Thus Proposition 1 of [3] implies that there is a subsequence of (uk) (for

simplicity denoted again by (uk)) such that

(uk) → u weakly in Lp(0, T0;V ), strongly in Lp(QT0) and a.e. in QT0 . (1.11)

Further, by (1.7) there exists w ∈ Lq(0, T0;V ?) such that

(A(uk)) → w weakly in Lq(0, T0;V ?). (1.12)

Since by IV k2(uk)(t, x) is equiintegrable in QT0 , we obtain from (1.6), (1.8), (1.11)

u ∈ L∞(0, T0;L2(Ω)), lim
T→0

‖ u ‖L∞(0,T0;L2(Ω))= 0. (1.13)

We obtain from (1.11), assumption VII and the definition of bk that

bk(t, x, uk(t, x);uk) → b(t, x, u(t, x);u) a.e. in QT0 , so (1.14)

ukbk(t, x, uk(t, x);uk) ≥ 0, (1.15)

(1.7), Fatou’s lemma imply

ub(t, x, u(t, x);u) ∈ L1(QT0) and so by VI uψ(u) ∈ L1(QT0). (1.16)

From (1.14), (1.16), VI and Vitali’s theorem we obtain

bk(t, x, uk(t, x);uk) → b(t, x, u(t, x);u) in L1(QT0), ψ(u) ∈ L1(QT0) (1.17)

because for arbitrary ε > 0

|bk(t, x, ζ0;uk)| ≤ |b(t, x, ζ0;uk)| ≤ |ψ(ζ0)| ≤ εψ(ζ0)ζ0 + ψ(1/ε) + |ψ(−1/ε)|

if |ζ0| > 1/ε, so by (1.7) (bk(t, x, uk(t, x);uk)) is equiintegrable in QT0 .
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From (1.5), (1.11), (1.12), (1.17) we obtain as k →∞

Dtu+ w + b(t, x, u(t, x);u) = f (1.18)

in distributional sense.

In order to show w = A(u), we prove

lim sup
k→∞

[A(uk), uk − u]T0 ≤ 0. (1.19)

Since by (1.11), V

lim
k→∞

[A(uk)− Ãu(uk), uk − u]T0 = 0,

(1.19) will imply

lim sup
k→∞

[Ãu(uk), uk − u]T0 ≤ 0,

thus we obtain from (1.11), (1.12) w = Ãu(u) = A(u) (see, e.g., Remark 4 in [8]).

Applying (1.5) to uk − v with some

v ∈ Lp(0, T0;V ) ∩ C1([0, T0];L2(Ω)) ∩ L∞(QT0) with v(0) = 0,

we have for any T ∈ [0, T0]∫ T

0

〈Dtv, uk − v〉dt+
1
2
‖ uk(T )− v(T ) ‖2

L2(Ω) +
∫ T

0

〈A(uk), uk − v〉dt+ (1.20)

∫
QT

bk(t, x, uk(t, x);uk)(uk − v)dtdx =
∫ T

0

〈f(t), uk − v〉dt.

Since

[A(uk), uk − v]T = [A(uk), uk − u]T + [A(uk), u− v]T

and by Fatou’s lemma, (1.7), (1.14), (1.15)

lim inf
k→∞

∫
QT

bk(t, x, uk(t, x);uk)ukdtdx ≥
∫

QT

b(t, x, u(t, x);u)udtdx, (1.21)

we obtain from (1.20) (by using (1.11), (1.12), (1.17))

lim sup
k→∞

[A(uk), uk − u]T ≤
∫ T

0

〈Dtv, v − u〉dt+ (1.22)

∫
QT

b(t, x, u(t, x);u)(v − u)dtdx+
∫ T

0

〈f(t)− w(t), u− v〉dt.
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Consider the sequence (vν) of Theorem 3 in [3], approximating the function u which

satisfies all the conditions of that theorem by (1.13), (1.17), and apply (1.22) to

v = vν . Then Proposition 3 of [3] implies (as ν →∞) (1.19). Thus we have also

lim
k→∞

[A(uk), uk − u]T = 0, (A(uk)) → A(u) weakly in Lq(0, T0;V ?) (1.23)

(see, e.g., [8]). So, (1.18), w = A(u) imply that u satisfies (0.2) in distributional sense.

Finally, we show u ∈ C([0, T0];L2(Ω)), u(0) = 0 and (1.4). From (1.11),

(1.17), (1.20), (1.23) one obtains as k →∞

lim sup
k→∞

∫
QT

bk(t, x, uk(t, x);uk)ukdtdx ≤
∫ T

0

〈Dtv, v − u〉dt+ (1.24)

∫
QT

b(t, x, u(t, x);u)vdtdx+ [f −A(u), u− v]T .

Applying (1.24) again to v = vν (approximating u), we find

lim sup
k→∞

∫
QT

bk(t, x, uk(t, x);uk)ukdtdx ≤
∫

QT

b(t, x, u(t, x);u)udtdx. (1.25)

Further, by (1.11) for a.e. T ∈ [0, T0]

(uk(T )) → u(T ) a.e. in Ω,

so by (1.8) for a.e. T ∈ [0, T0]

(uk(T )) → u(T ) in L2(Ω).

Consequently, from (1.20), (1.21), (1.25) one derives (1.4) for a.e. T ∈ [0, T0]. Since

all the terms in (1.4) are continuous in T , except possibly the term

‖ u(T )− v(T ) ‖L2(Ω), (1.26)

the latter can be extended to a continuous function in T and (1.4) holds for all

T ∈ [0, T0].

For any smooth testing function w (defined in Ω) (u(T ), w)L2(Ω) is continuous

in T because (0.2) holds in distributional sense and the term in (1.26) is continuous

in T , thus u ∈ C([0, T0];L2(Ω)) and so by (1.13) the initial condition u(0) = 0 is

satisfied which completes the proof of Theorem 1.1.
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2. Boundedness and stabilization

Denote by Lp
loc(0,∞;V ) the set of functions v : (0,∞) → V such that for

each fixed finite T0 > 0, v|(0,T0) ∈ Lp(0, T0;V ) and let Q∞ = (0,∞) × Ω, Lα
loc(Q∞)

the set of functions v : Q∞ → R such that v|QT0
∈ Lα(QT0) for any finite T0. By

using a ”diagonal process”, it is not difficult to prove (see, e.g., [9])

Theorem 2.1. Assume that we have functions ai : Q∞×Rn+1×Lp
loc(0,∞;V ) → R,

b : Q∞ × R × Lp
loc(0,∞;V ) → R such that they satisfy I - VII for any finite T0 > 0

and ai(t, x, ζ0, ζ; v)|QT0
, b(t, x, ζ0; v)|QT0

depend only on v|(0,T0) (Volterra property).

Then for any f ∈ Lq
loc(0,∞;V ?) there exists u ∈ Lp

loc(0,∞;V ) which is a solution for

any finite T0 (in the sense of Theorem 1.1).

Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied such that in IV we

have g2 : Lp
loc(0,∞;V ) → R+ and k2 : Lp

loc(0,∞;V ) → L1
loc(Q∞), satisfying for any

v ∈ Lp
loc(0,∞;V ), g2(v) ≥ c2 > 0 and∫

Ω

|k2(v)|dx ≤ c4

[
sup
[0,t]

|y|p1/2 + ϕ(t) sup
[0,t]

|y|p/2 + 1

]
with some constants c4, p1 < p, p > 2 and lim∞ ϕ = 0 where

y(t) =
∫

Ω

v(t, x)2dx;

finally, ‖ f(t) ‖V ? is bounded.

Then for the solutions u, formulated in Theorem 2.1,
∫
Ω
u(t, x)2dx is bounded

for t ∈ [0,∞).

The idea of the proof. If u is a solution in (0,∞) then the assumptions of

the theorem imply that y(t) =
∫
Ω
u(t, x)2dx satisfies the inequality

y(T2)− y(T1) + c5

∫ T2

T1

[y(t)]p/2dt ≤

c6

∫ T2

T1

[
sup
[0,t]

yp1/2 + ϕ(t) sup
[0,t]

yp/2 + 1

]
dt, 0 < T1 < T2 <∞

with some constants c5 > 0, c6. It is not difficult to show that this inequality and

p > 2, p1 < p imply the boundedness of y.
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3. Examples

1. The conditions of Theorem 1.1 are satisfied if

ai(t, x, ζ0, ζ; v) = [H(v)](t, x)a1
i (t, x, ζ0, ζ) + [G(v)](t, x)a2

i (t, x, ζ0, ζ), i = 1, ..., n,

a0(t, x, ζ0, ζ; v) = [H(v)](t, x)a1
0(t, x, ζ0, ζ) + [G0(v)](t, x)a2

0(t, x, ζ0, ζ)

where H : Lp(QT0) → L∞(QT0) is bounded and continuous operator with the prop-

erty: There exists a constant c2 > 0 such that H(v) ≥ c2 for all v;

G,G0 : Lp(QT0) → L
p

p−1−ρ (QT0), (0 ≤ ρ < p− 1)

are bounded and continuous operators, G(v) ≥ 0 for all v and

lim
‖v‖X→∞

∫
QT0

|G0(v)|
p

p−1−ρ

‖ v ‖p
X

= 0.

Further, a1
i , a

2
i satisfy the usual conditions: They are Carathéodory functions,

|a1
i (t, x, ζ0, ζ)| ≤ c1(|ζ0|p−1 + |ζ|p−1) + k1(x)

with some constant c1, k1 ∈ Lq(Ω), i = 0, 1, ..., n;
n∑

i=1

[a1
i (t, x, ζ0, ζ)− a1

i (t, x, ζ0, ζ
?)](ζi − ζ?

i ) > 0 if ζ 6= ζ?;

n∑
i=0

a1
i (t, x, ζ0, ζ)ζi ≥ c3(|ζ0|p + |ζ|p)− k2(x)

with some constant c3 > 0, k2 ∈ L1(Ω);

|a2
i (t, x, ζ0, ζ)| ≤ c1(|ζ0|ρ + |ζ|ρ), 0 ≤ ρ < p− 1, i = 0, 1, ..., n;

n∑
i=1

[a2
i (t, x, ζ0, ζ)− a2

i (t, x, ζ0, ζ
?)](ζi − ζ?

i ) ≥ 0;

n∑
i=1

a2
i (t, x, ζ0, ζ)ζi ≥ 0.

By using Young’s and Hölder’s inequalities it is not difficult to show that the condi-

tions I - V are fulfilled.

A simple special case for a1
i , a

2
i are:

a1
i (t, x, ζ0, ζ) = ζi|ζ|p−2, i = 1, ..., n, a1

0(t, x, ζ0, ζ) = ζ0|ζ0|p−2, a2
i = 0.
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The operator H may have e.g. one of the forms:

ϕ
(∫

Qt
bv
)

where ϕ : R→ R is a continuous function, ϕ ≥ c2 > 0 (constant),

b ∈ Lq(QT );

ϕ

([∫
Qt
|v|β

]1/β
)

with some 1 ≤ β ≤ p;

The operators G,G0 may have e.g. one of the forms:

ψ0

(∫ t

0

a(τ, x)v(τ, x)dτ
)
, ψ0

(∫
Ω

a(t, x)v(t, x)dx
)
,

ψ0

([∫ t

0

|v(τ, x)|βdτ
] 1

β

)
,

where ψ0 : R→ R is continuous, |ψ0(θ)| ≤ const|θ|p−1−ρ0 with some ρ0 > ρ, ψ0(θ) ≥ 0

for G, a ∈ L∞.

The operators G,G0 may have also the forms∫ t

0

h(t, τ, x, v(τ, x))dτ or h(t, x, v(χ(t), x))

where

|h(t, τ, x, θ)|, |h(t, x, θ)| ≤ const|θ|p−1−ρ0 ,

0 ≤ χ(t) ≤ t, χ ∈ C1 and h ≥ 0 for G.

2. The conditions on ai of Theorem 1.1 are satisfied if

ai(t, x, ζ0, ζ; v) = [Hi(v)](t, x)ã1
i (t, x, ζ0, ζi) + [Gi(v)](t, x)ã2

i (t, x, ζ0, ζi)

where ζi 7→ ã1
i (t, x, ζ0, ζi) is strictly increasing for i = 1, ..., n;

|ã1
i (t, x, ζ0, ζi)| ≤ c1(|ζ0|p−1 + |ζi|p−1) + k1(x)

with some constant c1, k1 ∈ Lq(Ω), i = 0, 1, ..., n;

ã1
i (t, x, ζ0, ζi)ζi ≥ c2|ζi|p − k2(x), i = 1, ..., n

with some constant c2 > 0, k2 ∈ L1(Ω); ζi 7→ ã2
i (t, x, ζ0, ζi) is monotone nondecreasing

such that ã2
i (t, x, ζ0, ζi) = 0 if ζi = 0 (i = 1, ..., n);

|ã2
i (t, x, ζ0, ζi)| ≤ c1(|ζ0|ρ + |ζi|ρ) with 0 ≤ ρ < p− 1, i = 0, 1, ..., n.

107
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Operators Hi satisfy the same conditions as H in Example 1 and operators Gi satisfy

the same conditions as G, G0, respectively, in Example 1.

Example on b. b(t, x, ζ0; v) = ψ(ζ0)G̃(v) where G̃ : Lp(QT0) → L∞(QT0) is

a continuous operator with the property

0 < c1 ≤ G̃(v) ≤ c2 <∞ for any v

with some constants c1, c2.

The conditions of Theorem 2.1 are fulfilled for the Examples 1,2 if

H,Hi : Lp
loc(Q∞) → L∞(Q∞), G,Gi : Lp

loc(Q∞) → L
p

p−1−ρ (Q∞)

satisfy the above conditions for any finite T0 and they have the Volterra property;

further, a1
i , a

2
i , ã

1
i , ã

2
i satisfy the above conditions for any t.

The conditions of Theorem 2.2 are satisfied if the following additional

condition is fulfilled:∫
Ω

|G0(v)|
p

p−1−ρ dx ≤ c4

[
sup
[0,t]

|y|p1/2 + ϕ(t) sup
[0,t]

|y|p/2 + 1

]

for any v ∈ Lp
loc(0,∞;V ) with y(t) =

∫
Ω
v(t, x)2dx and ‖ f(t) ‖V ? is bounded.

The operator G0 may have e.g. one of the forms

ψ0

(∫
Ω

a(t, x)v(t, x)dx
)
, ψ0

([∫
Ω

|a(t, x)||v(t, x)|βdx
]1/β

)
,

ϕ0(t)χ0

([∫
Ω

|a(t, x)||v(t, x)|2dx
]1/2

)

where 1 ≤ β ≤ 2, a ∈ L∞, ψ0, ϕ0, χ0 : R→ R are continuous,

|ψ0(θ)| ≤ const|θ|p−1−ρ0 with some ρ0 > ρ,

|χ0(θ)| ≤ const|θ|p−1−ρ, lim
∞
ϕ0 = 0.
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