STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLIX, Number 2, June 2004

SIMPLE SUFFICIENT CONDITIONS FOR UNIVALENCE

VIRGIL PESCAR

Abstract. We study some integral operators and determine conditions for the univalence of these integral operators.

1. Introduction

Let A be the class of the functions f which are analytic in the unit disc $U = \{z \in \mathcal{C}; |z| < 1\}$ and f(0) = f'(0) - 1 = 0. We denote by S the class of the functions $f \in A$ which are univalent in U.

2. Preliminary results

We will need the following theorems and lemma. **Theorem 2.1**[2]. Let α be a complex number, $Re \ \alpha > 0$, and $f \in A$. If

$$\frac{1-|z|^{2Re\ \alpha}}{Re\alpha}\left|\frac{zf''(z)}{f'(z)}\right| \le 1,\tag{1}$$

for all $z \in U$, then for any complex number β , $Re \ \beta \ge Re \ \alpha$ the function

$$F_{\beta}(z) = \left[\beta \int_{o}^{z} u^{\beta-1} f'(u) du\right]^{\frac{1}{\beta}}$$
(2)

is in the class S.

Teorem 2.2 [1]. If the function g is regular in U and |g(z)| < 1 in U, then for all $\xi \in U$ and $z \in U$ the following inequalities hold:

$$\left|\frac{g\left(\xi\right) - g(z)}{1 - \overline{g(z)}g\left(\xi\right)}\right| \le \left|\frac{\xi - z}{1 - \overline{z}\xi}\right|,\tag{3}$$

Received by the editors: 04.01.2003.

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. integral operator, univalence.

VIRGIL PESCAR

$$|g'(z)| \le \frac{1 - |g(z)|^2}{1 - |z|^2} \tag{4}$$

The equalities hold only in the case $g(z) = \varepsilon \frac{z+u}{1+uz}$, where $|\varepsilon| = 1$ and |u| < 1. **The Schwarz Lemma [1].** Let the analytic function f(z) be regular in the unit circle |z| < 1 and let f(0) = 0. If, in |z| < 1, $|f(z)| \le 1$ then

$$|f(z)| \le |z|, \qquad |z| < 1$$
 (5)

where equality can hold only if f(z) = Kz and |K| = 1.

3. Main results

Theorem 3.1 Let γ be a complex number, $Re \gamma \geq 1$ and $g \in A$.

If

$$|g(z)| \le 1 \tag{6}$$

for all $z \in U$, then the function

$$G_{\gamma}(z) = \left[\gamma \int_0^z u^{\gamma-1} e^{g(u)} du\right]^{\frac{1}{\gamma}}$$
(7)

is in the class S.

Proof. Let us consider the function

$$f(z) = \int_0^z e^{g(u)} \, du.$$
 (8)

The function f is regular in U. We have

$$\left(1 - |z|^2\right) \left| \frac{zf''(z)}{f'(z)} \right| = \left(1 - |z|^2\right) |z| |g'(z)| \tag{9}$$

From (6) and Theorem 2.2 we obtain

$$|g'(z)| \le \frac{1}{1 - |z|^2} \tag{10}$$

From (9) and (10) we obtain

$$(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right| \le 1$$
 (11)

for all $z \in U$. From (8) we obtain $f'(z) = e^{g(z)}$, then from (11) and Theorem 2.1 for $Re \ \alpha = 1$, it follows that the function G_{γ} is in the class S. 96 **Theorem 3.2.** Let γ be a complex number, $Re\gamma = a > 0$, and the function $g \in A$. If

$$|zg'(z)| \le 1 \tag{12}$$

for all $z \in U$ and

$$|\gamma| \le \frac{(2a+1)^{\frac{2a+1}{2a}}}{2},\tag{13}$$

then the function

$$T_{\gamma}(z) = \left[\gamma \int_0^z u^{\gamma-1} \left(e^{g(u)}\right)^{\gamma} du\right]^{\frac{1}{\gamma}}$$
(14)

is in the class S.

Proof. Let us consider the function

$$f(z) = \int_0^z \left[e^{g(u)} \right]^\gamma du.$$
(15)

The function

$$h(z) = \frac{1}{|\gamma|} \frac{z f''(z)}{f'(z)},$$
(16)

where the constant $|\gamma|$ satisfies the inequality (13), is regular in U.

From (15) and (16) we obtain

$$h(z) = \frac{\gamma}{|\gamma|} zg'(z), \tag{17}$$

Using (12) and (17) we obtain

$$|h(z)| < 1 \tag{18}$$

for all $z \in U$. From (17) we have h(0) = 0 and applying the Schwarz - Lemma we get

$$|h(z)| \le |z| \tag{19}$$

for all $z \in U$, and hence, we obtain

$$\frac{1-|z|^{2a}}{a} \left| \frac{zf''(z)}{f'(z)} \right| \le \frac{|\gamma|}{a} \left(1-|z|^{2a} \right) |z|.$$
(20)

Let us consider the function $Q:[0,1] \to \mathcal{R}, \ Q(x) = (1-x^{2a}) x, \ x = |z|$. We have

$$Q(x) \le \frac{2a}{(2a+1)^{\frac{2a+1}{2a}}}$$
(21)

97

VIRGIL PESCAR

for all $x \in [0, 1]$. From (21), (20) and (13) we obtain

$$\frac{1 - |z|^{2a}}{a} \left| \frac{z f''(z)}{f'(z)} \right| \le 1$$
(22)

for all $z \in U$. Then, from (22) and Theorem 2.1 for $Re\alpha = a$ it follows that the function T_{γ} is in the class S.

References

- Nehari, Z., Conformal mapping, Mc Graw-Hill Book Comp., New York, Toronto, London, 1952.
- [2] Pascu, N. N., An improvement of Becker's univalent criterion, Proceedings of the Commemorative Session Simion Stoilow, Braşov, 1987, Univ. Braşov, 1987, 43-48.
- [3] Pommerenke, C., Univalent functions, Göttingen, 1975.

DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, "TRANSILVANIA" UNIVERSITY OF BRAŞOV, 2200 BRAŞOV, ROMANIA