ORTHOGONAL BASIS IN SOBOLEV SPACE $H_{0}^{1}(a, b)$

CRISTINEL MORTICI

Abstract

It is the purpose of this work to use the method of doubleorthogonal sequences of Bergmann [1] to find an orthogonal basis in the Sobolev space $H_{0}^{1}(a, b)$. The elements of the basis are the solutions of some eigenvalue boundary problems.

In practice arise real difficulties in the problem of finding a base in Hilbert spaces. In case of Sobolev spaces a polynomial base is ussualy chosen, but other difficulties appear. Some of them were avoided using the finite element method. We give here a method of elimination of these difficulties using Bergmann's method of double orthogonal sequences [1].

Let $(H,(\cdot, \cdot)),(V,<\cdot, \cdot>)$ be real, separable Hilbert spaces and denote by $\|\cdot\|,|\cdot|$ the corresponding norms, respectively. In what follows, we use the next result due to Bergmann [1]:

Theorem 1. Assume that $H \subset V$ and the imbedding $H \hookrightarrow V$ is compact,

$$
|x| \leq c\|x\| \quad, \quad \forall x \in H
$$

for some positive constant c. Then there exist an increasing, unbounded sequence $\left(\lambda_{n}\right)_{n \geq 1}$ of positive real numbers and a sequence $\left(e_{n}\right)_{n \geq 1} \subset H$ which is orthogonal with respect to both inner products, i.e.

$$
\begin{equation*}
\left(e_{m}, e_{n}\right)=\lambda_{n} \delta_{m n} \quad, \quad<e_{m}, e_{n}>=\delta_{m n}, \tag{1}
\end{equation*}
$$

Received by the editors: 31.03 .2003 .
Key words and phrases. eigenvalue boundary problem, Hilbert space, orthonormal base
for all positive integers m, n. Moreover, $\left(e_{n}\right)_{n \geq 1}$ is complete in H.
We will give a method to find an orthogonal basis in H. In fact, the elements of the basis are the solutions of some optimization problems.

In this sense, denote by $v_{1} \in H$ a solution of the problem

$$
\sup \{|x| ; x \in H,\|x\|=1\}
$$

If $v_{1}, v_{2}, \ldots, v_{n-1}$ are already defined, then $v_{n} \in H$ is chosen as a solution of the problem

$$
\sup \left\{|x| ; x \in H, \quad\|x\|=1, \quad\left(x, v_{i}\right)=0,1 \leq i \leq n-1\right\}
$$

Finally,

$$
e_{n}=\frac{1}{\left|v_{n}\right|} \cdot v_{n} \quad, \quad n \geq 1
$$

For proofs and more details, see [1], [5]. The norms $\|\cdot\|$ and $|\cdot|$ are equivalent on finite dimensional subspaces of H.

Indeed, on $H_{n}=\operatorname{sp}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}, n \geq 1$, we have

$$
\frac{1}{c}|x| \leq\|x\| \leq \sqrt{\lambda_{n}} \cdot|x| \quad, \quad \forall x \in H_{n}
$$

Remark that from (1), we can derive the equalities

$$
\left(e_{m}, e_{n}\right)=\lambda_{n}<e_{m}, e_{n}>, \quad \forall m, n \geq 1
$$

Because of completness of the system $\left(e_{n}\right)_{n \geq 1}$, it follows that

$$
\begin{equation*}
\left(e_{n}, v\right)=\lambda_{n}<e_{n}, v>, \quad \forall n \geq 1, v \in H . \tag{2}
\end{equation*}
$$

In consequence, the elements of the orthogonal basis $\left(e_{n}\right)_{n \geq 1}$ can be considered as the solutions of the eigenvalue problem (2). In fact, this is an useful method to find a basis in a real separable Hilbert space, as we can see below.

Let $a<b$ be real numbers. We say that $u \in L^{2}(a, b)$ has generalized derivative (in Sobolev sense) if there exists $g \in L^{2}(a, b)$ such that

$$
\int_{a}^{b} u \phi^{\prime}=-\int_{a}^{b} g \phi, \quad \forall \phi \in C_{0}^{\infty}(a, b)
$$

$$
\text { ORTHOGONAL BASIS IN SOBOLEV SPACE } H_{0}^{1}(a, b)
$$

g (unique with this property) is called the generalized derivative of u an denote $g=u^{\prime}$.
The set of all functions $u \in L^{2}(a, b)$ with $u(a)=u(b)=0$, having generalized derivative is denoted by $H_{0}^{1}(a, b)$.
$H_{0}^{1}(a, b)$ also called Sobolev space is a Hilbert space relative to the scalar product

$$
(u, v)=\int_{a}^{b} u v+\int_{a}^{b} u^{\prime} v^{\prime}, \quad u, v \in H_{0}^{1}(a, b) .
$$

Here u^{\prime}, v^{\prime} deonte the generalized derivatives of u, respective v. The corresponding norm is

$$
\|u\|=\left(\int_{a}^{b} u^{2}+\int_{a}^{b} u^{\prime 2}\right)^{1 / 2} \quad, \quad u \in H_{0}^{1}(a, b)
$$

Consider also the Hilbert space $L^{2}(a, b)$ endowed with the usual scalar product

$$
<u, v>=\int_{a}^{b} u v, \quad u, v \in L^{2}(a, b)
$$

and the usual norm

$$
|u|=\left(\int_{a}^{b} u^{2}\right)^{1 / 2}, \quad u \in L^{2}(a, b)
$$

The imbedding

$$
H_{0}^{1}(a, b) \hookrightarrow L^{2}(a, b)
$$

is compact because

$$
|u| \leq\|u\| \quad, \quad \forall u \in H_{0}^{1}(a, b)
$$

In order to give a method to find an orthogonal basis in $H_{0}^{1}(a, b)$, we will use theorem 1. The eigenvalue problem (2) can be written as

$$
\begin{equation*}
\int_{a}^{b} e_{n} v+\int_{a}^{b} e_{n}^{\prime} v^{\prime}=\lambda_{n} \int_{a}^{b} e_{n} v, \quad \forall v \in H_{0}^{1}(a, b), n \geq 1 \tag{3}
\end{equation*}
$$

But $v(a)=v(b)=0$, so

$$
\int_{a}^{b} e_{n}^{\prime} v^{\prime}=-\int_{a}^{b} e_{n}^{\prime \prime} v
$$

if e_{n} is twice derivable. Hence (3) is equivalent with

$$
\int_{a}^{b} e_{n} v-\int_{a}^{b} e_{n}^{\prime \prime} v=\lambda_{n} \int_{a}^{b} e_{n} v
$$

CRISTINEL MORTICI

so

$$
\int_{a}^{b}\left(e_{n}^{\prime \prime}+\left(\lambda_{n}-1\right) e_{n}\right) v=0 \quad, \quad \forall v \in H_{0}^{1}(a, b)
$$

We deduce that $\left(e_{n}\right)_{n \geq 1}$ are the eigenfunctions of the following boundary problem

$$
\left\{\begin{array}{l}
e^{\prime \prime}+\lambda e=0 \tag{4}\\
e(a)=e(b)=0
\end{array}\right.
$$

with $\lambda>0$. The nontrivial solutions of the second order linear equation $e^{\prime \prime}+\lambda e=0$ are

$$
e(x)=p \cos \sqrt{\lambda} x+q \sin \sqrt{\lambda} x, \quad x \in(a, b),
$$

for reals p, q, with $p^{2}+q^{2} \neq 0$.
The boundary conditions can be written as

$$
\left\{\begin{array}{c}
p \cos \sqrt{\lambda} a+q \sin \sqrt{\lambda} a=0 \tag{5}\\
p \cos \sqrt{\lambda} b+q \sin \sqrt{\lambda} b=0
\end{array} .\right.
$$

If for example $q \neq 0$, we derive

$$
-\frac{p}{q}=\tan \sqrt{\lambda} a=\tan \sqrt{\lambda} b
$$

so

$$
\sqrt{\lambda} b-\sqrt{\lambda} a=n \pi \Rightarrow \lambda_{n}=\frac{n^{2} \pi^{2}}{(b-a)^{2}}, \quad n \in \mathbf{N}, n \geq 1
$$

In conclusion,

$$
e_{n}(x)=-q \tan \frac{n \pi a}{b-a} \cos \frac{n \pi x}{b-a}+q \sin \frac{n \pi x}{b-a}, \quad x \in(a, b)
$$

is orthogonal basis in $H_{0}^{1}(a, b)$.

References

[1] Bergmann, St., The Kernel Function and Conformal Mapping, New York, AMS, 1950.
[2] Brezis, H., Annalise Fonctionnelle, Mason Editeur, 1985.
[3] Deimling, K., Nonlinear Functional Analysis, Springer Verlag, 1985.
[4] Nirenberg, L., Variational and Topological Methods in Nonlinear Problems, Bull. AMS, 4(81), 267-302.

ORTHOGONAL BASIS IN SOBOLEV SPACE $H_{0}^{1}(a, b)$

[5] Sburlan, S., On a Particular Class of Optimal Problems with Application in the Projection Method, Operation Research Verfahren XIX(1973), Anton Heim Verlag, 102-108.

Valahia University of Targoviste, Dept. of Mathematics, Bd. Unirii 18, 0200 Targoviste, Romania

E-mail address: cmortici@valahia.ro

