THE BETA APPROXIMATING OPERATORS OF FIRST KIND

VASILE MIHEŞAN

Abstract

We shall define a general linear transform from which we obtain as particular case the beta first kind transform: $$
\begin{equation*} \mathcal{B}_{p, q} f=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-1}(1-t)^{q-1} f\left(t^{a}\right) d t \tag{*} \end{equation*}
$$

We consider here only the particular case $a=1$. We obtain several positive linear operators as a particular case of this beta first kind transform. We apply the transform (*) to Bernstein's operator B_{n} and thus we obtain different generalizations of this operator.

1. Introduction

Many authors introduced and studied positive linear operators, using Euler's beta function of first kind: [1], [2], [4], [6], [7], [8], [11].

Euler's beta function of first kind is defined for $p>0, q>0$ by the following formula

$$
\begin{equation*}
B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t \tag{1.1}
\end{equation*}
$$

The beta transform of the function f is defined by the following formula

$$
\mathcal{B}_{p, q} f=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-q}(1-t)^{q-1} p(t) d t
$$

We shall define a more general linear transform of a function f from which we obtain as particular case the beta first-kind transform.

For $a, b \in \mathbb{R}$, we define the (a, b)-beta transform of a function f (see [6])

$$
\begin{equation*}
\mathcal{B}_{p, q}^{(a, b)} f=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-1}(1-t)^{q-1} f\left(t^{a}(1-t)^{b}\right) d t \tag{1.2}
\end{equation*}
$$

Received by the editors: 27.11 .2003 .
2000 Mathematics Subject Classification. 41A36.
Key words and phrases. Euler's beta function, the beta first-kind transform, positive linear operators.
where $B(\cdot, \cdot)$ is the beta function (1.1) and f is any real measurable function defined on $(0, \infty)$ such that $\mathcal{B}_{p, q}^{(a, b)}|f|<\infty$.

If we put in (1.2) b=0 we obtain the first-kind transform of a function f

$$
\begin{equation*}
\mathcal{B}_{p, q}^{(a)} f=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-1}(1-t)^{q-1} f\left(t^{a}\right) d t \tag{1.3}
\end{equation*}
$$

where $B(\cdot, \cdot)$ is the beta function (1.1) and f is any real measurable function defined on $(0, \infty)$ such that $\mathcal{B}_{p, q}^{(a)}|f|<\infty$. Clearly $\mathcal{B}_{p, q}^{(a)}$ is a positive linear functional.

We shall consider here the particular cases $a=1$ and $a=-1$.
2. The beta first kind transform. Case $a=1$

We shall consider here the particular case $a=1$

$$
\begin{equation*}
\mathcal{B}_{p, q} f=\mathcal{B}_{p, q}^{(1)} f=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-1}(1-t)^{q-1} f(t) d t \tag{2.1}
\end{equation*}
$$

We need to state and prove:
Lemma 2.1. The moment of order k of the functional $\mathcal{B}_{p, q}$ has the following value

$$
\begin{equation*}
\mathcal{B}_{p, q} e_{k}=\frac{p(p+1) \ldots(p+k-1)}{(p+q) \ldots(p+q+k-1)}=\frac{(p)_{k}}{(p+q)_{k}} \tag{2.2}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\mathcal{B}_{p, q} e_{k}=\frac{1}{B(p, q)} \int_{0}^{1} t^{p+k-1}(1-t)^{q-1} d t=\frac{B(p+k, q)}{B(p, q)} \tag{2.3}
\end{equation*}
$$

By using successively k times the relation

$$
B(p+1, q)=\frac{p}{p+q} B(p, q)
$$

we find the relation

$$
B(p+k, q)=\frac{p(p+1) \ldots(p+k-1)}{(p+q) \ldots(p+q+k-1)} B(p, q)
$$

By replacing it into (2.3) we obtain the desired results (2.2).
Consequently we obtain

$$
\begin{equation*}
\mathcal{B}_{p, q} e_{1}=\frac{p}{p+q}, \quad \mathcal{B}_{p, q} e_{2}=\frac{p(p+1)}{(p+q)(p+q+1)} \tag{2.4}
\end{equation*}
$$

THE BETA APPROXIMATING OPERATORS OF FIRST KIND

We impose that $\mathcal{B}_{p, q} e_{1}=e_{1}$, that is $\frac{p}{p+q}=x$, or $\frac{p}{x}=\frac{q}{1-x}, x \in(0,1)$, $p>0$ and we obtain the following linear transform

$$
\begin{equation*}
\left(\mathcal{B}_{p} f\right)(x)=\frac{1}{B\left(p, \frac{1-x}{x} p\right)} \int_{0}^{1} t^{p-1}(1-t)^{\frac{1-x}{x} p-1} f(t) d t \tag{2.5}
\end{equation*}
$$

Lemma 2.2. One has

$$
\mathcal{B}_{p}\left((t-x)^{2} ; x\right)=\frac{x^{2}(1-x)}{p+x} .
$$

Proof. It is obtained from (2.4) for $q=\frac{1-x}{x} p, p+q=\frac{p}{x}$.

$$
\begin{aligned}
\left(\mathcal{B}_{p} e_{2}\right)(x) & =\frac{p(p+1)}{\frac{p}{x}\left(\frac{p}{x}+1\right)}=\frac{p(p+1) x^{2}}{p(p+x)}=x^{2}+\frac{(p+1) x^{2}}{p+x}-x^{2}= \\
& =x^{2}+x^{2} \frac{p+1-p-x}{p+x}=x^{2}+\frac{x^{2}(1-x)}{p+x}
\end{aligned}
$$

and

$$
\mathcal{B}_{p}\left((t-x)^{2}, x\right)=\frac{x^{2}(1-x)}{p+x} .
$$

Particular cases.

a) Let \mathcal{B}_{α} be the beta operator defined by

$$
\begin{equation*}
\left(\mathcal{B}_{\alpha} f\right)(x)=\frac{1}{B\left(\frac{x}{\alpha}, \frac{1-x}{\alpha}\right)} \int_{0}^{1} t^{\frac{x}{\alpha}-1}(1-t)^{\frac{1-x}{\alpha}-1} f(t) d t \tag{2.6}
\end{equation*}
$$

$\alpha>0, x \in(0,1)$. If f is defined on $[0,1]$ we set

$$
\left(\mathcal{B}_{\alpha} f\right)(0)=f(0), \quad\left(\mathcal{B}_{\alpha} f\right)(1)=f(1)
$$

The operator (2.6) has been considered by G. Mülhlbach [7] and it is obtained by (2.5) if we choose in (2.5) $p=\frac{x}{\alpha}$.

Lemma 2.3. One has

$$
\mathcal{B}_{\alpha}\left((t-x)^{2}, x\right)=\frac{\alpha}{1+\alpha} x(1-x) .
$$

Proof. $\mathcal{B}_{\alpha} e_{2}=\frac{\frac{x}{\alpha}\left(\frac{x}{\alpha}+1\right)}{\frac{1}{\alpha}\left(\frac{1}{\alpha}+1\right)}=\frac{x(x+\alpha)}{1+\alpha}=x^{2}+\left(\frac{x^{2}+\alpha x}{1+\alpha}-x^{2}\right)=$

$$
=x^{2}+\frac{\alpha x-\alpha x^{2}}{1+\alpha}=x^{2}+\frac{\alpha}{1+\alpha} x(1-x) \Rightarrow
$$

$$
\mathcal{B}_{\alpha}(t-x)^{2}(x)=\frac{\alpha}{1+\alpha} x(1-x) .
$$

For $\alpha=1 / n$ we obtain $\mathcal{B}_{1 / n}(t-x)^{2}(x)=\frac{x(1-x)}{n}$.
A slight modification of \mathcal{B}_{α} is the operator \mathcal{B}_{α}^{*} given by

$$
\begin{equation*}
\left(\mathcal{B}_{\alpha}^{*} f\right)(x)=\frac{1}{B\left(\frac{x}{\alpha}+1 ; \frac{1-x}{\alpha}+1\right)} \int_{0}^{1} t^{\frac{x}{\alpha}}(1-t)^{\frac{1-\alpha}{\alpha}} f(t) d t \tag{2.7}
\end{equation*}
$$

$\alpha>0, x \in[0,1]$, which, for $\alpha=1 / n, n \in \mathbb{N}$, has been introduced by A. Lupaş [4] and it is obtain by (2.5) if we replace in (2.5) $p=n x+1$.

A significant difference between \mathcal{B}_{α} and \mathcal{B}_{α}^{*} is that \mathcal{B}_{α} reproduces linear functions whereas \mathcal{B}_{α}^{*} does not.
b) Another beta first-kind operator it is obtained by (2.5) for $p=\frac{x}{\alpha(1-x)}$.

$$
\begin{equation*}
\left(\overline{\mathcal{B}}_{\alpha} f\right)(x)=\frac{1}{B\left(\frac{x}{\alpha(1-x)} ; \frac{1}{\alpha}\right)} \int_{0}^{1} t^{\frac{x}{\alpha(1-x)}-1}(1-t)^{\frac{1}{\alpha}-1} f(t) d t \tag{2.8}
\end{equation*}
$$

$\alpha>0, x \in(0,1)$, where f is any real measurable function defined on $(0,1)$ such that $\left(\bar{B}_{\alpha}|f|\right)(x)<\infty$. The operator (2.7) was introduced by S. Rathore [8] for $\alpha=1 / n$, $n \in \mathbb{N}$.

Lemma 2.4. One has

$$
\overline{\mathcal{B}}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha x(1-x)^{2}}{1+\alpha(1-x)} .
$$

Proof. $\overline{\mathcal{B}}_{\alpha} e_{2}=\frac{\frac{x}{\alpha(1-x)}\left(\frac{x}{\alpha(1-x)}+1\right)}{\frac{1}{\alpha(1-x)}\left(\frac{1}{\alpha(1-x)}+1\right)}=\frac{x(x+\alpha(1-x))}{1+\alpha(1-x)}=$

$$
=x^{2}+\left(\frac{x^{2}+\alpha x(1-x)}{1+\alpha(1-x)}-x^{2}\right)=x^{2}+\frac{\alpha x(1-x)^{2}}{1+\alpha(1-x)} \Rightarrow
$$

THE BETA APPROXIMATING OPERATORS OF FIRST KIND

$$
\overline{\mathcal{B}}_{\alpha}(t-x)^{2}(x)=\frac{\alpha x(1-x)^{2}}{1+\alpha(1-x)}
$$

For $\alpha=1 / n, n \in \mathbb{N}$, we obtain

$$
\overline{\mathcal{B}}_{1 / n}(t-x)^{2}(x)=\frac{x(1-x)^{2}}{n+1-x}
$$

c) Let $\widetilde{\mathcal{B}}_{\alpha}$ be the operator defined by

$$
\begin{equation*}
\left(\widetilde{\mathcal{B}}_{\alpha} f\right)(x)=\frac{1}{B\left(\frac{1}{\alpha}, \frac{1-x}{\alpha x}\right)} \int_{0}^{1} t^{\frac{1}{\alpha}-1}(1-t)^{\frac{1-x}{\alpha x}-1} f(t) d t \tag{2.9}
\end{equation*}
$$

$\alpha>0, x \in(0,1)$. The operator (2.8) is obtained by (2.5) if we choose in (2.5) $p=\frac{1}{\alpha}$.
Lemma 2.5. One has

$$
\widetilde{\mathcal{B}}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha x^{2}(1-x)}{1+\alpha x}
$$

Proof. $\widetilde{\mathcal{B}}_{\alpha} e_{2}=\frac{\frac{1}{\alpha}\left(\frac{1}{\alpha}+1\right)}{\frac{1}{\alpha x}\left(\frac{1}{\alpha x}+1\right)}=\frac{\alpha+1}{\alpha^{2}} \frac{\alpha^{2} x^{2}}{1+\alpha x}=\frac{\alpha+1}{1+\alpha x} x^{2}=$

$$
\begin{gathered}
=x^{2}+\left(\frac{\alpha+1}{1+\alpha x} x^{2}-x^{2}\right)=x^{2}+\frac{\alpha x^{2}-\alpha x^{3}}{1+\alpha x}=x^{2}+\frac{\alpha x^{2}(1-x)}{1+\alpha x} \Rightarrow \\
\widetilde{\mathcal{B}}_{\alpha}(t-x)^{2}(x)=\frac{\alpha x^{2}(1-x)}{1+\alpha x} .
\end{gathered}
$$

For $\alpha=1 / n, n \in \mathbb{N}$, we obtain

$$
\widetilde{\mathcal{B}}_{1 / n}(t-x)^{2}=\frac{x^{2}(1-x)}{n+x}
$$

3. The functional $P_{n}^{(p, q)} f=\mathcal{B}_{p, q}\left(B_{n} f\right)$

Now let us apply the transform (2.1) to the Bernstein operator B_{n}, defined by [3]

$$
\left(B_{n} f\right)(t)=\sum_{k=0}^{n}\binom{n}{k} t^{k}(1-t)^{n-k} f\left(\frac{k}{n}\right)
$$

We may state and prove

Theorem 3.1. The $\mathcal{B}_{p, q}$ transform of $B_{n} f$ can be expressed under the following form

$$
\begin{gather*}
P_{n}^{(p, q)} f=\mathcal{B}_{p, q}\left(B_{n} f\right)=\sum_{k=0}^{n}\binom{n}{k} \frac{(p)_{k}(q)_{n-k}}{(p+q)_{n}} f\left(\frac{k}{n}\right) \\
=\sum_{k=0}^{n}\binom{n}{k} \frac{p(p+1) \ldots(p+k-1) q(q+1) \ldots(q+n-k-1)}{(p+q)(p+q+1) \ldots(p+q+n-1)} f\left(\frac{k}{n}\right) \tag{3.1}
\end{gather*}
$$

Proof.

$$
\begin{gathered}
P_{n}^{(p, q)} f=\mathcal{B}_{p, q}\left(B_{n} f\right)=\sum_{k=0}^{n}\binom{n}{k} \frac{1}{B(p, q)} \int_{0}^{1} t^{p+k-1}(1-t)^{q+n-k+1} d t \cdot f\left(\frac{k}{n}\right)= \\
=\sum_{k=0}^{n}\binom{n}{k} \frac{B(p+k, q+n-k)}{B(p, q)} f\left(\frac{k}{n}\right)= \\
=\sum_{k=0}^{n}\binom{n}{k} \frac{p(p+1) \ldots(p+k-1) q(q+1) \ldots(q+n-k-1)}{(p+q)(p+q+1) \ldots(p+q+n-1)} f\left(\frac{k}{n}\right) .
\end{gathered}
$$

Theorem 3.2. One has

$$
\begin{gather*}
P_{n}^{(p, q)} e_{1}=\mathcal{B}_{p, q}\left(B_{n} e_{1}\right)=\frac{p}{p+q} \\
P_{n}^{(p, q)} e_{2}=\mathcal{B}_{p, q}\left(B_{n} e_{2}\right)=\frac{p}{(p+q)(p+q+1)}\left(p+1+\frac{q}{n}\right) \tag{3.2}
\end{gather*}
$$

Proof. $P_{n}^{(p, q)} e_{1}=\mathcal{B}_{p q}\left(B_{n} e_{1}\right)=\frac{1}{B(p, q)} \int_{0}^{1} t^{p}(1-t)^{q-1} d t=\frac{B(p+1, q)}{B(p, q)}=$ $\frac{p}{p+q}$.

$$
\begin{aligned}
& P_{n}^{(p, q)} e_{2}=\mathcal{B}_{p, q}\left(B_{n} e_{2}\right)=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-1}(1-t)^{q-1}\left(t^{2}+\frac{t(1-t)}{n}\right) d t= \\
&=\frac{1}{B(p, q)}\left(\int_{0}^{1} t^{p+1}(1-t)^{q-1} d t+\frac{1}{n} \int_{0}^{1} t^{p}(1-t)^{q} d t\right)= \\
&=\frac{B(p+2, q)}{B(p, q)}+\frac{1}{n} \frac{B(p+1, q+1)}{B(p, q)}=\frac{p(p+1)}{(p+q)(p+q+1)}+\frac{1}{n} \frac{p q}{(p+q)(p+q+1)} .
\end{aligned}
$$

We impose that $P_{n}^{(p, q)} e_{1}=\mathcal{B}_{p, q}\left(B_{n} e_{1}\right)=e_{1}$, that is $\frac{p}{p+q}=x$ or $q=\frac{1-x}{x} p$, $x \in(0,1), p>0$. We obtain from Theorem 3.1 and Theorem 3.2 the following results.

Corollary 3.3. One has

$$
\begin{equation*}
P_{n}^{(p)} f=\mathcal{B}_{p}\left(B_{n} f\right)=\sum_{k=0}^{n} v_{n, k}(x) f\left(\frac{k}{n}\right) \tag{3.3}
\end{equation*}
$$

where

$$
v_{n, k}(x)=\binom{n}{k} \frac{p(p+1) \ldots(p+k-1) p(1-x)(p(1-x)+x) \ldots(p(1-x)+(n-k-1) x)}{p(p+x) \ldots(p+(n-1) x)} x^{k} .
$$

Proof. If we put in (3.1) $q=p \frac{1-x}{x}$, then $p+q=\frac{p}{x}$ and we obtain

$$
P_{n}^{(p)} f=\mathcal{B}_{p}\left(B_{n} f\right)=\sum_{k=0}^{n} v_{n, k}(x) f\left(\frac{k}{n}\right)
$$

where

$$
\begin{gathered}
v_{n, k}(x)=\binom{n}{k} \frac{(p)_{k}(q)_{n-k}}{(p+q)_{n}}=\binom{n}{k} \frac{(p)_{k}\left(p \frac{1-x}{x}\right)_{n-k}}{\left(\frac{p}{x}\right)_{n}}= \\
=\binom{n}{k} \frac{p(p+1) \ldots(p+k-1)\left(p \frac{1-x}{x}\right)\left(p \frac{1-x}{x}+1\right) \ldots\left(p \frac{1-x}{x}+n-k-1\right)}{\frac{p}{x}\left(\frac{p}{x}+1\right) \ldots\left(\frac{p}{x}+n-1\right)}= \\
=\binom{n}{k} \frac{p(p+1) \ldots(p+k-1) p(1-x)(p(1-x)+1) \ldots(p(1-x)+(n-k-1) x)}{p(p+x) \ldots(p+(n-1) x)} x^{k} . \square
\end{gathered}
$$

Corollary 3.4. One has $\left(P_{n}^{(p)} e_{1}\right)(x)=\mathcal{B}_{p}\left(B_{n} e_{1}\right)(x)=x$;

$$
\begin{gather*}
\left(P_{n}^{(p)} e_{2}\right)(x)=\mathcal{B}_{p}\left(B_{n} e_{2}\right)(x)=x^{2}+x(1-x) \frac{n x+p}{n(x+p)} \\
P_{n}^{(p)}(t-x)^{2}(x)=\mathcal{B}_{p}\left(B_{n}(t-x)^{2}\right)(x)=\frac{x(1-x)}{n} \cdot \frac{n x+p}{x+p} \tag{3.4}
\end{gather*}
$$

Proof. $\left(P_{n}^{(p)} e_{1}\right)(x)=\mathcal{B}_{p}\left(B_{n} e_{1}\right)(x)=\frac{p}{p+q}=\frac{p x}{p}=x$.

$$
\begin{gathered}
\left(P_{n}^{(p)} e_{2}\right)(x)=\mathcal{B}_{p}\left(B_{n} e_{2}\right)(x)=\frac{p}{(p+q)(p+q+1)}\left(p+1+\frac{q}{n}\right)= \\
=\frac{p}{\frac{p}{x}\left(\frac{p}{x}+1\right)}\left(p+1+\frac{p}{n} \frac{1-x}{x}\right)=\frac{x^{2}}{p+x}\left(p+1+\frac{p}{n} \frac{1-x}{x}\right)= \\
=x^{2}+\frac{x^{2}}{p+x}\left(p+1+\frac{p}{n} \frac{1-x}{x}\right)-x^{2}=x^{2}+x^{2}\left(\frac{p+1}{p+x}+\frac{p}{n} \frac{1-x}{x(p+x)}-1\right)=
\end{gathered}
$$

VASILE MIHEŞAN

$$
\begin{gathered}
=x^{2}+x^{2} \frac{(1-x)(p+n x)}{n x(p+x)}=x^{2}+\frac{x(1-x)}{n} \frac{n x+p}{x+p} . \\
P_{n}^{(p)}(t-x)^{2}(x)=\mathcal{B}_{p}\left(B_{n}(t-x)^{2}\right)(x)=\frac{x(1-x)}{n} \frac{n x+p}{x+p} .
\end{gathered}
$$

Particular cases

a) If we put in (3.3) $p=\frac{x}{\alpha}, \alpha>0$, we obtain

$$
\begin{gather*}
\left(P_{n}^{(\alpha)} f\right)(x)=\sum_{k=0}^{n} v_{n, k}(x) f\left(\frac{k}{n}\right) \tag{3.5}\\
v_{n, k}(x)=\binom{n}{k} \frac{x(x+\alpha) \ldots(x+(k-1) \alpha)(1-x)(1-x+\alpha) \ldots(1-x+(n-k-1) \alpha)}{(1+\alpha)(1+2 \alpha) \ldots(1+(n-1) \alpha)}
\end{gather*}
$$

This operator has been considered by D. D. Stancu [9], which, for $\alpha=1 / n$, $n \in \mathbb{N}$, has been introduced by L. Lupaş and A. Lupaş [5]:

$$
\begin{equation*}
\left(L_{n} f\right)(x)=\sum_{k=0}^{n}\binom{n}{k} \frac{(n x)_{k}(n(1-x))_{n-k}}{(n)_{n}} f\left(\frac{k}{n}\right) \tag{3.6}
\end{equation*}
$$

Corollary 3.5. One has $P_{n}^{(\alpha)}(t-x)^{2}(x)=\frac{1+n \alpha}{n(1+\alpha)} x(1-x)$.
Remark. For $\alpha=1 / n$ we obtain

$$
P_{n}(t-x)^{2}(x)=\frac{2}{n+1} x(1-x)
$$

b) Another operator it is obtained by (3.3) for $p=\frac{x}{\alpha(1-x)}, \alpha>0$.

$$
\begin{gather*}
\left(\bar{P}^{(\alpha)} f\right)(x)=\sum_{k=0}^{n} \bar{v}_{n, k}(x) f\left(\frac{k}{n}\right) \tag{3.7}\\
\bar{v}_{n, k}(x)=\binom{n}{k} \frac{x(x+\alpha(1-x)) \ldots(x+(k-1) \alpha(1-x))(1+\alpha) \ldots(1+(n-k-1) \alpha)}{(1+\alpha)(1-x) \ldots(1+(n-1) \alpha(1-x))} .
\end{gather*}
$$

Corollary 3.6. One has

$$
\bar{P}_{n}^{(\alpha)}(t-x)^{2}(x)=\frac{x(1-x)}{n} \cdot \frac{1+n \alpha(1-x)}{1+\alpha(1-x)}
$$

Remark. For $\alpha=1 / n, n \in \mathbb{N}$, we obtain

$$
\bar{P}_{n}(t-x)^{2}(x)=\frac{x(1-x)(2-x)}{n+1-x} .
$$

c) Let $\widetilde{P}_{n}^{(\alpha)}$ be the operator defined by

$$
\begin{equation*}
\left(\widetilde{P}_{n}^{(\alpha)} f\right)(x)=\sum_{k=0}^{n} \widetilde{v}_{n, k}(x) f\left(\frac{k}{n}\right) \tag{3.8}
\end{equation*}
$$

$\widetilde{v}_{n, k}(x)=\binom{n}{k} \frac{(1+\alpha) \ldots(1+(k-1) \alpha)(1-x)(1-x+\alpha x) \ldots(1-x+(n-k-1) \alpha x)}{(1+\alpha x)(1+2 \alpha x) \ldots(1+(n-1) \alpha x)} x^{n-k}$ $\alpha>0, x \in(0,1)$. This operator is obtained by (3.3) for $p=1 / \alpha, \alpha>0$.

Corollary 3.7. One has

$$
\widetilde{P}_{n}^{(\alpha)}(t-x)^{2}(x)=\frac{x(1-x)}{n} \cdot \frac{1+n \alpha x}{1+\alpha x}
$$

Remark. For $\alpha=1 / n, n \in \mathbb{N}$, we obtain

$$
\widetilde{P}_{n}(t-x)^{2}(x)=\frac{x(1-x)(1+x)}{n+x} .
$$

From the operators (3.5), (3.7) and (3.8), for $\alpha=0$ we obtain the operator of S. N. Bernstein.

4. The beta first kind transform. Case $a=-1$

We consider now the case $a=-1$. If we put $a=-1$ in (1.3) we obtain

$$
\begin{equation*}
\mathbf{B}_{p, q} f=\mathcal{B}_{p, q}^{(-1)} f=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-1}(1-t)^{q-1} f\left(\frac{1}{t}\right) d t \tag{4.1}
\end{equation*}
$$

Lemma 4.1. The moment of order $k(1 \leq k<p)$ of the functional $\mathbf{B}_{p, q}$ has the following value

$$
\begin{equation*}
\mathbf{B}_{p, q} e_{k}=\frac{(p+q-1) \ldots(p+q-k)}{(p-1) \ldots(p-k)}, \quad 1 \leq k<p \tag{4.2}
\end{equation*}
$$

Proof

$$
\begin{equation*}
\mathbf{B}_{p, q} e_{k}=\frac{1}{B(p, q)} \int_{0}^{1} t^{p-k-1}(1-t)^{q-1} d t=\frac{B(p-k, q)}{B(p, q)} \tag{4.3}
\end{equation*}
$$

By using successively k times the relation

$$
B(p-1, q)=\frac{p+q-1}{p-1} B(p, q)
$$

we find the relation

$$
B(p-k, q)=\frac{(p+q-1) \ldots(p+q-k)}{(p-1) \ldots(p-k)} B(p, q)
$$

By replacing it into (4.3) we obtain the desired results (4.2).
Consequently we obtain

$$
\begin{equation*}
\mathbf{B}_{p, q} e_{1}=\frac{p+q-1}{p-1}, \quad \mathcal{B}_{p, q} e_{2}=\frac{(p+q-1)(p+q-2)}{(p-1)(p-2)} \tag{4.4}
\end{equation*}
$$

We impose that $B_{p, q} e_{1}=e_{1}$, that is $\frac{p+q-1}{p-1}=x$ or $p-1=\frac{q}{x-1}$ and we obtain the following linear transform, defined for $x>1$ and $p>2$:

$$
\begin{equation*}
\mathbf{B}_{p} f=\frac{1}{B(p,(p-1)(x-1))} \int_{0}^{1} t^{p-1}(1-t)^{(p-1)(x-1)-1} f\left(\frac{1}{t}\right) d t \tag{4.5}
\end{equation*}
$$

Lemma 4.2. One has

$$
\mathbf{B}_{p}\left((t-x)^{2} ; x\right)=\frac{x(x-1)}{p-2}
$$

Proof. It is obtained from Lemma 2.1 for $q=(p-1)(x-1), p+q=1+(p-1) x$ and

$$
\begin{aligned}
& \mathbf{B}_{p} e_{2}(x)=\frac{(p-1) x((p-1) x-1)}{(p-1)(p-2)}=x^{2}+\frac{(p-1) x^{2}-x}{p-2}-x^{2}= \\
& =x^{2}+\frac{(p-1) x^{2}-x-(p-2) x^{2}}{p-2}=x^{2}+\frac{x^{2}-x}{p-2}=x^{2}+\frac{x(x-1)}{p-2}
\end{aligned}
$$

and

$$
\mathbf{B}_{p}\left((t-x)^{2} ; x\right)=\frac{x(x-1)}{p-2} .
$$

Particular cases

a) Let \mathbf{B}_{α} be the beta operator defined by

$$
\begin{equation*}
\left(\mathbf{B}_{\alpha} f\right)(x)=\frac{1}{B\left(1+\frac{1}{\alpha}, \frac{x-1}{\alpha}\right)} \int_{0}^{1} t^{\frac{1}{\alpha}}(1-t)^{\frac{x-1}{\alpha}-1} f\left(\frac{1}{t}\right) d t \tag{4.6}
\end{equation*}
$$

$\alpha \in(0,1), x \in(1, \infty)$. If f is defined on $[1, \infty)$ we $\operatorname{set}\left(\mathbf{B}_{\alpha} f\right)(1)=f(1)$.
This operator is obtained by (4.5) if we choose in (4.5) $p=1+\frac{1}{\alpha}$.

Lemma 4.3. One has

$$
\mathbf{B}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha}{1-\alpha} x(x-1)
$$

Proof. $\mathbf{B}_{\alpha} e_{2}=\frac{\frac{x}{\alpha}\left(\frac{x}{\alpha}-1\right)}{\frac{1}{\alpha}\left(\frac{1}{\alpha}-1\right)}=\frac{x(x-\alpha)}{1-\alpha}=x^{2}+\left(\frac{x^{2}-x \alpha}{1-\alpha}-x^{2}\right)=$

$$
=x^{2}+\frac{x^{2}-x \alpha-x^{2}+\alpha x^{2}}{1-\alpha}=x^{2}+\frac{\alpha x(x-1)}{1-\alpha}
$$

and

$$
\mathbf{B}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha}{1-\alpha}(x-1)
$$

For $\alpha=1 / n, n \in \mathbb{N}$, we obtain

$$
\mathbf{B}_{\frac{1}{n}}\left((t-x)^{2} ; x\right)=\frac{x(x-1)}{n-1}
$$

b) Let $\overline{\mathbf{B}}_{\alpha}$ be the operator defined by

$$
\begin{equation*}
\left(\overline{\mathbf{B}}_{\alpha} f\right)(x)=\frac{1}{B\left(1+\frac{1}{\alpha(x-1)}, \frac{1}{\alpha}\right)} \int_{0}^{1} t^{\frac{1}{\alpha(x-1)}}(1-t)^{\frac{1}{\alpha}-1} f\left(\frac{1}{t}\right) d t \tag{4.7}
\end{equation*}
$$

$\alpha \in(0,1), x \in\left(1,1+\frac{1}{\alpha}\right)$. This operator is obtained by (4.5) if we choose in (4.5) $p=1+\frac{1}{\alpha(x-1)}$.

Lemma 4.4. One has

$$
\widetilde{\mathbf{B}}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha(x-1)^{2}}{1-\alpha(x-1)}
$$

$$
\begin{gathered}
\text { Proof. } \overline{\mathbf{B}}_{\alpha} e_{2}=\frac{\frac{x}{\alpha(x-1)}\left(\frac{x}{\alpha(x-1)}-1\right)}{\frac{1}{\alpha(x-1)}\left(\frac{1}{\alpha(x-1)}-1\right)}=\frac{x(x-\alpha(x-1))}{1-\alpha(x-1)}= \\
=x^{2}+\frac{x^{2}-\alpha x(x-1)}{1-\alpha(x-1)}-x^{2}=x^{2}+\frac{x^{2}-\alpha x(x-1)-x^{2}+\alpha x^{2}(x-1)}{1-\alpha(x-1)}= \\
=x^{2}+\frac{\alpha x(x-1)^{2}}{1-\alpha(x-1)}
\end{gathered}
$$

VASILE MIHESAN

and

$$
\overline{\mathbf{B}}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha x(x-1)^{2}}{1-\alpha(x-1)}
$$

For $\alpha=1 / n, n \in \mathbb{N}$, we obtain

$$
\overline{\mathbf{B}}_{1 / n}\left((t-x)^{2} ; x\right)=\frac{x(x-1)^{2}}{n+1-x} .
$$

c) Another beta first-kind operator it is obtained by (2.5) for $p=1+\frac{1}{\alpha x}$.

$$
\begin{equation*}
\left(\widetilde{\mathbf{B}}_{\alpha} f\right)(x)=\frac{1}{B\left(1+\frac{1}{\alpha x} ; \frac{x-1}{\alpha x}\right)} \int_{0}^{1} t^{\frac{1}{\alpha x}}(1-t)^{\frac{x-1}{\alpha x}-1} f\left(\frac{1}{t}\right) d t \tag{4.8}
\end{equation*}
$$

$\alpha \in(0,1), x \in(1,1 / \alpha)$, where f is any real measurable function defined on $(1,1 / \alpha)$, such that $\left(\overline{\mathbf{B}}_{\alpha}|f|\right)(x)<\infty$.

Lemma 4.5. One has

$$
\widetilde{\mathbf{B}}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha x^{2}(x-1)}{1-\alpha x}
$$

Proof. $\widetilde{\mathbf{B}}_{\alpha} e_{2}=\frac{\frac{1}{\alpha}\left(\frac{1}{\alpha}-1\right)}{\frac{1}{\alpha x}\left(\frac{1}{\alpha x}-1\right)}=\frac{1-\alpha}{1-\alpha x} x^{2}=x^{2}+\frac{1-\alpha}{1-\alpha x} x^{2}-x^{2}=$

$$
=x^{2}+\frac{x^{2}-\alpha x^{2}-x^{2}+\alpha x^{3}}{1-\alpha x}=x^{2}+\frac{\alpha x^{2}(x-1)}{1-\alpha x}
$$

and

$$
\widetilde{\mathbf{B}}_{\alpha}\left((t-x)^{2} ; x\right)=\frac{\alpha x^{2}(x-1)}{1-\alpha x}
$$

For $\alpha=1 / n, n \in \mathbb{N}$, we obtain

$$
\overline{\mathbf{B}}_{1 / n}\left((t-x)^{2} ; x\right)=\frac{x^{2}(x-1)}{n-x} .
$$

THE BETA APPROXIMATING OPERATORS OF FIRST KIND

References

[1] Adell, J. A., Badia, F. G., De la Cal, J., Beta-type operators preserve shape properties, Stochastic Process. Appl., 48(1993), 1-8.
[2] Adell, J. A., Badia, F. G., De la Cal, J., Plo, L., On the property of monotonic convergence for Beta operators, J. of Approx. Theory, 84(1996), 61-73.
[3] Bernstein, S. N., Demonstration du théoreme de Weierstrass fondée sur le calcul probabilistiés, Commun. Kharkow Math. Soc. 13(1912), 1-2.
[4] Lupaş, A., Die folge der Beta operatoren, Dissertation, Univ. Stuttgart, Stuttgart, 1972.
[5] Lupaş, L., Lupaş, A., Polynomials of bynomial type and approximation operators, Studia Univ. Babeş-Bolyai, Mathematica, XXXII, 4(1987), 61-69.
[6] Miheşan, V., Approximation of continuous functions by means of linear positive operators, Ph. D. Thesis, "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Cluj-Napoca, 1997.
[7] Mühlbach, G., Verallgemeinerungen der Bernstein und der Lagrangepolynome, Rev. Roumaine Math. Pures Appl., 15(1970), 1235-1252.
[8] Rathore, R. K. S., Linear combinations of linear positive operators and generating relations on special functions, Ph. D. Thesis, Delhi, 1973.
[9] Stancu, D. D., Approximation of function by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13(1968), 1173-1194.
[10] Stancu, D. D., Two classes of positive linear operators, Analele Univ. Timişoara, 8(1970), 213-220.
[11] Stancu, D. D., On the Beta approximating operators of second kind, Anal. Numer. Theor. Approx., 24, 1-2(1995), 231-239.

Technical University of Cluj-Napoca, Department of Mathematics, RO-3400, Cluj-Napoca, Romania
E-mail address: Vasile.Mihesan@math.utcluj.ro

