ON A CLASS OF PARAMETRIC PARTIAL LINEAR COMPLEX VECTOR FUNCTIONAL EQUATIONS

ICE B. RISTESKI, KOSTADIN G. TRENČEVSKI, AND VALÉRY C. COVACHEV

Abstract

In this paper one class of parametric complex vector partial linear functional equations is solved.

0 . Introduction

First we introduce the following notations. Let $\mathcal{V}, \mathcal{V}^{\prime}$ be finite dimensional complex vector spaces and $\mathbf{Z}_{i}, \quad i \in \mathbf{N}$, be vectors in \mathcal{V}. We may assume that $\mathbf{Z}_{i}=\left(z_{i 1}(t), \ldots, z_{i n}(t)\right)^{T}$, where $z_{i j}(t)(1 \leq j \leq n)$ are complex functions and $\mathbf{O}=(0, \ldots, 0)^{T}$ is the zero-vector in \mathcal{V} or \mathcal{V}^{\prime}. We also denote by \mathcal{V}^{0} the subspace of all real vectors in \mathcal{V} (thus $\left.\mathcal{V}=\mathcal{V}^{0}+i \mathcal{V}^{0}\right)$, and by $\mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)$ the space of linear mappings $\mathcal{V}^{0} \rightarrow \mathcal{V}^{\prime}$. Let (m, n) be the greatest common divisor of m and n.

In the present paper our object of investigation will be the following functional equation

$$
\begin{gather*}
\sum_{i=1}^{m+n} f_{i}\left(\sum_{j=0}^{m-1} a^{m-1-j} \mathbf{Z}_{i+j}, \sum_{j=0}^{n-1} a^{n-1-j} \mathbf{Z}_{i+m+j}\right)=\mathbf{O} \tag{1}\\
\left(\mathbf{Z}_{m+n+i} \equiv \mathbf{Z}_{i}, \quad a \in \mathbf{C}\right)
\end{gather*}
$$

where \mathbf{C} is the field of complex numbers and $f_{i}: \mathcal{V}^{2} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n)$ are unknown complex vector functions.

The above equation for $a=1$ was solved in [1] under the assumption that the functions and variables are real. But the argument given there is valid only if the greatest common divisor of m and n is 1 . Also, one special general case is solved in [2]. The theorems of [2] concerning the cases $m \neq n$ should be modified to give the general continuous solutions.

1. Main Results

Now we will give the following results.
Theorem 1. If $a=1,(m, n)=1$ and $m+n>2$, then the general continuous solution of the functional equation (1) is

$$
\begin{gather*}
f_{i}(\mathbf{U}, \mathbf{V})=F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{i}(\mathbf{U}+\mathbf{V}) \tag{2}\\
(1 \leq i \leq m+n)
\end{gather*}
$$

so that

$$
\sum_{i=1}^{n+m} G_{i}(\mathbf{U})=-m\left[F_{1}(\mathbf{U}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{U}) \operatorname{Im} \mathbf{U}\right]
$$

where $F_{i}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)(i=1,2)$ and $G_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n-1)$ are arbitrary continuous complex vector functions.
Proof. We accept the convention to reduce the indices $\bmod (m+n)$. If we set

$$
\begin{gather*}
\mathbf{S}=\sum_{i=1}^{m+n} \mathbf{Z}_{i} \\
\mathbf{T}_{i}=\mathbf{Z}_{i}+\mathbf{Z}_{i+1}+\cdots \quad+\mathbf{Z}_{i+m-1}-\frac{m \mathbf{S}}{m+n} \quad(1 \leq i \leq m+n-1) \tag{3}
\end{gather*}
$$

the vectors $\mathbf{T}_{i}(1 \leq i \leq m+n-1)$ and \mathbf{S} are independent since $(m, n)=1$. The equation (1) becomes

$$
\begin{gather*}
\sum_{i=1}^{m+n-1} f_{i}\left(\mathbf{T}_{i}+\frac{m \mathbf{S}}{m+n}, \frac{n \mathbf{S}}{m+n}-\mathbf{T}_{i}\right) \tag{4}\\
+f_{m+n}\left(-\mathbf{T}_{1}-\mathbf{T}_{2}-\cdots-\mathbf{T}_{m+n-1}+\frac{m \mathbf{S}}{m+n}, \frac{n \mathbf{S}}{m+n}+\mathbf{T}_{1}+\mathbf{T}_{2}+\cdots+\mathbf{T}_{m+n-1}\right)=\mathbf{O}
\end{gather*}
$$

We introduce the new notations

$$
f_{i}\left(\mathbf{U}+\frac{m \mathbf{S}}{m+n}, \frac{n \mathbf{S}}{m+n}-\mathbf{U}\right)=g_{i}(\mathbf{U}, \mathbf{S}) \quad(1 \leq i \leq m+n)
$$

i.e.,

$$
\begin{equation*}
f_{i}(\mathbf{U}, \mathbf{V})=g_{i}\left(\frac{n \mathbf{U}-m \mathbf{V}}{m+n}, \mathbf{U}+\mathbf{V}\right) \quad(1 \leq i \leq m+n) \tag{5}
\end{equation*}
$$

The equation (4) is transformed into

$$
\begin{equation*}
\sum_{i=1}^{m+n-1} g_{i}\left(\mathbf{T}_{i}, \mathbf{S}\right)+g_{m+n}\left(-\mathbf{T}_{1}-\mathbf{T}_{2}-\cdots-\mathbf{T}_{m+n-1}, \mathbf{S}\right)=\mathbf{O} \tag{6}
\end{equation*}
$$

By the substitution $\mathbf{T}_{1}=\mathbf{T}_{2}=\cdots=\mathbf{T}_{r-1}=\mathbf{T}_{r+1}=\cdots=\mathbf{T}_{m+n-1}=\mathbf{O}$, we obtain

$$
\begin{equation*}
g_{r}\left(\mathbf{T}_{r}, \mathbf{S}\right)=-g_{m+n}\left(-\mathbf{T}_{r}, \mathbf{S}\right)-H_{r}(\mathbf{S}) \quad(1 \leq r \leq m+n-1) \tag{7}
\end{equation*}
$$

Putting (7) into (6), we get

$$
\begin{equation*}
g_{m+n}\left(-\mathbf{T}_{1}-\mathbf{T}_{2}-\cdots-\mathbf{T}_{m+n-1}, \mathbf{S}\right)=\sum_{i=1}^{m+n-1} g_{m+n}\left(-\mathbf{T}_{i}, \mathbf{S}\right)+\sum_{i=1}^{m+n-1} H_{i}(\mathbf{S}) \tag{8}
\end{equation*}
$$

We conclude that the function

$$
\begin{equation*}
K(\mathbf{U}, \mathbf{S})=g_{m+n}(\mathbf{U}, \mathbf{S})+\frac{1}{m+n-2} \sum_{i=1}^{m+n-1} H_{i}(\mathbf{S}) \tag{9}
\end{equation*}
$$

satisfies the functional equation

$$
\begin{equation*}
K\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{m+n-1}, \mathbf{S}\right)=\sum_{i=1}^{m+n-1} K\left(\mathbf{Z}_{i}, \mathbf{S}\right) . \tag{10}
\end{equation*}
$$

Using the continuity of K, from (10) we deduce that for fixed \mathbf{S}

$$
K(\mathbf{U}, \mathbf{S})=c_{1} \operatorname{Re} \mathbf{U}+c_{2} \operatorname{Im} \mathbf{U}
$$

where $\operatorname{Re} \mathbf{U}$ resp. Im \mathbf{U} denotes the real resp. imaginary part of \mathbf{U}. The mappings $c_{1}, c_{2} \in \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)$ may depend upon \mathbf{S}. Hence,

$$
\begin{equation*}
K(\mathbf{U}, \mathbf{V})=F_{1}(\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{V}) \operatorname{Im} \mathbf{U} \tag{11}
\end{equation*}
$$

where $F_{i}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)$ are continuous functions.
From (9), (11) and (7) we obtain

$$
\begin{align*}
g_{m+n}(\mathbf{U}, \mathbf{V}) & =F_{1}(\mathbf{V}) \operatorname{Re} \mathbf{U}+f_{2}(\mathbf{V}) \operatorname{Im} \mathbf{U}-\frac{1}{m+n-2} \sum_{i=1}^{m+n-1} H_{i}(\mathbf{V}) \\
g_{r}(\mathbf{U}, \mathbf{V}) & =F_{1}(\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{V}) \operatorname{Im} \mathbf{U}-H_{r}(\mathbf{V}) \tag{12}\\
& +\frac{1}{m+n-2} \sum_{i=1}^{m+n-1} H_{i}(\mathbf{V}) \quad(1 \leq r \leq m+n-1)
\end{align*}
$$

From (5) and (12) we deduce that

$$
\begin{gather*}
f_{r}(\mathbf{U}, \mathbf{V})=F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re}\left(\frac{n \mathbf{U}-m \mathbf{V}}{m+n}\right)+F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im}\left(\frac{n \mathbf{U}-m \mathbf{V}}{m+n}\right) \\
-H_{r}(\mathbf{U}+\mathbf{V})+\frac{1}{m+n-2} \sum_{i=1}^{m+n-1} H_{i}(\mathbf{U}+\mathbf{V}) \quad(1 \leq r \leq m+n-1), \\
f_{m+n}(\mathbf{U}+\mathbf{V})=F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re}\left(\frac{n \mathbf{U}-m \mathbf{V}}{m+n}\right)+F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im}\left(\frac{n \mathbf{U}-m \mathbf{V}}{m+n}\right) \\
-\frac{1}{m+n-2} \sum_{i=1}^{m+n-1} H_{i}(\mathbf{U}+\mathbf{V}) . \tag{13}
\end{gather*}
$$

By denoting

$$
-F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re}\left[\frac{m(\mathbf{U}+\mathbf{V})}{m+n}\right]-F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im}\left[\frac{m(\mathbf{U}+\mathbf{V})}{m+n}\right]
$$

$$
+\frac{1}{m+n-2} \sum_{i=1}^{m+n-1} H_{i}(\mathbf{U}+\mathbf{V})-H_{r}(\mathbf{U}+\mathbf{V})=G_{r}(\mathbf{U}+\mathbf{V}) \quad(1 \leq r \leq m+n-1)
$$

$$
-F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re}\left[\frac{m(\mathbf{U}+\mathbf{V})}{m+n}\right]-F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im}\left[\frac{m(\mathbf{U}+\mathbf{V})}{m+n}\right]
$$

$$
-\frac{1}{m+n-2} \sum_{i=1}^{m+n-1} H_{i}(\mathbf{U}+\mathbf{V})=G_{m+n}(\mathbf{U}+\mathbf{V})
$$

from (13) we get (2).
The converse can be established by a straightforward verification.
Example 1. The general continuous solution of the functional equation

$$
f_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}, \mathbf{Z}_{3}\right)+f_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}, \mathbf{Z}_{1}\right)+f_{3}\left(\mathbf{Z}_{3}+\mathbf{Z}_{1}, \mathbf{Z}_{2}\right)=\mathbf{O}
$$

is given by

$$
\begin{aligned}
f_{1}(\mathbf{U}, \mathbf{V}) & =F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{1}(\mathbf{U}+\mathbf{V}) \\
f_{2}(\mathbf{U}, \mathbf{V}) & =F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{2}(\mathbf{U}+\mathbf{V})
\end{aligned}
$$

$f_{3}(\mathbf{U}, \mathbf{V})=-F_{1}(\mathbf{U}+\mathbf{V}) \operatorname{Re}(\mathbf{U}+2 \mathbf{V})-F_{2}(\mathbf{U}+\mathbf{V}) \operatorname{Im}(\mathbf{U}+2 \mathbf{V})-G_{1}(\mathbf{U}+\mathbf{V})-G_{2}(\mathbf{U}+\mathbf{V})$, where $F_{1}, F_{2}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)$ and $G_{1}, G_{2}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ are arbitrary continuous complex vector functions.
Corollary. The general continuous solution of the vector functional equation

$$
\sum_{i=1}^{m+n} g_{i}\left(\mathbf{Z}_{i}+\cdots+\mathbf{Z}_{i+m-1}, \mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{m+n}\right)=\mathbf{O}
$$

if $(m, n)=1$ and $m+n>2$ is given by

$$
\begin{gathered}
g_{i}(\mathbf{U}, \mathbf{V})=F_{1}(\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{i}(\mathbf{V}) \quad(1 \leq i \leq m+n), \\
\sum_{i=1}^{m+n} G_{i}(\mathbf{V})=-m\left[F_{1}(\mathbf{V}) \operatorname{Re} \mathbf{V}+F_{2}(\mathbf{V}) \operatorname{Im} \mathbf{V}\right],
\end{gathered}
$$

where $F_{1}, F_{2}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right), G_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n-1)$ are arbitrary continuous complex vector functions.
Proof. Put $f_{i}(\mathbf{U}, \mathbf{V})=g_{i}(\mathbf{U}, \mathbf{U}+\mathbf{V})$ in Theorem 1.
Theorem 2. The general continuous solution of the complex vector functional equation (1) if $a=1,(m, n)=d>1, m / d=p, n / d=q$ and $p+q>2$ is given by

$$
\begin{gather*}
f_{i d+j}(\mathbf{U}, \mathbf{V})=F_{1 j}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2 j}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{i j}(\mathbf{U}+\mathbf{V}) \\
\quad(0 \leq i \leq p+q-1, \quad 1 \leq j \leq d) \\
\sum_{i=0}^{p+q-1} G_{i j}(\mathbf{U})=H_{j}(\mathbf{U})-p\left[F_{1 j}(\mathbf{U}) \operatorname{Re} \mathbf{U}+F_{2 j}(\mathbf{U}) \operatorname{Im} \mathbf{U}\right] \quad(1 \leq j \leq d) \tag{14}\\
\sum_{j=1}^{d} H_{j}(\mathbf{U})=\mathbf{O}
\end{gather*}
$$

where

$$
\begin{gathered}
F_{i j}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right) \quad(i=1,2 ; 1 \leq j \leq d) \\
H_{j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(1 \leq j \leq d-1) \\
G_{i j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(0 \leq i \leq p+q-2 ; 1 \leq j \leq d)
\end{gathered}
$$

are arbitrary continuous complex vector functions.
Proof. We set

$$
\begin{equation*}
f_{i}(\mathbf{U}, \mathbf{V})=g_{i}(\mathbf{U}, \mathbf{U}+\mathbf{V}) \quad(1 \leq i \leq m+n) \tag{15}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
\sum_{i=1}^{m+n} g_{i}\left(\mathbf{Z}_{i}+\mathbf{Z}_{i+1}+\cdots+\mathbf{Z}_{i+m-1}, \mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{m+n}\right)=\mathbf{O} \tag{16}
\end{equation*}
$$

Let us introduce the new vectors

$$
\begin{equation*}
\mathbf{V}_{i}=\mathbf{Z}_{i}+\mathbf{Z}_{i+1}+\cdots+\mathbf{Z}_{i+d-1} \quad(1 \leq i \leq m+n) \quad \text { so that } \quad \mathbf{V}_{i+m+n}=\mathbf{V}_{i} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{W}=\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{m+n} . \tag{18}
\end{equation*}
$$

They are not independent because

$$
\begin{equation*}
\sum_{i=0}^{p+q-1} \mathbf{V}_{i d+j}=\mathbf{W} \quad(1 \leq j \leq d) \tag{19}
\end{equation*}
$$

The vectors $\mathbf{V}_{i}(1 \leq i \leq m+n-d)$ and \mathbf{W} are independent because the rank of the matrix of linear forms determining them is $m+n-d+1$, which is easy to verify. In the sequel we will use all vectors (17) and (18) but we must have always in mind that (19) holds. The equation (16) becomes

$$
\sum_{i=1}^{m+n} g_{i}\left(\mathbf{V}_{i}+\mathbf{V}_{i+d}+\cdots+\mathbf{V}_{i+(p-1) d}, \mathbf{W}\right)=\mathbf{O}
$$

It can be written in the following form

$$
\sum_{j=1}^{d} \sum_{i=0}^{p+q-1} g_{i d+j}\left(\mathbf{V}_{i d+j}+\mathbf{V}_{(i+1) d+j}+\cdots+\mathbf{V}_{(i+p-1) d+j}, \mathbf{W}\right)=\mathbf{O}
$$

If we set here

$$
\begin{gathered}
\mathbf{V}_{i d+j}=\mathbf{O} \quad(0 \leq i \leq p+q-2 ; j=1,2, \ldots, r-1, r+1, \ldots, d) \\
\mathbf{V}_{(p+q-1) d+j}=\mathbf{W} \quad(j=1,2, \ldots, r-1, r+1, \ldots, d)
\end{gathered}
$$

we get

$$
\sum_{i=0}^{p+q-1} g_{i d+r}\left(\mathbf{V}_{i d+r}+\mathbf{V}_{(i+1) d+r}+\cdots+\mathbf{V}_{(i+p-1) d+r}, \mathbf{W}\right)-\frac{H_{r}(\mathbf{W})}{p+q}=\mathbf{O} \quad(1 \leq r \leq d)
$$

and

$$
\sum_{r=1}^{d} H_{r}(\mathbf{W})=\mathbf{O}
$$

By using the corollary of Theorem 1 we get
$g_{i d+r}(\mathbf{U}, \mathbf{V})=F_{1 r}(\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{2 r}(\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{i r}(\mathbf{V}) \quad(0 \leq i \leq p+q-1 ; 1 \leq r \leq d)$,

$$
\sum_{i=0}^{p+q-1} G_{i r}(\mathbf{V})=H_{r}(\mathbf{V})-p\left[F_{1 r}(\mathbf{V}) \operatorname{Re} \mathbf{V}+F_{2 r}(\mathbf{V}) \operatorname{Im} \mathbf{V}\right] \quad(1 \leq r \leq d)
$$

where

$$
\begin{gathered}
F_{i r}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right) \quad(i=1,2 ; 1 \leq r \leq d) \\
G_{i r}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(0 \leq i \leq p+q-2 ; 1 \leq r \leq d) \\
H_{r}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(1 \leq r \leq d-1)
\end{gathered}
$$

are arbitrary continuous complex vector functions. By application of (15) these formulas give (14).

It is easy to prove that the functions $f_{i}: \mathcal{V}^{2} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n)$ defined by (15) satisfy the complex vector functional equations (1).
Example 2. The general continuous solution of the functional equation

$$
\begin{gathered}
f_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}+\mathbf{Z}_{3}+\mathbf{Z}_{4}, \mathbf{Z}_{5}+\mathbf{Z}_{6}\right)+f_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}+\mathbf{Z}_{4}+\mathbf{Z}_{5}, \mathbf{Z}_{6}+\mathbf{Z}_{1}\right) \\
+f_{3}\left(\mathbf{Z}_{3}+\mathbf{Z}_{4}+\mathbf{Z}_{5}+\mathbf{Z}_{6}, \mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+f_{4}\left(\mathbf{Z}_{4}+\mathbf{Z}_{5}+\mathbf{Z}_{6}+\mathbf{Z}_{1}, \mathbf{Z}_{2}+\mathbf{Z}_{3}\right) \\
+f_{5}\left(\mathbf{Z}_{5}+\mathbf{Z}_{6}+\mathbf{Z}_{1}+\mathbf{Z}_{2}, \mathbf{Z}_{3}+\mathbf{Z}_{4}\right)+f_{6}\left(\mathbf{Z}_{6}+\mathbf{Z}_{1}+\mathbf{Z}_{2}+\mathbf{Z}_{3}, \mathbf{Z}_{4}+\mathbf{Z}_{5}\right)=\mathbf{O}
\end{gathered}
$$

is given by

$$
\begin{aligned}
& f_{1}(\mathbf{U}, \mathbf{V})=F_{11}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{21}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{01}(\mathbf{U}+\mathbf{V}), \\
& f_{2}(\mathbf{U}, \mathbf{V})=F_{12}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{22}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{02}(\mathbf{U}+\mathbf{V}), \\
& f_{3}(\mathbf{U}, \mathbf{V})=F_{11}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{21}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{11}(\mathbf{U}+\mathbf{V}),
\end{aligned}
$$

ICE B. RISTESKI, KOSTADIN G. TRENČEVSKI, AND VALÉRY C. COVACHEV

$$
\begin{aligned}
f_{4}(\mathbf{U}, \mathbf{V})= & F_{12}(\mathbf{U}+\mathbf{V}) \operatorname{Re} \mathbf{U}+F_{22}(\mathbf{U}+\mathbf{V}) \operatorname{Im} \mathbf{U}+G_{12}(\mathbf{U}+\mathbf{V}) \\
f_{5}(\mathbf{U}, \mathbf{V})= & -F_{11}(\mathbf{U}+\mathbf{V}) \operatorname{Re}(\mathbf{U}+2 \mathbf{V})-F_{21}(\mathbf{U}+\mathbf{V}) \operatorname{Im}(\mathbf{U}+2 \mathbf{V}) \\
& +H_{1}(\mathbf{U}+\mathbf{V})-G_{01}(\mathbf{U}+\mathbf{V})-G_{11}(\mathbf{U}+\mathbf{V}) \\
f_{6}(\mathbf{U}, \mathbf{V})= & -F_{12}(\mathbf{U}+\mathbf{V}) \operatorname{Re}(\mathbf{U}+2 \mathbf{V})-F_{22}(\mathbf{U}+\mathbf{V}) \operatorname{Im}(\mathbf{U}+2 \mathbf{V}) \\
& -H_{1}(\mathbf{U}+\mathbf{V})-G_{01}(\mathbf{U}+\mathbf{V})-G_{12}(\mathbf{U}+\mathbf{V}),
\end{aligned}
$$

where

$$
\begin{gathered}
F_{i j}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right) \quad(i=1,2) \\
G_{i j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(i=0,1 ; j=1,2) \\
H_{1}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}
\end{gathered}
$$

are arbitrary continuous complex vector functions.
Theorem 3. The most general solution of (1) if $a=1$ and $m=n$ is

$$
\begin{gather*}
f_{i}(\mathbf{U}, \mathbf{V}) \quad(1 \leq i \leq m) \quad \text { are arbitrary } \\
f_{m+i}(\mathbf{U}, \mathbf{V})=H_{i}(\mathbf{U}+\mathbf{V})-f_{i}(\mathbf{V}, \mathbf{U}) \quad(1 \leq i \leq m) \tag{20}\\
\sum_{i=1}^{m} H_{i}(\mathbf{U})=\mathbf{O}
\end{gather*}
$$

where $H_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m-1)$ are arbitrary functions.
Proof. Put $f_{i}(\mathbf{U}, \mathbf{V})=G_{i}(\mathbf{U}, \mathbf{U}+\mathbf{V})$.
Example 3. The most general solution of the equation

$$
\begin{gathered}
f_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}, \mathbf{Z}_{3}+\mathbf{Z}_{4}\right)+f_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}, \mathbf{Z}_{4}+\mathbf{Z}_{1}\right) \\
+f_{3}\left(\mathbf{Z}_{3}+\mathbf{Z}_{4}, \mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+f_{4}\left(\mathbf{Z}_{4}+\mathbf{Z}_{1}, \mathbf{Z}_{2}+\mathbf{Z}_{3}\right)=\mathbf{O}
\end{gathered}
$$

is

$$
\begin{gathered}
f_{1}(\mathbf{U}, \mathbf{V}), f_{2}(\mathbf{U}, \mathbf{V}) \text { are arbitrary, } \\
f_{3}(\mathbf{U}, \mathbf{V})=H_{1}(\mathbf{U}+\mathbf{V})-f_{1}(\mathbf{V}, \mathbf{U}), \\
f_{4}(\mathbf{U}, \mathbf{V})=-H_{1}(\mathbf{U}+\mathbf{V})-f_{2}(\mathbf{V}, \mathbf{U}),
\end{gathered}
$$

where $H_{1}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ is an arbitrary function.
Theorem 4. If $a^{m+n} \neq 1$ and $m \neq n$, the general solution of the functional equation (1) is given by

$$
\begin{equation*}
f_{i}(\mathbf{U}, \mathbf{V})=F_{i}\left(\mathbf{U}+a^{m} \mathbf{V}\right)-F_{i+n}\left(a^{n} \mathbf{U}+\mathbf{V}\right)+A_{i} \quad(1 \leq i \leq m+n) \tag{21}
\end{equation*}
$$

where $F_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n)$ are arbitrary complex vector functions, and A_{i} are arbitrary constant complex vectors such that $\sum_{i=1}^{m+n} A_{i}=\mathbf{O}$.
Proof. If we introduce new functions g_{i} by the equation

$$
\begin{equation*}
f_{i}(\mathbf{U}, \mathbf{V})=g_{i}\left(\mathbf{U}+a^{m} \mathbf{V}, a^{n} \mathbf{U}+\mathbf{V}\right) \quad(1 \leq i \leq m+n) \tag{22}
\end{equation*}
$$

then equation (1) becomes

$$
\begin{aligned}
& \sum_{i=1}^{m+n} g_{i}\left(\sum_{j=0}^{m-1} a^{m-1-j} \mathbf{Z}_{i+j}+\sum_{j=0}^{n-1} a^{m+n-1-j} \mathbf{Z}_{m+i+j}\right. \\
& \left.\sum_{j=0}^{m-1} a^{m+n-1-j} \mathbf{Z}_{i+j}+\sum_{j=0}^{n-1} a^{n-1-j} \mathbf{Z}_{m+i+j}\right)=\mathbf{O}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\sum_{i=1}^{m+n} g_{i}\left(\sum_{j=0}^{m+n-1} a^{j} \mathbf{Z}_{m+i-1-j}, \sum_{j=0}^{m+n-1} a^{j} \mathbf{Z}_{i-1-j}\right)=\mathbf{O} \tag{23}
\end{equation*}
$$

Since $a^{m+n} \neq 1$, this transformation is possible. Also we may introduce new vectors \mathbf{V}_{i} by

$$
\mathbf{V}_{i}=\sum_{j=0}^{m+n-1} a^{j} \mathbf{Z}_{m+i-1-j} \quad(1 \leq i \leq m+n)
$$

but the equation (23) takes the form

$$
\begin{equation*}
\sum_{i=0}^{m+n} g_{i}\left(\mathbf{V}_{i}, \mathbf{V}_{i+n}\right)=\mathbf{O} \tag{24}
\end{equation*}
$$

By putting $\mathbf{V}_{j}=\mathbf{O}(j=1,2, \ldots, i-1, i+1, \ldots, i+n-1, i+n+1, \ldots, m+n)$ we obtain

$$
\begin{equation*}
g_{i}\left(\mathbf{V}_{i}, \mathbf{V}_{i+n}\right)=F_{i}\left(\mathbf{V}_{i}\right)+G_{i}\left(\mathbf{V}_{i+n}\right) \quad(1 \leq i \leq m+n) \tag{25}
\end{equation*}
$$

On the basis of the expression (25), the equation (24) becomes

$$
\sum_{i=1}^{m+n}\left[F_{i}\left(\mathbf{V}_{i}\right)+G_{i}\left(\mathbf{V}_{i+n}\right)\right]=\mathbf{O}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{m+n}\left[F_{i}\left(\mathbf{V}_{i}\right)+G_{m+i}\left(\mathbf{V}_{i}\right)\right]=\mathbf{O} \tag{26}
\end{equation*}
$$

From (26) it follows that

$$
\begin{equation*}
G_{i+m}\left(\mathbf{V}_{i}\right)=-F_{i}\left(\mathbf{V}_{i}\right)+A_{i} \quad(1 \leq i \leq m+n) \tag{27}
\end{equation*}
$$

where A_{i} are arbitrary constant complex vectors with the property

$$
\sum_{i=1}^{m+n} A_{i}=\mathbf{O}
$$

On the basis of the expression (27), the equality (25) has the form

$$
\begin{equation*}
g_{i}(\mathbf{U}, \mathbf{V})=F_{i}(\mathbf{U})+F_{i+n}(\mathbf{V})+A_{i} \quad(1 \leq i \leq m+n) \tag{28}
\end{equation*}
$$

where $\sum_{i=1}^{m+n} A_{i}=\mathbf{O}$.
On the basis of the equalities (28) and (22), we obtain (21).
Example 4. If $a^{3} \neq 1$, the general solution of the functional equation

$$
\begin{gathered}
f_{1}\left(a^{2} \mathbf{Z}_{1}+a \mathbf{Z}_{2}+\mathbf{Z}_{3}, \mathbf{Z}_{4}\right)+f_{2}\left(a^{2} \mathbf{Z}_{2}+a \mathbf{Z}_{3}+\mathbf{Z}_{4}, \mathbf{Z}_{1}\right) \\
+f_{3}\left(a^{2} \mathbf{Z}_{3}+a \mathbf{Z}_{4}+\mathbf{Z}_{1}, \mathbf{Z}_{2}\right)+f_{4}\left(a^{2} \mathbf{Z}_{4}+a \mathbf{Z}_{1}+\mathbf{Z}_{2}, \mathbf{Z}_{3}\right)=\mathbf{O}
\end{gathered}
$$

is given by

$$
\begin{gathered}
f_{1}(\mathbf{U}, \mathbf{V})=F_{1}\left(\mathbf{U}+a^{3} \mathbf{V}\right)-F_{2}(a \mathbf{U}+\mathbf{V})+A_{1}, \\
f_{2}(\mathbf{U}, \mathbf{V})=F_{2}\left(\mathbf{U}+a^{3} \mathbf{V}\right)-F_{3}(a \mathbf{U}+\mathbf{V})+A_{2}, \\
f_{3}(\mathbf{U}, \mathbf{V})=F_{3}\left(\mathbf{U}+a^{3} \mathbf{V}\right)-F_{4}(a \mathbf{U}+\mathbf{V})+A_{3}, \\
f_{4}(\mathbf{U}, \mathbf{V})=F_{4}\left(\mathbf{U}+a^{3} \mathbf{V}\right)-F_{1}(a \mathbf{U}+\mathbf{V})-A_{1}-A_{2}-A_{3},
\end{gathered}
$$

where $F_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(i=1,2,3,4)$ are arbitrary complex vector functions, and $A_{i}(i=$ $1,2,3$) are arbitrary constant complex vectors.
Theorem 5. If $a^{m+n} \neq 1$ and $m=n$, the most general solution of the functional equation (1) is

$$
\begin{equation*}
f_{i+m}(\mathbf{U}, \mathbf{V})=-f_{i}(\mathbf{V}, \mathbf{U})+A_{i} \quad(1 \leq i \leq m) \tag{29}
\end{equation*}
$$

where $f_{i}: \mathcal{V}^{2} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m)$ and $A_{i}(1 \leq i \leq m)$ are arbitrary complex constant vectors such that $\sum_{i=1}^{m} A_{i}=\mathbf{O}$.
Proof. By the transformations which were exhibited in the proof of the previous theorem we may bring the equation (1) to the form (24).

For $\mathbf{V}_{j}=\mathbf{O}(j=1,2, \ldots, i-1, i+1, \ldots, i+m-1, i+m+1, \ldots, 2 m)$ the equation (24) becomes

$$
\begin{equation*}
g_{i}\left(\mathbf{V}_{i}, \mathbf{V}_{i+m}\right)+g_{i+m}\left(\mathbf{V}_{i+m}, \mathbf{V}_{i}\right)=A_{i} \quad(1 \leq i \leq m) \tag{30}
\end{equation*}
$$

where $A_{i}(1 \leq i \leq m)$ are arbitrary complex constant vectors. By substituting (30) into (1), we obtain that it must hold

$$
\sum_{i=1}^{m} A_{i}=\mathbf{O}
$$

On the basis of this equality and (30), we obtain (29).
Example 5. If $a^{4} \neq 1$, the most general solution of the functional equation

$$
\begin{gathered}
f_{1}\left(a \mathbf{Z}_{1}+\mathbf{Z}_{2}, a \mathbf{Z}_{3}+\mathbf{Z}_{4}\right)+f_{2}\left(a \mathbf{Z}_{2}+\mathbf{Z}_{3}, a \mathbf{Z}_{4}+\mathbf{Z}_{1}\right) \\
+f_{3}\left(a \mathbf{Z}_{3}+\mathbf{Z}_{4}, a \mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+f_{4}\left(a \mathbf{Z}_{4}+\mathbf{Z}_{1}, a \mathbf{Z}_{2}+\mathbf{Z}_{3}\right)=\mathbf{O}
\end{gathered}
$$

is given by

$$
\begin{gathered}
f_{i}(\mathbf{U}, \mathbf{V}) \quad(i=1,2) \text { are arbitrary } \\
f_{3}(\mathbf{U}, \mathbf{V})=-f_{1}(\mathbf{U}, \mathbf{V})+A \\
f_{4}(\mathbf{U}, \mathbf{V})=-f_{1}(\mathbf{U}, \mathbf{V})-A
\end{gathered}
$$

where A is an arbitrary complex constant vector.
If $a^{m+n}=1$, then the functional equation (1) may be transformed in the following way.

We introduce new vectors by the equality

$$
\mathbf{V}_{i}=a^{1-i} \mathbf{Z}_{i}, \quad \text { i.e., } \quad \mathbf{Z}_{i}=a^{i-1} \mathbf{V}_{i} \quad(1 \leq i \leq m+n)
$$

Then the equation (1) becomes

$$
\begin{equation*}
\sum_{i=1}^{m+n} f_{i}\left(a^{m-2+i} \sum_{j=0}^{m-1} \mathbf{V}_{i+j}, a^{m+n-2+i} \sum_{j=0}^{n-1} \mathbf{V}_{m+i+j}\right)=\mathbf{O} \tag{31}
\end{equation*}
$$

Now, if we put

$$
g_{i}(\mathbf{U}, \mathbf{V})=f_{i}\left(a^{m-2+i} \mathbf{U}, a^{m+n-2+i} \mathbf{V}\right) \quad(1 \leq i \leq m+n)
$$

i.e.,

$$
\begin{equation*}
f_{i}(\mathbf{U}, \mathbf{V})=g_{i}\left(a^{n+2-i} \mathbf{U}, a^{m+n+2-i} \mathbf{V}\right) \quad(1 \leq i \leq m+n) \tag{32}
\end{equation*}
$$

the functional equation (31) takes the form

$$
\begin{equation*}
\sum_{i=1}^{m+n} g_{i}\left(\sum_{j=0}^{m-1} \mathbf{V}_{i+j}, \sum_{j=0}^{n-1} \mathbf{V}_{m+i+j}\right)=\mathbf{O} \tag{33}
\end{equation*}
$$

The equation (33) is just the equation (1) for $a=1$.
Theorem 6. If $a^{m+n}=1,(m, n)=1$ and $m+n>2$, then the general continuous solution of the functional equation (1) is given by

$$
\begin{gather*}
f_{i}(\mathbf{U}, \mathbf{V})=F_{1}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \operatorname{Re}\left(a^{n+2-i} \mathbf{U}\right) \tag{34}\\
+F_{2}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \operatorname{Im}\left(a^{n+2-i} \mathbf{U}\right)+G_{i}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right)
\end{gather*}
$$

$(1 \leq i \leq m+n)$, so that

$$
\begin{equation*}
\sum_{i=1}^{m+n} G_{i}(\mathbf{U})=-m\left[F_{1}(\mathbf{U}) \operatorname{Re} \mathbf{U}+F_{2}(\mathbf{U}) \operatorname{Im} \mathbf{U}\right] \tag{35}
\end{equation*}
$$

where $F_{i}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)(i=1,2)$ and $G_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n-1)$ are arbitrary continuous complex vector functions.
Proof. The proof immediately follows from (33), (32) and Theorem 1.
Theorem 7. If $a^{m+n}=1,(m, n)=d>1, m / d=p, n / d=q$ and $p+q>2$, then the general continuous solution of the functional equation (1) is

$$
\begin{gather*}
f_{i d+j}(\mathbf{U}, \mathbf{V})=F_{1 j}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \operatorname{Re}\left(a^{n+2-i} \mathbf{U}\right) \tag{36}\\
+F_{2 j}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \operatorname{Im}\left(a^{n+2-i} \mathbf{U}\right)+G_{i j}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \\
(0 \leq i \leq p+q-1 ; \quad 1 \leq j \leq d)
\end{gather*}
$$

so that

$$
\begin{gathered}
\sum_{i=0}^{p+q-1} G_{i j}(\mathbf{U})=H_{j}(\mathbf{U})-p\left[F_{1 j}(\mathbf{U}) \operatorname{Re} \mathbf{U}+F_{2 j}(\mathbf{U}) \operatorname{Im} \mathbf{U}\right] \quad(1 \leq j \leq d) \\
\sum_{j=1}^{d} H_{j}(\mathbf{U})=\mathbf{O}
\end{gathered}
$$

where

$$
\begin{gathered}
F_{i j}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right) \quad(i=1,2 ; \quad 1 \leq j \leq d) \\
G_{i j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(0 \leq i \leq p+q-2 ; \quad 1 \leq j \leq d) \\
H_{j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(1 \leq j \leq d-1)
\end{gathered}
$$

are arbitrary continuous complex vector functions.
Proof. On the basis of the expressions (33), (32) and Theorem 2 we derive the proof of the theorem.
Theorem 8. If $a^{m+n}=1$ and $m=n$, then the most general solution of the functional equation (1) is given by

$$
\begin{align*}
f_{i}(\mathbf{U}, \mathbf{V}) & (1 \leq i \leq m) \text { are arbitrary, } \\
f_{m+i}(\mathbf{U}, \mathbf{V})= & H_{i}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \tag{39}\\
- & f_{i}\left(a^{n+2-i} \mathbf{U}, a^{m+n+2-i} \mathbf{V}\right) \quad(1 \leq i \leq m),
\end{align*}
$$

where $H_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ are arbitrary complex vector functions such that $\sum_{i=1}^{m} H_{i}(\mathbf{U})=\mathbf{O}$. Proof. The proof immediately follows from (33), (32) and Theorem 3.

ICE B. RISTESKI, KOSTADIN G. TRENČEVSKI, AND VALÉRY C. COVACHEV

2. A Special Functional Equation

Now, we will solve the following functional equation

$$
\begin{equation*}
\sum_{i=1}^{m+n} f\left(\sum_{j=0}^{m-1} a^{m-1-j} \mathbf{Z}_{i+j}, \sum_{j=0}^{n-1} a^{n-1-j} \mathbf{Z}_{i+m+j}\right)=\mathbf{O} \tag{40}
\end{equation*}
$$

which is obtained as a special case of the equation (1) for $f_{i}=f(1 \leq i \leq m+n)$.
Theorem 9. If $a^{m+n} \neq 1$, then the most general solution of the complex vector functional equation (40) is given by

$$
f(\mathbf{U}, \mathbf{V})= \begin{cases}F\left(\mathbf{U}+a^{m} \mathbf{V}\right)-F\left(a^{n} \mathbf{U}+\mathbf{V}\right) & (m \neq n) \tag{41}\\ G\left(\mathbf{U}+a^{m} \mathbf{V}, a^{m} \mathbf{U}+\mathbf{V}\right)-G\left(a^{m} \mathbf{U}+\mathbf{V}, \mathbf{U}+a^{m} \mathbf{V}\right) & (m=n)\end{cases}
$$

where $F: \mathcal{V} \rightarrow \mathcal{V}^{\prime}, G: \mathcal{V}^{2} \rightarrow \mathcal{V}^{\prime}$ are arbitrary complex vector functions.
Proof. We set

$$
\begin{equation*}
f(\mathbf{U}, \mathbf{V})=g\left(\mathbf{U}+a^{m} \mathbf{V}, a^{n} \mathbf{U}+\mathbf{V}\right) \tag{42}
\end{equation*}
$$

into (40) and deduce that

$$
\begin{aligned}
& \sum_{i=1}^{m+n} g\left(\sum_{j=0}^{m+1} a^{m-1-j} \mathbf{Z}_{i+j}+\sum_{j=0}^{n-1} a^{m+n-1} \mathbf{Z}_{i+m+j}\right. \\
& \left.\sum_{j=0}^{m-1} a^{m+n-1-j} \mathbf{Z}_{i+j}+\sum_{j=0}^{n-1} a^{n-1-j} \mathbf{Z}_{i+m+j}\right)=\mathbf{O}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\sum_{i=1}^{m+n} g\left(\sum_{j=0}^{m+n-1} a^{j} \mathbf{Z}_{i+m-1-j}, \sum_{j=0}^{m+n-1} a^{j} \mathbf{Z}_{i-1-j}\right)=\mathbf{O} \tag{43}
\end{equation*}
$$

This transformation of the equation (40) is possible since $a^{m+n} \neq 1$.
Now we introduce new vectors

$$
\begin{equation*}
\mathbf{V}_{i}=\sum_{j=0}^{m+n+1} a^{j} \mathbf{Z}_{i-1-j} \quad(1 \leq i \leq m+n) \tag{44}
\end{equation*}
$$

The linear forms (44) are independent since their determinant is $\left(a^{m+n}-1\right)^{m+n-1}$.
Making use of these notations, the equation (43) becomes

$$
\begin{equation*}
\sum_{i=1}^{m+n} g\left(\mathbf{V}_{i}, \mathbf{V}_{i+n}\right)=\mathbf{O} \tag{45}
\end{equation*}
$$

If $m \neq n$, we set $\mathbf{V}_{1}=\mathbf{V}_{2}=\cdots=\mathbf{V}_{m-1}=\mathbf{V}_{m+1}=\mathbf{V}_{m+2}=\cdots=$ $\mathbf{V}_{m+n-1}=\mathbf{O}$ and we get

$$
\begin{equation*}
g(\mathbf{U}, \mathbf{V})=F(\mathbf{U})+F_{1}(\mathbf{V}) \tag{46}
\end{equation*}
$$

We substitute g from (46) into (45) and obtain

$$
\sum_{i=1}^{m+n}\left[F\left(\mathbf{V}_{i}\right)+F_{1}\left(\mathbf{V}_{i}\right)\right]=\mathbf{O}
$$

which implies that $F_{1}\left(\mathbf{V}_{i}\right)=-F\left(\mathbf{V}_{i}\right)$. Hence,

$$
\begin{equation*}
g(\mathbf{U}, \mathbf{V})=F(\mathbf{U})-F(\mathbf{V}) \tag{47}
\end{equation*}
$$

If $m=n$, the equation (43) yields

$$
g(\mathbf{U}, \mathbf{V})+g(\mathbf{V}, \mathbf{U})=\mathbf{O}
$$

i.e.,

$$
\begin{equation*}
g(\mathbf{U}, \mathbf{V})=G(\mathbf{U}, \mathbf{V})-G(\mathbf{V}, \mathbf{U}) \tag{48}
\end{equation*}
$$

From (42), (47) and (48) we conclude that (41) holds. It is easy to verify that (41) satisfies (40).

Example 6. If $a^{3} \neq 1$, then the most general solution of the functional equation

$$
f\left(a \mathbf{Z}_{1}+\mathbf{Z}_{2}, \mathbf{Z}_{3}\right)+f\left(a \mathbf{Z}_{2}+\mathbf{Z}_{3}, \mathbf{Z}_{1}\right)+f\left(a \mathbf{Z}_{3}+\mathbf{Z}_{1}, \mathbf{Z}_{2}\right)=\mathbf{O}
$$

is given by

$$
f(\mathbf{U}, \mathbf{V})=F\left(\mathbf{U}+a^{2} \mathbf{V}\right)-F(a \mathbf{U}+\mathbf{V})
$$

where $F: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ is an arbitrary complex vector function.
Example 7. If $a^{4} \neq 1$, the most general solution of the functional equation

$$
\begin{gathered}
f\left(a \mathbf{Z}_{1}+\mathbf{Z}_{2}, a \mathbf{Z}_{3}+\mathbf{Z}_{4}\right)+f\left(a \mathbf{Z}_{2}+\mathbf{Z}_{3}, a \mathbf{Z}_{4}+\mathbf{Z}_{1}\right) \\
+f\left(a \mathbf{Z}_{3}+\mathbf{Z}_{4}, a \mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+f\left(a \mathbf{Z}_{4}+\mathbf{Z}_{1}, a \mathbf{Z}_{2}+\mathbf{Z}_{3}\right)=\mathbf{O}
\end{gathered}
$$

is given by

$$
f(\mathbf{U}, \mathbf{V})=G\left(\mathbf{U}+a^{2} \mathbf{V}, a^{2} \mathbf{U}+\mathbf{V}\right)-G\left(a^{2} \mathbf{U}+\mathbf{V}, \mathbf{U}+a^{2} \mathbf{V}\right),
$$

where $G: \mathcal{V}^{2} \rightarrow \mathcal{V}^{\prime}$ is an arbitrary complex vector function.
Theorem 10. If $a^{m+n}=1,(m, n)=1$ and $m+n>2$, then the general continuous solution of the functional equation (40) is given by

$$
\begin{align*}
& f(\mathbf{U}, \mathbf{V})=\sum_{i=1}^{m+n} {\left[F_{1}\left(a^{i} \mathbf{U}+a^{i+m} \mathbf{V}\right) \operatorname{Re}\left(a^{i} \mathbf{U}\right)+F_{2}\left(a^{i} \mathbf{U}+a^{i+m} \mathbf{V}\right) \operatorname{Im}\left(a^{i} \mathbf{U}\right)\right] } \tag{49}\\
&+\sum_{i=1}^{m+n-1}\left[G_{i}\left(a^{i} \mathbf{U}+a^{i+m} \mathbf{V}\right)-G_{i}\left(a^{i} \mathbf{U}+a^{m} \mathbf{V}\right)\right] \\
&-m\left[F_{1}\left(\mathbf{U}+a^{m} \mathbf{V}\right) \operatorname{Re}\left(\mathbf{U}+a^{m} \mathbf{V}\right)+F_{2}\left(\mathbf{U}+a^{m} \mathbf{V}\right) \operatorname{Im}\left(\mathbf{U}+a^{m} \mathbf{V}\right)\right],
\end{align*}
$$

where $F_{i}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)(i=1,2)$ and $G_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n-1)$ are arbitrary complex vector functions.
Proof. Let us put $\mathbf{Z}_{i}=a^{i-1} \mathbf{T}_{i}(1 \leq i \leq m+n)$. The equation (40) becomes

$$
\begin{equation*}
\sum_{i=1}^{m+n} f\left(a^{m+i-2} \sum_{j=0}^{m-1} \mathbf{T}_{i+j}, a^{m+n-2+i} \sum_{j=0}^{n-1} \mathbf{T}_{m+i-j}\right)=\mathbf{O} \tag{50}
\end{equation*}
$$

Now we make the substitutions

$$
f\left(a^{m+i-2} \mathbf{U}, a^{m+n-2+i} \mathbf{V}\right)=f_{i}(\mathbf{U}, \mathbf{V}) \quad(1 \leq i \leq m+n)
$$

i.e.,

$$
\begin{equation*}
f(\mathbf{U}, \mathbf{V})=f_{i}\left(a^{n-i+2} \mathbf{U}, a^{m+n+2-i} \mathbf{V}\right) \quad(1 \leq i \leq m+n) \tag{51}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
\sum_{i=1}^{m+n} f_{i}\left(\sum_{j=0}^{m-1} \mathbf{T}_{i+j}, \sum_{j=0}^{n-1} \mathbf{T}_{m+i+j}\right)=\mathbf{O} \tag{52}
\end{equation*}
$$

The equation (52) is just the equation (1) for $a=1$, and its solution is determined by Theorem 1 .

By an application of Theorem 1, and by (51) we get

$$
\begin{gather*}
f_{i}(\mathbf{U}, \mathbf{V})=P_{1}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \operatorname{Re}\left(a^{n+2-i} \mathbf{U}\right) \tag{53}\\
+P_{2}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right) \operatorname{Im}\left(a^{n+2-i} \mathbf{U}\right)+Q_{i}\left(a^{n+2-i} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right)
\end{gather*}
$$

$(1 \leq i \leq m+n)$, so that

$$
\sum_{i=1}^{m+n} Q_{i}(\mathbf{U})=-m\left[P_{1}(\mathbf{U}) \operatorname{Re} \mathbf{U}+P_{2}(\mathbf{U}) \operatorname{Im} \mathbf{U}\right]
$$

where $P_{i}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)(i=1,2)$ and $Q_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m+n)$ are continuous complex vector functions. By addition of all equations (53) and putting

$$
\begin{aligned}
& P_{1}(\mathbf{U})=(m+n) F_{1}(\mathbf{U}), \quad P_{2}(\mathbf{U})=(m+n) F_{2}(\mathbf{U}) \\
& Q_{i}(\mathbf{U})=(m+n) G_{n+2-i}(\mathbf{U}) \quad(i=1,2, \ldots, m+n)
\end{aligned}
$$

we obtain (49).
Example 8. If $a^{3}=1$, the general continuous solution of the functional equation

$$
f\left(a \mathbf{Z}_{1}+\mathbf{Z}_{2}, \mathbf{Z}_{3}\right)+f\left(a \mathbf{Z}_{2}+\mathbf{Z}_{3}, \mathbf{Z}_{1}\right)+f\left(a \mathbf{Z}_{3}+\mathbf{Z}_{1}, \mathbf{Z}_{2}\right)=\mathbf{O}
$$

is given by

$$
\begin{gathered}
f(\mathbf{U}, \mathbf{V})=F_{1}(a \mathbf{U}+\mathbf{V}) \operatorname{Re}(a \mathbf{U})+F_{2}(a \mathbf{U}+\mathbf{V}) \operatorname{Im}(a \mathbf{U}) \\
+F_{1}\left(a^{2} \mathbf{U}+\mathbf{V}\right) \operatorname{Re}\left(a^{2} \mathbf{U}\right)+F_{2}\left(a^{2} \mathbf{U}+\mathbf{V}\right) \operatorname{Im}\left(a^{2} \mathbf{U}\right) \\
-F_{1}\left(\mathbf{U}+a^{2} \mathbf{V}\right) \operatorname{Re}\left(\mathbf{U}+2 a^{2} \mathbf{V}\right)-F_{2}\left(\mathbf{U}+a^{2} \mathbf{V}\right) \operatorname{Im}\left(\mathbf{U}+2 a^{2} \mathbf{V}\right) \\
+G_{1}(a \mathbf{U}+\mathbf{V})-G_{1}\left(\mathbf{U}+a^{2} \mathbf{V}\right)+G_{2}\left(a^{2} \mathbf{U}+a \mathbf{V}\right)-G_{2}\left(\mathbf{U}+a^{2} \mathbf{V}\right),
\end{gathered}
$$

where $F_{i}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right)(i=1,2)$ and $G_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(i=1,2)$ are arbitrary complex vector functions.
Theorem 11. If $a^{m+n}=1,(m, n)=d>1, m / d=p, n / d=q$ and $p+q>2$, then the general continuous solution of the functional equation (40) is given by

$$
\begin{gather*}
f(\mathbf{U}, \mathbf{V})=\sum_{j=-1}^{d-2} \sum_{i=0}^{p+q-1}\left[F_{1, j+2}\left(a^{n-i d-j} \mathbf{U}+a^{-i d-j} \mathbf{V}\right) \operatorname{Re}\left(a^{n-i d-j} \mathbf{U}\right)\right. \tag{54}\\
\left.+F_{2, j+2}\left(a^{n-i d-j} \mathbf{U}+a^{-i d-j} \mathbf{V}\right) \operatorname{Im}\left(a^{n-i d-j} \mathbf{U}\right)+G_{i, j+2}\left(a^{n-i d-j} \mathbf{U}+a^{-i d-j} \mathbf{V}\right)\right]
\end{gather*}
$$

so that

$$
\sum_{i=0}^{p+q-1} G_{i j}(\mathbf{U})=H_{j}(\mathbf{U})-p\left[F_{1 j}(\mathbf{U}) \operatorname{Re}(\mathbf{U})+F_{2 j}(\mathbf{U}) \operatorname{Im}(\mathbf{U})\right] \quad(1 \leq j \leq d)
$$

and

$$
\sum_{j=1}^{d} H_{j}(\mathbf{U})=\mathbf{O}
$$

where

$$
\begin{gathered}
F_{i j}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right) \quad(i=1,2 ; \quad 1 \leq j \leq d) \\
G_{i j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(0 \leq i \leq p+q-2 ; \quad 1 \leq j \leq d) \\
H_{j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(1 \leq j \leq d-1)
\end{gathered}
$$

are arbitrary continuous complex vector functions.

Proof. We can start from equation (50). From (49) and (50) on the basis of Theorem 2 we get

$$
\begin{gather*}
f(\mathbf{U}, \mathbf{V})=P_{1 j}\left(a^{n-i d-j+2} \mathbf{U}+a^{m+n+2-i d-j} \mathbf{V}\right) \operatorname{Re}\left(a^{n-i d-j+2} \mathbf{U}\right) \tag{55}\\
+P_{2 j}\left(a^{n-i d-j+2} \mathbf{U}+a^{m+n+2-i d-j} \mathbf{V}\right) \operatorname{Im}\left(a^{n-i d-j+2} \mathbf{U}\right) \\
+Q_{i j}\left(a^{n-i d-j+2} \mathbf{U}+a^{n+m+2-i d-j} \mathbf{V}\right) \quad(0 \leq i \leq p+q-1 ; 1 \leq j \leq d) \\
\sum_{i=0}^{p+q-1} Q_{i j}(\mathbf{U})=K_{j}(\mathbf{U})-p\left[P_{1 j}(\mathbf{U}) \operatorname{Re}(\mathbf{U})+P_{2 j}(\mathbf{U}) \operatorname{Im}(\mathbf{U})\right] \quad(1 \leq j \leq d) \tag{56}\\
\sum_{j=1}^{d} K_{j}(\mathbf{U})=\mathbf{O} \tag{57}
\end{gather*}
$$

where

$$
\begin{gathered}
P_{i j}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right) \quad(i=1,2 ; \quad 1 \leq j \leq d) \\
Q_{i j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(0 \leq i \leq p+q-2 ; \quad 1 \leq j \leq d) \\
K_{j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(1 \leq j \leq d-1)
\end{gathered}
$$

are continuous functions.
We take into account (56) and (57) and we add together all equations (55). In this way we obtain (55) with

$$
\begin{aligned}
& P_{1 j}(\mathbf{U})=(m+n) F_{1 j}(\mathbf{U}), \quad P_{2 j}(\mathbf{U})=(m+n) F_{2 j}(\mathbf{U}), \\
& Q_{i j}(\mathbf{U})=(m+n) G_{i j}(\mathbf{U}), \quad K_{j}(\mathbf{U})=(m+n) H_{j}(\mathbf{U}) \\
&(0 \leq i \leq p+q-2 ; \quad 1 \leq j \leq d) .
\end{aligned}
$$

Example 9. If $a^{6}=1$, then the general continuous solution of the functional equation

$$
\begin{gathered}
f\left(a^{3} \mathbf{Z}_{1}+a^{2} \mathbf{Z}_{2}+a \mathbf{Z}_{3}+\mathbf{Z}_{4}, a \mathbf{Z}_{5}+\mathbf{Z}_{6}\right)+f\left(a^{3} \mathbf{Z}_{2}+a^{2} \mathbf{Z}_{3}+a \mathbf{Z}_{4}+\mathbf{Z}_{5}, a \mathbf{Z}_{6}+\mathbf{Z}_{1}\right) \\
+f\left(a^{3} \mathbf{Z}_{3}+a^{2} \mathbf{Z}_{4}+a \mathbf{Z}_{5}+\mathbf{Z}_{6}, a \mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+f\left(a^{3} \mathbf{Z}_{4}+a^{2} \mathbf{Z}_{5}+a \mathbf{Z}_{6}+\mathbf{Z}_{1}, a \mathbf{Z}_{2}+\mathbf{Z}_{3}\right) \\
+f\left(a^{3} \mathbf{Z}_{5}+a^{2} \mathbf{Z}_{6}+a \mathbf{Z}_{1}+\mathbf{Z}_{2}, a \mathbf{Z}_{3}+\mathbf{Z}_{4}\right)+f\left(a^{3} \mathbf{Z}_{6}+a^{2} \mathbf{Z}_{1}+a \mathbf{Z}_{2}+\mathbf{Z}_{3}, a \mathbf{Z}_{4}+\mathbf{Z}_{5}\right)=\mathbf{O}
\end{gathered}
$$

is given by

$$
\begin{gathered}
f(\mathbf{U}, \mathbf{V})=F_{11}\left(a \mathbf{U}+a^{5} \mathbf{V}\right) \operatorname{Re}(a \mathbf{U})+F_{21}\left(a \mathbf{U}+a^{5} \mathbf{V}\right) \operatorname{Im}(a \mathbf{U}) \\
+F_{11}\left(a^{3} \mathbf{U}+a \mathbf{V}\right) \operatorname{Re}\left(a^{3} \mathbf{U}\right)+F_{21}\left(a^{3} \mathbf{U}+a \mathbf{V}\right) \operatorname{Im}\left(a^{3} \mathbf{U}\right) \\
-F_{11}\left(a^{5} \mathbf{U}+a^{3} \mathbf{V}\right) \operatorname{Re}\left(a^{5} \mathbf{U}+2 a^{3} \mathbf{V}\right)-F_{21}\left(a^{5} \mathbf{U}+a^{3} \mathbf{V}\right) \operatorname{Im}\left(a^{5} \mathbf{U}+2 a^{3} \mathbf{V}\right) \\
+F_{12}\left(\mathbf{U}+a^{4} \mathbf{V}\right) \operatorname{Re}(\mathbf{U})+F_{22}\left(\mathbf{U}+a^{4} \mathbf{V}\right) \operatorname{Im}(\mathbf{U}) \\
+F_{12}\left(a^{2} \mathbf{U}+\mathbf{V}\right) \operatorname{Re}\left(a^{2} \mathbf{U}\right)+F_{22}\left(a^{2} \mathbf{U}+\mathbf{V}\right) \operatorname{Im}\left(a^{2} \mathbf{U}\right) \\
-F_{12}\left(a^{4} \mathbf{U}+a^{2} \mathbf{V}\right) \operatorname{Re}\left(a^{4} \mathbf{U}+2 a^{2} \mathbf{V}\right)-F_{22}\left(a^{4} \mathbf{U}+a^{2} \mathbf{V}\right) \operatorname{Im}\left(a^{4} \mathbf{U}+2 a^{2} \mathbf{V}\right) \\
+G_{01}\left(a \mathbf{U}+a^{5} \mathbf{V}\right)-G_{01}\left(a^{5} \mathbf{U}+a^{3} \mathbf{V}\right)+G_{02}\left(a \mathbf{U}+a^{4} \mathbf{V}\right)-G_{02}\left(a^{4} \mathbf{U}+a^{2} \mathbf{V}\right) \\
+G_{11}\left(a^{3} \mathbf{U}+a \mathbf{V}\right)-G_{11}\left(a^{5} \mathbf{U}+a^{3} \mathbf{V}\right)+G_{12}\left(a^{2} \mathbf{U}+\mathbf{V}\right)-G_{12}\left(a^{4} \mathbf{U}+a^{2} \mathbf{V}\right) \\
+H_{1}\left(a^{5} \mathbf{U}+a^{3} \mathbf{V}\right)-H_{1}\left(a^{4} \mathbf{U}+a^{2} \mathbf{V}\right),
\end{gathered}
$$

where $F_{i j}: \mathcal{V} \rightarrow \mathcal{L}\left(\mathcal{V}^{0}, \mathcal{V}^{\prime}\right) \quad(i, j=1,2) ; \quad G_{i j}: \mathcal{V} \rightarrow \mathcal{V}^{\prime} \quad(i=0,1 ; j=1,2)$ and $H_{1}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ are arbitrary continuous complex vector functions.

ICE B. RISTESKI, KOSTADIN G. TRENČEVSKI, AND VALÉRY C. COVACHEV

Theorem 12. If $a^{m+n}=1$ and $m=n$, the most general solution of the functional equation (40) is given by

$$
\begin{align*}
f(\mathbf{U}, \mathbf{V})= & \sum_{i=1}^{m}\left[F_{1}\left(a^{i} \mathbf{U}, a^{n+i} \mathbf{V}\right)-F_{i}\left(a^{i} \mathbf{U}, a^{n+i} \mathbf{V}\right)+H_{i}\left(a^{n+i} \mathbf{V}+a^{i} \mathbf{U}\right)\right] \\
& \sum_{i=1}^{m} H_{i}(\mathbf{U})=\mathbf{O} \tag{58}
\end{align*}
$$

where $F_{i}: \mathcal{V}^{2} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m)$ and $H_{i}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}(1 \leq i \leq m-1)$ are arbitrary complex vector functions.
Proof. We start again from the equation (50). According to Theorem 3 and (49) we have

$$
\begin{gather*}
f(\mathbf{U}, \mathbf{V})=P_{i}\left(a^{m-i+2} \mathbf{U}, a^{m+n+2-i} \mathbf{V}\right) \quad(1 \leq i \leq m) \\
f(\mathbf{U}, \mathbf{V})=Q_{i}\left(a^{m-i+2} \mathbf{U}+a^{m+n+2-i} \mathbf{V}\right)-P_{i}\left(a^{m+n+2-i} \mathbf{V}, a^{m+2-i} \mathbf{U}\right) \quad(1 \leq i \leq m) \\
\sum_{i=1}^{m} Q_{i}(\mathbf{U})=\mathbf{O} \tag{59}
\end{gather*}
$$

By addition we get (58) with

$$
P_{i}(\mathbf{U}, \mathbf{V})=2 m F_{m-i+2}(\mathbf{U}, \mathbf{V}), \quad Q_{i}(\mathbf{U})=2 m H_{m-i+2}(\mathbf{U})
$$

Example 10. If $a^{4}=1$, the most general solution of the functional equation

$$
\begin{gathered}
f\left(a \mathbf{Z}_{1}+\mathbf{Z}_{2}, a \mathbf{Z}_{3}+\mathbf{Z}_{4}\right)+f\left(a \mathbf{Z}_{2}+\mathbf{Z}_{3}, a \mathbf{Z}_{4}+\mathbf{Z}_{1}\right) \\
+f\left(a \mathbf{Z}_{3}+\mathbf{Z}_{4}, a \mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+f\left(a \mathbf{Z}_{4}+\mathbf{Z}_{1}, a \mathbf{Z}_{2}+\mathbf{Z}_{3}\right)=\mathbf{O}
\end{gathered}
$$

is given by

$$
\begin{aligned}
& f(\mathbf{U}, \mathbf{V})=F_{1}\left(a \mathbf{U}, a^{3} \mathbf{V}\right)-F_{1}\left(a \mathbf{V}, a^{3} \mathbf{U}\right)+F_{2}\left(a^{2} \mathbf{U}, \mathbf{V}\right) \\
& \quad-F_{2}\left(a^{2} \mathbf{V}, \mathbf{U}\right)+H_{1}\left(a^{3} \mathbf{U}+a \mathbf{V}\right)-H_{1}\left(\mathbf{U}+a^{2} \mathbf{V}\right)
\end{aligned}
$$

where $F_{i}: \mathcal{V}^{2} \rightarrow \mathcal{V}^{\prime}(i=1,2)$ and $H_{1}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$ are arbitrary complex vector functions.

Now, as special cases we obtain the results given in $[3,4,5]$.

References

[1] S. B. Prešić, D. Ž. Djoković, Sur Une Equation Fonctionnelle, Bull. Soc. Math. Phys. R. P. Serbie, 13(1961), 149-152.
[2] D. Ž. Djoković, A Special Cyclic Functional Equation, Univ. Beograd. Publ. Elektroteh. Fak. Ser. Mat. Fiz., 143-155(1965), 45-50.
[3] D. Ž. Djoković, R. Ž. Djordjević, P. M. Vasić, On a Class of Functional Equations, Publ. Inst. Math. Beograd, 6(20)(1966), 65-76.
[4] R. Ž. Djordjević, P. M. Vasić, O Jednoj Klasi Funkcionalnih Jednačina, Mat. Vesnik, 4(19)(1967), 33-38.
[5] D. S. Mitrinović, J. E. Pečarić, Ciklične Nejednakosti i Ciklične Funkcionalne Jednačine, Naučna Knjiga, Beograd 1991.

ON A CLASS OF PARAMETRIC PARTIAL LINEAR COMPLEX VECTOR FUNCTIONAL EQUATIONS

2 Milepost Place \# 606, Toronto, M4H 1C7, Ont., Canada
E-mail address: iceristeski@hotmail.com
Institute of Mathematics, St. Cyril and Methodius Univ., P.O.Box 162, 1000 Skopje, Macedonia

E-mail address: kostatre@iunona.pmf.ukim.edu.mk
Institute of Mathematics, Bulgarian Academy of Sciences,
8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
E-mail address: vcovachev@hotmail.com, valery@squ.edu.om

