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A REPRESENTATION OF p-CONVEX SET-VALUED MAPS
WITH VALUES IN R

DORIAN POPA

Abstract. For a p-convex set-valued map with compact values in R is
given a representation theorem as a sum of an additive function and a
compact interval.

1. Introduction

Let X be a real vector space. We denote by P0(X) the set of all nonempty
subsets of X. A subset D of X is said to be p-convex, where p is a real number in the
interval (0, 1), if for every x, y ∈ D we have:

(1− p)x + py ∈ D.

It is known (see [4]) that every p-convex and closed subset of a real topological

vector space is a convex set. A
1
2
-convex set is called midconvex set.

Let D be a p-convex and nonempty subset of X. A set-valued map F : D →
P0(R) is said to be p-convex if for every x, y ∈ D we have:

(1− p)F (x) + pF (y) ⊆ F ((1− p)x + py).

A function f : D → R is said to be p-convex (concave) if for every x, y ∈ D
we have:

f((1− p)x + py) ≤ (≥)(1− p)f(x) + pf(y).
The following assertions, which are true for midconvex set-valued maps and

functions [3], holds for p-convex set-valued maps and functions.
A set valued map F : D → P0(R) is p-convex if and only if the graph of F ,

defined by
Graph F = {(x, y) ∈ X × R : y ∈ F (x)},

is a p-convex subset of the vector space X × R.
A function f : D → R is p-convex if and only if the epigraph of f , defined by

Epi f = {(x, t) ∈ X × R : f(x) ≤ t},
is a p-convex subset of the vector space X × R.
Example 1.1. Let f, g : D → R be two functions such that f(x) ≤ g(x) for every
x ∈ D. Then the set valued map F : D → P0(R) given by the relation

F (x) = [f(x), g(x)]
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for every x ∈ D is p-convex if and only if f is p-convex and g is p-concave.
Proof. Let x, y ∈ D. We have

(1− p)F (x) + pF (y) = [(1− p)f(x) + pf(y), (1− p)g(x) + pg(y)]

and
F ((1− p)x + py) = [f((1− p)x + py), g((1− p)x + py)].

The relation

(1− p)F (x) + pF (y) ⊆ F ((1− p)x + py)

holds if and only if we have

f((1− p)x + py) ≤ (1− p)f(x) + pf(y)

and
(1− p)g(x) + pg(y) ≤ g((1− p)x + py),

hence f is p-convex and g is p-concave.
Remark 1.1. If F : D → P0(R) is a p-convex set-valued map with closed values,
then it is convex valued.
Proof. Let x ∈ D. We have

(1− p)F (x) + pF (x) ⊆ F ((1− p)x + px) = F (x),

hence F (x) is a p-convex subset of R and being closed it is a convex subset of R. �
The goal of this paper is to give a representation of p-convex set-valued maps

with compact values in R. For additive set-valued function this problem was studied
by H. Rädstrom [8]. Later K. Nikodem [5], gave a characterization of midconvex
set-valued maps with compact values in R. A representation of the solutions of a
generalization of Jensen equation for set-valued maps is given by the author in [7].
K. Nikodem, F. Papalini and S. Vercillo [6], established conditions under which every
midconvex set-valued function can be represented as a sum of an additive function and
a convex set-valued function. We prove that an analogous result holds for p-convex
set-valued maps with compact values in R.

2. Main results

For the characterization of p-convex set-valued maps with compact values in
P0(R) we need some lemmas.
Lemma 2.1. ([2]) Let p ∈ (0, 1). Denote by (Pn)n≥1 the sequence of sets defined as
follows: P1 = {0, p, 1}; if Pn = {0, p

(1)
n , . . . , p

(2n−1)
n }, where

0 < p(1)
n < · · · < p(2n−1)

n < 1,

is defined, put

Pn+1 = Pn ∪ {(1− p)p(k−1)
n + pp(k)

n : 1 ≤ k ≤ 2n}

where p
(0)
0 = 0 and p

(2n)
n = 1. Then the set

P =
⋃
n≥1

Pn

is dense in the interval [0, 1].
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Lemma 2.2. ([2]) Let X be a real linear space and D a p-convex and nonempty
subset of X. Then D is q-convex for each q ∈ P , where P is the set defined in Lemma
2.1.
Lemma 2.3. Let X be a real linear space, D a p-convex and nonempty subset of X.
If a set-valued map F : D → P0(Y ) is p-convex then it is q-convex for every q ∈ P ,
where P is the set defined in Lemma 2.1.
Proof. From the p-convexity of F it results that Graph F is a p-convex subset of
X × R, and using Lemma 2.2 we obtain that Graph F is q-convex for every q ∈ P .
Then F is q-convex for every q ∈ P . �
Theorem 2.1. Let D be a linear subspace of the real linear space X and F : D →
P0(R) be a p-convex set-valued map with bounded values. Then there exists an additive
function a : D → R and two real numbers s, t, s ≤ t, such that for every x ∈ D

a(x) + s ≤ F (x) ≤ a(x) + t.

Proof. Following the method used in [5], for any x ∈ D put f(x) = inf F (x) and
g(x) = supF (x). Then f : D → R is p-convex and g : D → R is p-concave. Indeed,
for every x, y ∈ X we have:

f((1− p)x + py) = inf F ((1− p)x + py)
≤ inf((1− p)F (x) + pF (y))
= inf((1− p)F (x) + inf(pF (y))
= (1− p)f(x) + pf(y),

hence f is a p-convex function and analogously g is a p-concave function. We have
also

f(x) ≤ F (x) ≤ g(x)
for every x ∈ D.

Let h : D → R, h(x) = g(x)−f(x) for every x ∈ D. Obviously h is p-concave
and h(x) ≥ 0 for every x ∈ D. We prove that h is a constant function.

The function −h is p-convex, hence the set Epi(−h) is p-convex and it follows
from Lemma 2.2 that Epi(−h) is q-convex for every q ∈ P . It follows that −h is a
q-convex function for q ∈ P , hence h is q-concave for q ∈ P .

Suppose that h is nonconstant. Then there exist x, y ∈ X, x 6= y, such that

h(x) < h(y). Using the density of P in [0, 1] it follows that there exists t > 1,
1
t
∈ P ,

such that:
t(h(x)− h(y)) + h(y) < 0.

From the q-concavity of h with q ∈ P we get:

h(x) = h

(
1
t
(tx + (1− t)y) +

(
1− 1

t

)
y

)
≥ 1

t
h(tx + (1− t)y) +

(
1− 1

t

)
h(y)

and foreward it follows

h(tx + (1− t)y) ≤ th(x) + (1− t)h(y) = t(h(x)− h(y)) + h(y) < 0,

contradiction with nonnegativity of the values of h.
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Hence there exists c ∈ R such that h(x) = c, for every x ∈ X.
The function f = g − c is p-concave and being p-convex satisfies the relation

f((1− p)x + py) = (1− p)f(x) + pf(y). (1)

We prove that there exists an additive function a : D → R and k ∈ R such
that f(x) = a(x) + k for every x ∈ D.

For x = 0 and y ∈ D in (1) we have

f(py) = pf(y) + (1− p)f(0). (2)

For y = 0 and x ∈ D in (1) we have

f((1− p)x) = (1− p)f(x) + pf(0). (3)

Let u, v ∈ D. From (1), (2), (3) we have

f(u + v) = f

(
(1− p)

u

1− p
+ p

v

p

)
= (1− p)f

(
u

1− p

)
+ pf

(
v

p

)
= (1− p)f

(
u

1− p

)
+ pf(0) + pf

(
v

p

)
+ (1− p)f(0)− (1− p)f(0)− pf(0)
= f(u) + f(v)− f(0).

The function a : D → R, a(x) = f(x) − f(0), x ∈ D, is additive. Indeed for
any x, y ∈ X we have:

a(x + y) = f(x + y)− f(0) = f(x) + f(y)− f(0)− f(0) = a(x) + a(y).

Denoting s = f(0) we obtain f(x) = a(x) + s and g(x) = a(x) + t for every
x ∈ D, where t = s + c. �
Corollary 2.1. Let D be a linear subspace of a real linear space X and F : D → P0(R)
be a p-convex set-valued map with compact values.

Then there exists an additive function a : D → R and a compact interval I
in R such that

F (x) = a(x) + I

for every x ∈ D.
Proof. In view of Theorem 2.1, there exist an additive function a : D → R and
s, t ∈ R, s ≤ t, such that

a(x) + s ≤ F (x) ≤ a(x) + t

for every x ∈ D. Taking account of the Remark 1.1, F (x) is a convex subset of R,
hence

F (x) = [a(x) + s, a(x) + t] = a(x) + I

for every x ∈ D, where I = [s, t]. �
Remark 2.1. If p is a rational number in the interval (0, 1) then the converse of
Corollary 2.1 is true.

80



A REPRESENTATION OF p-CONVEX SET-VALUED MAPS WITH VALUES IN R

Proof. Let a : D → R be an additive function, I a compact interval in R and
F (x) = a(x)+I for every x ∈ D. Taking into account that a is rationally homogeneous
[1] it follows that

F ((1− p)x + py) = a((1− p)x + py)
= (1− p)a(x) + pa(y) + (1− p)I + pI

= (1− p)F (x) + pF (y)

for every x, y ∈ D. �
The results proved in Theorem 2.1 and Corollary 2.1 are extensions of the

results obtained in [5] for midconvex-valued maps.
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