A REPRESENTATION OF p-CONVEX SET-VALUED MAPS WITH VALUES IN \mathbb{R}

DORIAN POPA

Abstract

For a p-convex set-valued map with compact values in \mathbb{R} is given a representation theorem as a sum of an additive function and a compact interval.

1. Introduction

Let X be a real vector space. We denote by $\mathcal{P}_{0}(X)$ the set of all nonempty subsets of X. A subset D of X is said to be p-convex, where p is a real number in the interval $(0,1)$, if for every $x, y \in D$ we have:

$$
(1-p) x+p y \in D
$$

It is known (see [4]) that every p-convex and closed subset of a real topological vector space is a convex set. A $\frac{1}{2}$-convex set is called midconvex set.

Let D be a p-convex and nonempty subset of X. A set-valued map $F: D \rightarrow$ $\mathcal{P}_{0}(\mathbb{R})$ is said to be p-convex if for every $x, y \in D$ we have:

$$
(1-p) F(x)+p F(y) \subseteq F((1-p) x+p y)
$$

A function $f: D \rightarrow \mathbb{R}$ is said to be p-convex (concave) if for every $x, y \in D$ we have:

$$
f((1-p) x+p y) \leq(\geq)(1-p) f(x)+p f(y)
$$

The following assertions, which are true for midconvex set-valued maps and functions [3], holds for p-convex set-valued maps and functions.

A set valued map $F: D \rightarrow \mathcal{P}_{0}(\mathbb{R})$ is p-convex if and only if the graph of F, defined by

$$
\text { Graph } F=\{(x, y) \in X \times \mathbb{R}: y \in F(x)\},
$$

is a p-convex subset of the vector space $X \times \mathbb{R}$.
A function $f: D \rightarrow \mathbb{R}$ is p-convex if and only if the epigraph of f, defined by

$$
\text { Epi } f=\{(x, t) \in X \times \mathbb{R}: f(x) \leq t\}
$$

is a p-convex subset of the vector space $X \times \mathbb{R}$.
Example 1.1. Let $f, g: D \rightarrow \mathbb{R}$ be two functions such that $f(x) \leq g(x)$ for every $x \in D$. Then the set valued map $F: D \rightarrow \mathcal{P}_{0}(\mathbb{R})$ given by the relation

$$
F(x)=[f(x), g(x)]
$$

Received by the editors: 25.03 .2003 .
2000 Mathematics Subject Classification. 54C60, 39B05
Key words and phrases. p-convex set, set-valued map.
for every $x \in D$ is p-convex if and only if f is p-convex and g is p-concave. Proof. Let $x, y \in D$. We have

$$
(1-p) F(x)+p F(y)=[(1-p) f(x)+p f(y),(1-p) g(x)+p g(y)]
$$

and

$$
F((1-p) x+p y)=[f((1-p) x+p y), g((1-p) x+p y)] .
$$

The relation

$$
(1-p) F(x)+p F(y) \subseteq F((1-p) x+p y)
$$

holds if and only if we have

$$
f((1-p) x+p y) \leq(1-p) f(x)+p f(y)
$$

and

$$
(1-p) g(x)+p g(y) \leq g((1-p) x+p y)
$$

hence f is p-convex and g is p-concave.
Remark 1.1. If $F: D \rightarrow \mathcal{P}_{0}(\mathbb{R})$ is a p-convex set-valued map with closed values, then it is convex valued.
Proof. Let $x \in D$. We have

$$
(1-p) F(x)+p F(x) \subseteq F((1-p) x+p x)=F(x)
$$

hence $F(x)$ is a p-convex subset of \mathbb{R} and being closed it is a convex subset of \mathbb{R}.
The goal of this paper is to give a representation of p-convex set-valued maps with compact values in \mathbb{R}. For additive set-valued function this problem was studied by H. Rädstrom [8]. Later K. Nikodem [5], gave a characterization of midconvex set-valued maps with compact values in \mathbb{R}. A representation of the solutions of a generalization of Jensen equation for set-valued maps is given by the author in [7]. K. Nikodem, F. Papalini and S. Vercillo [6], established conditions under which every midconvex set-valued function can be represented as a sum of an additive function and a convex set-valued function. We prove that an analogous result holds for p-convex set-valued maps with compact values in \mathbb{R}.

2. Main results

For the characterization of p-convex set-valued maps with compact values in $\mathcal{P}_{0}(\mathbb{R})$ we need some lemmas.
Lemma 2.1. ([2]) Let $p \in(0,1)$. Denote by $\left(P_{n}\right)_{n \geq 1}$ the sequence of sets defined as follows: $P_{1}=\{0, p, 1\}$; if $P_{n}=\left\{0, p_{n}^{(1)}, \ldots, p_{n}^{\left(2^{n}-1\right)}\right\}$, where

$$
0<p_{n}^{(1)}<\cdots<p_{n}^{\left(2^{n}-1\right)}<1,
$$

is defined, put

$$
P_{n+1}=P_{n} \cup\left\{(1-p) p_{n}^{(k-1)}+p p_{n}^{(k)}: 1 \leq k \leq 2^{n}\right\}
$$

where $p_{0}^{(0)}=0$ and $p_{n}^{(2 n)}=1$. Then the set

$$
P=\bigcup_{n \geq 1} P_{n}
$$

is dense in the interval $[0,1]$.

Lemma 2.2. ([2]) Let X be a real linear space and D a p-convex and nonempty subset of X. Then D is q-convex for each $q \in P$, where P is the set defined in Lemma 2.1.

Lemma 2.3. Let X be a real linear space, D a p-convex and nonempty subset of X. If a set-valued map $F: D \rightarrow \mathcal{P}_{0}(Y)$ is p-convex then it is q-convex for every $q \in P$, where P is the set defined in Lemma 2.1.
Proof. From the p-convexity of F it results that $G r a p h ~ F$ is a p-convex subset of $X \times \mathbb{R}$, and using Lemma 2.2 we obtain that $G r a p h ~ F$ is q-convex for every $q \in P$. Then F is q-convex for every $q \in P$.
Theorem 2.1. Let D be a linear subspace of the real linear space X and $F: D \rightarrow$ $\mathcal{P}_{0}(\mathbb{R})$ be a p-convex set-valued map with bounded values. Then there exists an additive function $a: D \rightarrow \mathbb{R}$ and two real numbers s, t, $s \leq t$, such that for every $x \in D$

$$
a(x)+s \leq F(x) \leq a(x)+t .
$$

Proof. Following the method used in [5], for any $x \in D$ put $f(x)=\inf F(x)$ and $g(x)=\sup F(x)$. Then $f: D \rightarrow \mathbb{R}$ is p-convex and $g: D \rightarrow \mathbb{R}$ is p-concave. Indeed, for every $x, y \in X$ we have:

$$
\begin{aligned}
f((1-p) x+p y) & =\inf F((1-p) x+p y) \\
& \leq \inf ((1-p) F(x)+p F(y)) \\
& =\inf ((1-p) F(x)+\inf (p F(y)) \\
& =(1-p) f(x)+p f(y),
\end{aligned}
$$

hence f is a p-convex function and analogously g is a p-concave function. We have also

$$
f(x) \leq F(x) \leq g(x)
$$

for every $x \in D$.
Let $h: D \rightarrow \mathbb{R}, h(x)=g(x)-f(x)$ for every $x \in D$. Obviously h is p-concave and $h(x) \geq 0$ for every $x \in D$. We prove that h is a constant function.

The function $-h$ is p-convex, hence the set $\operatorname{Epi}(-h)$ is p-convex and it follows from Lemma 2.2 that $E p i(-h)$ is q-convex for every $q \in P$. It follows that $-h$ is a q-convex function for $q \in P$, hence h is q-concave for $q \in P$.

Suppose that h is nonconstant. Then there exist $x, y \in X, x \neq y$, such that $h(x)<h(y)$. Using the density of P in $[0,1]$ it follows that there exists $t>1, \frac{1}{t} \in P$, such that:

$$
t(h(x)-h(y))+h(y)<0
$$

From the q-concavity of h with $q \in P$ we get:

$$
\begin{aligned}
h(x) & =h\left(\frac{1}{t}(t x+(1-t) y)+\left(1-\frac{1}{t}\right) y\right) \\
& \geq \frac{1}{t} h(t x+(1-t) y)+\left(1-\frac{1}{t}\right) h(y)
\end{aligned}
$$

and foreward it follows

$$
h(t x+(1-t) y) \leq t h(x)+(1-t) h(y)=t(h(x)-h(y))+h(y)<0,
$$

contradiction with nonnegativity of the values of h.

Hence there exists $c \in \mathbb{R}$ such that $h(x)=c$, for every $x \in X$.
The function $f=g-c$ is p-concave and being p-convex satisfies the relation

$$
\begin{equation*}
f((1-p) x+p y)=(1-p) f(x)+p f(y) \tag{1}
\end{equation*}
$$

We prove that there exists an additive function $a: D \rightarrow \mathbb{R}$ and $k \in \mathbb{R}$ such that $f(x)=a(x)+k$ for every $x \in D$.

For $x=0$ and $y \in D$ in (1) we have

$$
\begin{equation*}
f(p y)=p f(y)+(1-p) f(0) \tag{2}
\end{equation*}
$$

For $y=0$ and $x \in D$ in (1) we have

$$
\begin{equation*}
f((1-p) x)=(1-p) f(x)+p f(0) . \tag{3}
\end{equation*}
$$

Let $u, v \in D$. From (1), (2), (3) we have

$$
\begin{aligned}
f(u+v) & =f\left((1-p) \frac{u}{1-p}+p \frac{v}{p}\right) \\
& =(1-p) f\left(\frac{u}{1-p}\right)+p f\left(\frac{v}{p}\right) \\
& =(1-p) f\left(\frac{u}{1-p}\right)+p f(0)+p f\left(\frac{v}{p}\right) \\
& +(1-p) f(0)-(1-p) f(0)-p f(0) \\
& =f(u)+f(v)-f(0) .
\end{aligned}
$$

The function $a: D \rightarrow \mathbb{R}, a(x)=f(x)-f(0), x \in D$, is additive. Indeed for any $x, y \in X$ we have:

$$
a(x+y)=f(x+y)-f(0)=f(x)+f(y)-f(0)-f(0)=a(x)+a(y) .
$$

Denoting $s=f(0)$ we obtain $f(x)=a(x)+s$ and $g(x)=a(x)+t$ for every $x \in D$, where $t=s+c$.
Corollary 2.1. Let D be a linear subspace of a real linear space X and $F: D \rightarrow \mathcal{P}_{0}(\mathbb{R})$ be a p-convex set-valued map with compact values.

Then there exists an additive function $a: D \rightarrow \mathbb{R}$ and a compact interval I in \mathbb{R} such that

$$
F(x)=a(x)+I
$$

for every $x \in D$.
Proof. In view of Theorem 2.1, there exist an additive function $a: D \rightarrow \mathbb{R}$ and $s, t \in \mathbb{R}, s \leq t$, such that

$$
a(x)+s \leq F(x) \leq a(x)+t
$$

for every $x \in D$. Taking account of the Remark $1.1, F(x)$ is a convex subset of \mathbb{R}, hence

$$
F(x)=[a(x)+s, a(x)+t]=a(x)+I
$$

for every $x \in D$, where $I=[s, t]$.
Remark 2.1. If p is a rational number in the interval $(0,1)$ then the converse of Corollary 2.1 is true.

Proof. Let $a: D \rightarrow \mathbb{R}$ be an additive function, I a compact interval in \mathbb{R} and $F(x)=a(x)+I$ for every $x \in D$. Taking into account that a is rationally homogeneous [1] it follows that

$$
\begin{aligned}
F((1-p) x+p y) & =a((1-p) x+p y) \\
& =(1-p) a(x)+p a(y)+(1-p) I+p I \\
& =(1-p) F(x)+p F(y)
\end{aligned}
$$

for every $x, y \in D$.
The results proved in Theorem 2.1 and Corollary 2.1 are extensions of the results obtained in [5] for midconvex-valued maps.

References

[1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York and London, 1966.
[2] A. Aleman, On some generalizations of convex sets and convex functions, Mathematica. Rev. d'anal. numér. théor. de l'approx., 1(1985), 1-6.
[3] J. P. Aubin, H. Frankowska, Set-valued analysis, Birkhäuser, Boston-Basel-Berlin, 1990.
[4] W. E. Breckner, G. Kassay, A sistematization of convexity concepts for sets and functions, Journal of convex analysis, 1(1997), 109-127.
[5] K. Nikodem, Midpoint convex functions majorized by midpoint concave functions, Aequationes Math., 32(1987), 45-51.
[6] K. Nikodem, F. Papalini, S. Vercillo, Some representations of midconvex set-valued functions, Aequationes Math., 53(1997), 127-140.
[7] D. Popa, Set-valued solutions for an equation of Jensen type, Rev. d'anal. numér. théor. de l'approx., Tome 28, No. 1(1999), 73-77.
[8] H. Radström, One-parameter semigroups of subsets of a real linear space, Ark. Mat., 4(1960), 87-97.

Department of Mathematics, Str. C. Daicoviciu, 15,
3400 Cluj-Napoca, Romania
E-mail address: Popa.Dorian@math.utcluj.ro

