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BOOLE LATTICES OF IDEMPOTENTS IN A RING

IOANA POP

Abstract. In this paper, we will show that in a ring R, there exist maximal
subsets of commuting idempotents. On these maximal subsets, one can
define Boole lattice structures which induce Boole rings which usually are
not subrings of R. If R is a Boole ring, we obtain the Stone’s Theorem.

Let V be a linear space over the skewfield K and EndV the set of endomor-
phisms of V .

If f, g ∈ EndV then the functions f + g : V → V and g ◦ f : V → V defined
by:

(f + g) (x) = f (x) + g (x) and (f ◦ g) (x) = f (g (x))

are endomorphisms of V , that is f + g, f ◦ g ∈ EndV .
The set EndV is a ring with respect to the operations defined above. This

ring is not commutative if dimV ≥ 2. An endomorphism f of V is called projector
of V if f2 = f .

Starting from the papers of W.J. Gordon [3] and W.J. Gordon and
E.W.Cheney [4], F.J. Delvos and W. Schempp are presenting in their book [1] the
construction of lattices of projectors from EndV which are commutative. They use
these lattices in the approximation and interpolation theory.

In this paper, we will associate Boole lattices to a ring (associative) with the
unit R. An element a ∈ R with the property a2 = a is called idempotent. Thus, the
projectors of V correspond to the idempotent elements of the ring EndV .

If R is a Boole ring, i.e. every element of a ∈ R is idempotent, then these
lattices coincide with the Boole lattice associated to R, according to Stone’s Theorem
which establishes a bijection between Boole lattices and Boole rings. Note that every
Boole ring R is commutative and 2a = 0 for ∀a ∈ R.

Let I (R) =
{
a ∈ R|a2 = a

}
, P (I (R)) the set of subsets of I (R) and

P
′
= {X ∈ P (I (R)) |∀a, b ∈ X; ab = ba} .

Remarks. a) We have I (R) = R if and only if R is a Boole ring. In this case,
P ′ = P (R) and R is the only maximal element of P ′.

b) We have {0, 1} ∈ P ′.
Theorem 1. 1) For every X ∈ P ′ there exists a maximal element Y in (P ′,⊆) such
that X ⊆ Y .

2) If Y is a maximal element of P ′ then 0, 1 ∈ Y .
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Proof. 1) If P ′′ is a non empty chain from C = {X ′ ∈ P ′|X ⊆ X ′} then⋃
X′∈P′′

X ′ ∈ C

Thus, according to Zorn’s lemma there exist maximal elements in C.
2) The elements 0 and 1 are idempotent and they commute with every y ∈ Y .

So Y ∪ {0, 1} ∈ P ′ and using the maximality of Y in P ′ it results that 0, 1 ∈ Y .
Theorem 2. If Y is a maximal element in (P ′,⊆) then:

i) Y is stable with respect to the multiplication in R, i.e.

x, y ∈ Y ⇒ xy ∈ Y

ii) The relation ” ≤ ” defined on Y by

x ≤ y ⇔ xy = x

is an ordering relation and 0 respectively 1 is the least respectively the greatest element
in (Y,≤).

iii) The ordered set (Y,≤) is a Boole lattice. In this lattice we have

x ∧ y = xy, x ∨ y = x + y − xy and x′ = 1− x (1)

where x ∧ y = inf (x, y), x ∨ y = sup (x, y) and x′ is the complement of x.
Proof. i) From x, y ∈ Y it results that x, y are idempotents which commute, which
implies that

(xy)2 = xyxy = x2y2 = xy

so xy is idempotent. Since the elements of Y are commuting, it results that for ∀z ∈ Y
we have

(xy) z = x (yz) = x (zy) = (xz) y = (zx) y = z (xy) ,

so xy commutes with every element of Y .
This means that Y ∪ {xy} ∈ P ′, which together with the maximality of Y in

(P ′,⊆), implies that xy ∈ Y .
ii) Since the elements of Y are idempotents, it results that for ∀x ∈ X we

have
x2 = x,

so x ≤ x. Thus the ” ≤ ” relation is reflexive. If x, y, z ∈ Y then

x ≤ y and y ≤ z ⇒ xy = x and yz = y

Using the fact that y is idempotent we deduce that

(xy) (yz) = xy ⇒ xyz = xy ⇒ xz = x ⇒ x ≤ z

So the ” ≤ ” relation is also transitive.
If x, y ∈ Y then using the fact that the elements of Y are commuting, we

have:
x ≤ y and y ≤ x ⇒ xy = x and yx = y ⇒ x = y

which shows that the relation ” ≤ ” is antisymmetric.
We have proved that ” ≤ ” is an order relation on Y . For ∀x ∈ Y , from

0x = 0 and x1 = x

it results that 0 ≤ x and x ≤ 1.
So, 0 and 1 are the least respectively the greatest element in (Y,≤).
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iii) For ∀x, y ∈ Y we have

(xy) x = x2y = xy, (xy) y = xy2 = xy

and
(x + y − xy) x = x2 + yx− xyx = x + yx− yx2 = x + yx− yx = x,

(x + y − xy) y = xy + y2 − xy2 = xy + y − xy = y

which shows that xy ≤ x, xy ≤ y and x ≤ x + y − xy and y ≤ x + y − xy, so xy is a
lower bound and x + y − xy is a upper bound of x and y.

If z ∈ Y then

z ≤ x, z ≤ y ⇒ zx = z, zy = z ⇒ z2 (xy) = z2 ⇒ z (xy) = z ⇒ z ≤ xy

and
x ≤ z, y ≤ z ⇒ xz = x, yz = y

from which it results

z (x + y − xy) = zx + zy − zxy = x + y − xy

hence z ≤ x + y − xy.
So xy is the greatest lower bound and x + y− xy is the least upper bound of

x and y.
So

x ∧ y = xy and x ∨ y = x + y − xy

Thus we have proved that (Y,≤) is a lattice.
Now we will show that this lattice is also distributive. If x, y, z ∈ Y then

x ∧ (y ∨ z) = x (y + z − yz) = xy + xz − xyz,

(x ∧ y) ∨ (x ∧ z) = (xy) ∨ (xz) = xy + xz − xyxz = xy + xz − xyz

so
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (2)

Here we notice that the identity (2) is true in a lattice if and only if the
following identity is also true:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Thus (Y,≤) is a distributive lattice having 0 the least element and 1 the
greatest element.

For ∀x ∈ Y we have

x ∧ (1− x) = x− x2 = x− x = 0,

x ∨ (1− x) = x + 1− x− x (1− x) = 1− x + x = 1
which shows that x′ = 1− x is the complement of x.

So we proved that (Y,≤) is a Boole lattice.
Corollary. If X ∈ P ′ then the relation ” ≤ ” defined on X

x ≤ y ⇔ xy = x

is an order relation.
Theorem 3. If Y is a maximal element in (P ′,⊆) then ⊕ defined by

x⊕ y = x + y − 2xy
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is an operation on Y and Y is a Boolean ring with respect to ⊕ and the multiplication
induced by the multiplication in R.
Proof. Applying Stone’s Theorem to the Boole lattice (Y,∨,∧) it follows that the
equalities

x ∗ y = (x ∧ y′) ∨ (x′ ∧ y)
xy = x ∧ y

(3)

are defining operations in Y and (Y, ∗, ·) is a Boole ring.
From (1) and (3) it results :

x ∗ y = [x (1− y)] ∨ [(1− x) y] = x (1− y) + (1− x) y − x (1− y) (1− x) y =
= x− xy + y − xy − x (1− x− y + yx) y =
= x + y − xy − xy − xy + x2y + xy2 − xyxy =
= x + y − xy − xy − xy + xy + xy − xy = x + y − 2xy = x⊕ y

Corollary. a) If Y is a maximal element in P ′ then the ring (Y,⊕, ·) is a subring of
R if and only if

2x = 0 for ∀x ∈ Y (4)

We know that the ring (Y,⊕, ·) is a subring of R if and only if

x⊕ y = x + y for ∀x, y ∈ Y (5)

and
(5) ⇔ 2xy = 0; ∀x, y ∈ Y ⇔ 2x = 0,∀x ∈ Y

The last equivalence takes place because 1 ∈ Y .
b) If Y is a maximal element in P ′ and R 6= {0}, then the ring (Y,⊕, ·) is a

subring of R if and only if the characteristic of R is 2.
The condition (4) is verified if and only if 2x = 0 for x = 1 ∈ R which implies

that R has the characteristic 2.
c) Let K be a field of characteristic greater than 2 (in particular, K could be

R or C) and R = EndV . In this case, if Y is a maximal element in P ′, then the ring
(Y,⊕, ·) is not a subring of R.

We know that if α ∈ K then the function

tα : V → V , tα (x) = αx

is an endomorphism of V , i.e. tα ∈ EndV = R, and ϕ : K → R, ϕ(α) = tα is a
unitary and injective homomorphism of rings.

So the characteristic of R concides to the characteristic of K, so R has a
characteristic different from 2.

d) Stone’s Theorem. If (R,+, ·) is a Boole ring then R is a Boole lattice
with respect to the operations ” ∨ ” and ” ∧ ” defined by

x ∨ y = x + y − xy and x ∧ y = xy

The correspondence (R,+, ·) 7−→ (R,∨,∧) introduces a bijection between the
class of Boole rings and the class of Boole lattices.

On the other side, if (R,∨,∧) is a Boole lattice then R is a Boole ring with
respect to the operations ” + ” and ” · ” defined by

x + y = (x ∧ y′) ∨ (x′ ∧ y) and xy = x ∧ y

If we denote the above bijection by ϕ, we have ϕ−1 (R,∨,∧) = (R,+, ·)
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This theorem results from Theorems 2 and 3 and from Corollary a), taking
into account that in this case P ′ = P (R) and Y = R.
Theorem 4. If R is a ring with unit and φ 6= X ∈ P ′, i.e. X is a non empty subset
of R composed by idempotents which commute, then the elements of R such as

x11x12 . . . x1n1 ∨ x21x22 . . . x2n2 ∨ . . . ∨ xk1xk2 . . . xknk
(6)

where xij ∈ X (i = 1, . . . , k; j = 1, . . . , nk; k, nk ∈ N∗) are idempotents and commute
between them.

The set X of elements such as (6) is a distributive lattice with respect to the
relation ” ≤ ”. This lattice is generated by X.
Proof. From Theorem 1 it results that there exists a maximal element Y ∈ P ′ such
that X ⊆ Y and from Theorem 2 we know that (Y,≤) is a distributive lattice.

From X ⊆ Y and the fact that (Y,≤) is a lattice, it results that X ⊆ Y .
So elements such as (6) are idempotents and commute between them. If y, z

are elements such as (6), that is y, z ∈ X, then it is obvious that y ∨ z ∈ X and from
the distributivity of the operation ” ∧ ” (which coincides with ” · ”) with respect to
” ∨ ”, it results that yz is also such as (6).

This means that X is a sublattice of (Y,≤).
From (6) it results that X ⊆ X. If Z is a sublattice of Y and X ⊆ Z, then

from (6) it follows that X ⊆ Z.
Thus we have proved that X is the least sublattice of Y which includes X.
So

(
X,≤

)
is a distributive lattice generated by X.

Remarks. Considering R = EndV in Theorem 4, where V is a linear space over R
or C, we obtain Propositions 6 and 7, section 1.2 from [1].
Theorem 5. If R is a ring with unit and φ 6= X ∈ P ′ and Xc = {1− x|x ∈ X} then
the elements such as (6) where xij ∈ X ∪Xc, (i = 1, . . . , k; j = 1, . . . , nk; k, nk ∈ N∗)
are idempotents which commute and the set X of this elements is a Boole lattice
generated by X.
Proof. If x, y ∈ X ∪Xc then we can easily prove that x and y are idempotents and
xy = yx. Using Theorem 1 it follows that there exists a maximal element Y ∈ P ′

such that X ∪Xc ⊆ Y .
From Theorem 2 it results that (Y,≤) is a Boole lattice and from the proof

of Theorem 4 it follows that X is the sublattice of Y generated by X ∪Xc.
So X is a distributive lattice. If x ∈ X then

x ∧ (1− x) = x− x2 = x− x = 0,
x ∨ (1− x) = x + 1− x− x (1− x) = 1− x + x2 = 1− x + x = 1

which shows that 0, 1 ∈ X.
Using de Morgan’s formulas in the Boole lattice Y

(y ∨ z)′ = y′ ∧ z′ and (y ∧ z)′ = y′ ∨ z′

for ∀y, z ∈ Y , and using the distributiveness, it follows that the complement of an
element of X is also in X.

So X is a Boole sublattice of the lattice Y .
We have X ⊆ X and if Z is a Boole sublattice of Y which includes X then

X ⊆ Z.
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This means that X is the smallest Boole lattice including X that is X is
generated by X.
Remarks. Considering, in Theorem 5, R = EndV where V is a linear space over R
or C it results the construction of the Boole algebra of projectors, given in section
1.4. of [1].
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