MINIMUM VALUE OF A MATRIX NORM WITH APPLICATIONS TO MAXIMUM PRINCIPLES FOR SECOND ORDER ELLIPTIC SYSTEMS

```
CRISTIAN CHIFU-OROS
```


Abstract

The purpose of this paper is to use an estimation of minimum value of a matrix norm to improve some results given by I.A.Rus in 1969, 1973, and A.S. Muresan in 1975.

1. Introduction

Let us consider the following operator:

$$
L u:=\sum_{i, j=1}^{m} A_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{m} A_{i} \frac{\partial u}{\partial x_{i}}+A_{0} u
$$

where $A_{i j}, A_{i}, A_{0} \in C\left(\bar{\Omega}, M_{n}(\mathbb{R})\right)$ and $\Omega \subset \mathbb{R}^{m}$ is a bounded domain.
Let us also consider the following systems:

$$
\begin{align*}
& L u=0, \tag{1}\\
& L u=f, \tag{2}
\end{align*}
$$

where $f \in C\left(\bar{\Omega}, \mathbb{R}^{n}\right)$.
There are some maximum principles for the solutions of (1) (see for example [2], [5] and [8]).

In [5] the following principle is given:
Theorem 1. Suppose that:

1. the system (1) is strongly elliptic,
2. $e^{*} L e<0$, for each $e \in C^{2}\left(\bar{\Omega}, \mathbb{R}^{n}\right)$, with $\|e\|:=\left(\sum_{i=1}^{n} e_{i}^{2}\right)^{1 / 2}=1$.

If $u \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{n}\right)$ is a solution of (1), then $\|u\|:=\left(\sum_{i=1}^{n} u_{i}^{2}\right)^{1 / 2}$ attains his maximum value on $\partial \Omega$.

Key words and phrases. Second order elliptic systems, maximum principles, estimation of the minimum value of a matrix norm.

The aim of this paper is to find conditions which imply condition 2 of Theorem 1. This will be done in section 2 of this paper. In section 3 we shall try to improve some estimations for the norm of solution of system (2), estimations given in [4] and [6].

Let $A \in M_{n}(\mathbb{R}), J$ the Jordan normal form of A. We know that there exist a nonsingular matrix T such that $A=T J T^{-1}$.
We will denote:

$$
\begin{aligned}
\widetilde{\alpha} & =\left\{\begin{array}{l}
\frac{1}{n} \sum_{k=1}^{s} n_{k} \lambda_{k}, \lambda_{k} \in \mathbb{R} \\
\frac{1}{n} \sum_{k=1}^{s} n_{k} \operatorname{Re} \lambda_{k}, \lambda_{k} \in \mathbb{C} \backslash \mathbb{R}
\end{array}\right. \\
\gamma_{F} & =\|T\|_{F} \cdot\left\|T^{-1}\right\|_{F} \\
m_{F} & =\|J-\widetilde{\alpha} I\|_{F}
\end{aligned}
$$

where λ_{k} are the eigenvalues of A, n_{k} is the number of λ_{k} which appears in Jordan blocks (generated by λ_{k}) and $\|\cdot\|_{F}$ is the euclidean norm of a matrix (see [1]).

We shall use the following result given in [1]:
Theorem 2. Let $\varphi_{\|\cdot\|}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{\|\cdot\|}(\alpha)=\left\|A-\alpha I_{n}\right\|,\|\cdot\|$ being one of the following norms: $\|\cdot\|_{F},\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$. In these conditions:

$$
\varphi_{\|\cdot\|}(\widetilde{\alpha}) \leq \sqrt{n} \gamma_{F} m_{F}
$$

Remark 1. In case of euclidean norm $\|\cdot\|_{F}$ and spectral norm $\|\cdot\|_{2}$ we have that $\varphi_{\|\cdot\|}(\widetilde{\alpha}) \leq \gamma_{F} m_{F}$ (see [1]). Because $n \geq 2$, if $m_{F} \neq 0$, then:

$$
\varphi_{\|\cdot\|}(\widetilde{\alpha})<\sqrt{n} \gamma_{F} m_{F}
$$

2. Main result for the solution of system (1)

In this section we shall give conditions under which condition 2 of Theorem 1 holds in case $A_{i j}=a_{i j} I_{n}, a_{i j} \in C(\bar{\Omega})$. Suppose that there exist $\delta>0$ such that:

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j} \xi_{i} \xi_{j} \geq \delta^{2}\|\xi\|^{2}, \xi \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

Theorem 3. Suppose that (3) holds and:

$$
\begin{equation*}
\xi^{*} A_{0}(x) \xi \leq-\frac{1}{4 \delta^{2}} n\|\xi\|^{2} \sum_{i=1}^{m}\left(\gamma_{F}^{i} m_{F}^{i}\right)^{2}, \forall \xi \in \mathbb{R}^{n}, \forall x \in \Omega \tag{4}
\end{equation*}
$$

If $u \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{n}\right), u \neq 0$, is a solution of (1), then $\|u\|:=\left(\sum_{k=1}^{n} u_{k}^{2}\right)^{1 / 2}$ attains his maximum value on $\partial \Omega$.
Proof. Our result is based on the following remark which appears in [5]:

If, for each $x \in \Omega$, there exist $\widetilde{\alpha_{i}}(x) \in \mathbb{R}, i=\overline{1, m}$, such that:
$\xi^{*}\left(\begin{array}{ccccc}-a_{11} I_{n} & -a_{12} I_{n} & \ldots & -a_{1 m} I_{n} & 0 \\ -a_{21} I_{n} & -a_{22} I_{n} & \ldots & -a_{2 m} I_{n} & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ -a_{m 1} I_{n} & -a_{m 2} I_{n} & \ldots & -a_{m m} I_{n} & 0 \\ A_{1}(x)-\widetilde{\alpha_{1}}(x) I_{n} & A_{2}(x)-\widetilde{\alpha_{2}}(x) I_{n} & \ldots & A_{m}(x)-\widetilde{\alpha_{m}}(x) I_{n} & A_{0}(x)\end{array}\right) \xi<0$,
for all $\xi \in \mathbb{R}^{(m+1) n}, \xi \neq 0, \forall x \in \Omega$ then condition 2 of Theorem 1 holds.
So, it is enough to show that (4) implies (5).
Now it's easy to see that if, for each $x \in \Omega$, there exist $\varepsilon_{i}(x)>0$ and $\widetilde{\alpha_{i}}(x) \in \mathbb{R}$, such that

$$
\begin{gather*}
\left\|A_{i}(x)-\widetilde{\alpha}_{i}(x) I_{n}\right\|<2 \varepsilon_{i}(x), i=\overline{1, m}, \tag{6}\\
\xi^{*} A_{0}(x) \xi \leq-\frac{1}{\delta^{2}}\|\xi\|^{2} \sum_{i=1}^{m} \varepsilon_{i}^{2}(x), \forall \xi \in \mathbb{R}^{n} \tag{7}
\end{gather*}
$$

then (5) holds.
For simplicity we shall prove this in case $m=n=2$.
We have:

$$
\begin{aligned}
& \xi^{*}\left(\begin{array}{lll}
-a_{11} I_{2} & -a_{12} I_{2} & 0 \\
-a_{21} I_{2} & -a_{22} I_{2} & 0 \\
A_{1}(x)-\widetilde{\alpha_{1}}(x) I_{2} & A_{2}(x)-\widetilde{\alpha_{2}}(x) I_{2} & A_{0}(x)
\end{array}\right) \xi \leq-\delta^{2}\left(\xi_{1}^{2}+\xi_{3}^{2}\right)- \\
& -\delta^{2}\left(\xi_{2}^{2}+\xi_{4}^{2}\right)+\delta^{2}\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+\xi_{4}^{2}\right)+\frac{1}{4 \delta^{2}}\left\|\xi^{\prime}\right\|^{2}\left\|A_{1}(x)-\widetilde{\alpha_{1}}(x) I_{2}\right\|^{2}+ \\
& \quad+\frac{1}{4 \delta^{2}}\left\|\xi^{\prime}\right\|^{2}\left\|A_{2}(x)-\widetilde{\alpha_{2}}(x) I_{2}\right\|^{2}+\xi^{\prime *} A_{0}(x) \xi^{\prime}< \\
& \quad<\frac{\varepsilon_{1}^{2}(x)+\varepsilon_{2}^{2}(x)}{\delta^{2}}\left\|\xi^{\prime}\right\|^{2}-\frac{\varepsilon_{1}^{2}(x)+\varepsilon_{2}^{2}(x)}{\delta^{2}}\left\|\xi^{\prime}\right\|^{2}=0,
\end{aligned}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}, \xi_{6}\right) \in \mathbb{R}^{6}, \xi \neq 0, \xi^{\prime}=\left(\xi_{5}, \xi_{6}\right) \in \mathbb{R}^{2}, \xi^{\prime} \neq 0$.
Now, according to Theorem 2 and Remark 1 we have that if $m_{F}^{i} \neq 0, i=\overline{1, m}$, then for each $x \in \Omega$, there exist $\widetilde{\alpha_{i}}(x) \in \mathbb{R}$ such that $\left\|A_{i}(x)-\widetilde{\alpha_{i}}(x) I_{n}\right\|<\sqrt{n} \gamma_{F}^{i} m_{F}^{i}$. So choosing $\varepsilon_{i}(x)=\frac{1}{2} \sqrt{n} \gamma_{F}^{i} m_{F}^{i}$, the proof is done.
Remark 2. If $m_{F}^{i}=0, i=\overline{1, m}$, then the conclusion of Theorem 3 holds if

$$
\xi^{*} A_{0}(x) \xi<0, \forall \xi \in \mathbb{R}^{n}, \xi \neq 0, x \in \Omega
$$

Example 1. Let us consider the system (1) in case $m=n=2$ with $A_{1}=$ $A_{2}=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{1}\end{array}\right)$. We suppose that $a_{2}, a_{3}>0$. In this case we shall have: $\widetilde{\alpha}_{1}=\widetilde{\alpha}_{2}=a_{1}, \gamma_{F}^{A_{1}}=\gamma_{F}^{A_{2}}=\frac{a_{2}+a_{3}}{\sqrt{a_{2} a_{3}}}, m_{F}^{A_{1}}=m_{F}^{A_{2}}=\sqrt{2 a_{2} a_{3}}, A_{1}-a_{1} I_{2}=A_{2}-a_{1} I_{2}=$ $\left(\begin{array}{cc}0 & a_{2} \\ a_{3} & 0\end{array}\right), \varepsilon_{1}=\varepsilon_{2}=a_{2}+a_{3}$.
The condition (4) becomes:

$$
\begin{equation*}
\xi^{*} A_{0}(x) \xi \leq-\frac{2}{\delta^{2}}\left(a_{2}+a_{3}\right)^{2}\|\xi\|^{2}, \xi \in \mathbb{R}^{2}, x \in \Omega \tag{8}
\end{equation*}
$$

If (3) and (8) holds, then we have:

$$
\begin{gathered}
\xi^{*}\left(\begin{array}{lll}
-a_{11} I_{2} & -a_{12} I_{2} & 0 \\
-a_{21} I_{2} & -a_{22} I_{2} & 0 \\
A_{1}-a_{1} I_{2} & A_{2}-a_{2} I_{2} & A_{0}(x)
\end{array}\right) \xi \leq \frac{1}{4 \delta^{2}}\left\|\xi^{\prime}\right\|^{2}\left(a_{2}^{2}+a_{3}^{2}\right)+ \\
+\frac{1}{4 \delta^{2}}\left\|\xi^{\prime}\right\|^{2}\left(a_{2}^{2}+a_{3}^{2}\right)-\frac{2}{\delta^{2}}\left(a_{2}+a_{3}\right)^{2}\left\|\xi^{\prime}\right\|^{2}=\frac{1}{4 \delta^{2}}\left[a_{2}^{2}+a_{3}^{2}-4\left(a_{2}+a_{3}\right)^{2}\right]\left\|\xi^{\prime}\right\|^{2}<0,
\end{gathered}
$$

$$
\text { where } \xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}, \xi_{6}\right) \in \mathbb{R}^{6}, \xi \neq 0, \xi^{\prime}=\left(\xi_{5}, \xi_{6}\right) \in \mathbb{R}^{2}, \xi^{\prime} \neq 0
$$

So, if (3) and (8) holds then, if $u \in C^{2}\left(\Omega, \mathbb{R}^{2}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{2}\right), u \neq 0$, is a solution of (1) in case $m=n=2$, with $A_{1}=A_{2}=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{1}\end{array}\right), a_{2}, a_{3}>0$, then $\|u\|$ attains his maximum value on $\partial \Omega$.

3. Estimations for the solution of system (2)

In this section we shall try to improve some estimation for the norm of the solution of system (2), estimations given in [4] and [6]. For other estimations see [3] and [8].
Theorem 4. ([4],[6]): Suppose that:

1. the system (2) is strongly elliptic,
2. $e^{*} L e \leq-p^{2}$, for each $e \in C^{2}\left(\bar{\Omega}, \mathbb{R}^{n}\right)$, with $\|e\|=1, p \in \mathbb{R}^{*}$.

If $u \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{n}\right)$ is a solution of (2), then:

$$
|u(x)| \leq \max \left\{\max _{x \in \partial \Omega}|u(x)|, \frac{1}{p^{2}} \max _{x \in \bar{\Omega}}|f(x)|\right\}, x \in \bar{\Omega}
$$

As in section 2 , we shall try to find conditions under which condition 2 of Theorem 4 holds. In this way we shall be able to find a value of p.

In case $m=1$, system (2) becomes:

$$
\begin{equation*}
L y:=\frac{d^{2} y}{d x^{2}}+B(x) \frac{d y}{d x}+C(x) y=f(x) \tag{9}
\end{equation*}
$$

where $B, C \in C\left([a, b], M_{n}(\mathbb{R})\right), f \in C\left([a, b], \mathbb{R}^{n}\right)$.
If $m_{F} \neq 0$, then we have the following result:
Theorem 5. Suppose that:

$$
\begin{equation*}
e^{*} C(x) e \leq-\frac{1}{4} n\left(\gamma_{F} m_{F}\right)^{2} \tag{10}
\end{equation*}
$$

$\left.\forall e \in C^{2}\left([a, b], \mathbb{R}^{n}\right),\|e\|=1, \forall x \in\right] a, b[$.
If $y \in C^{2}\left([a, b], \mathbb{R}^{n}\right), y \neq 0$, is a solution of (9), then:

$$
|y(x)| \leq \max \left\{|y(a)|,|y(b)|, \frac{4}{n \gamma_{F}^{2} m_{F}^{2}-\left\|B(x)-\widetilde{\beta}(x) I_{n}\right\|^{2}} \max _{x \in[a, b]}|f(x)|\right\}, x \in[a, b] .
$$

Proof. According to Theorem 2 and Remark 1 we have that, for each $x \in] a, b[$, there exist $\widetilde{\beta}(x) \in \mathbb{R}$ such that $\left\|B(x)-\widetilde{\beta}(x) I_{n}\right\|<\sqrt{n} \gamma_{F} m_{F}$.

We have:
$e^{*} L e=-\left\|e^{\prime}\right\|^{2}+e^{*} B(x) e^{\prime}+e^{*} C(x) e=-\left\|e^{\prime}\right\|^{2}+e^{*}\left(B(x)-\widetilde{\beta}(x) I_{n}\right) e^{\prime}+e^{*} C(x) e \leq$ $-\left\|e^{\prime}\right\|^{2}+\left\|B(x)-\widetilde{\beta}(x) I_{n}\right\|\left\|e^{\prime}\right\|+e^{*} C(x) e \leq \frac{1}{4}\left\|B(x)-\widetilde{\beta}(x) I_{n}\right\|^{2}+e^{*} C(x) e \leq$ $\frac{1}{4}\left\|B(x)-\widetilde{\beta}(x) I_{n}\right\|^{2}-\frac{1}{4} n\left(\gamma_{F} m_{F}\right)^{2}=-p^{2}(x)<0$.

$$
\text { So } e^{*} L e \leq-p^{2} \text { and hence and from Theorem 4, Theorem } 5 \text { is proved. }
$$

Remark 3. In case that $m_{F}=0$, if there exist $p \neq 0$ such that $e^{*} C(x) e \leq-p^{2}, \forall x \in$ $] a, b[$, then the conclusion becomes:

$$
|y(x)| \leq \max \left\{|y(a)|,|y(b)|, \frac{1}{p^{2}} \max _{x \in[a, b]}|f(x)|\right\}, x \in[a, b] .
$$

Example 2. Let us consider the system (9) with $B=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{1}\end{array}\right)$
and $a_{2}, a_{3}>0$. In this case we shall have:
$\widetilde{\beta}=a_{1}, \gamma_{F}=\frac{a_{2}+a_{3}}{\sqrt{a_{2} a_{3}}}, m_{F}=\sqrt{2 a_{2} a_{3}}$, and $B-\widetilde{\beta} I_{2}=\left(\begin{array}{cc}0 & a_{2} \\ a_{3} & 0\end{array}\right)$. The relation (10), becomes:

$$
\begin{equation*}
\left.e^{*} C(x) e \leq-\left(a_{2}+a_{3}\right)^{2}, x \in\right] a, b[. \tag{11}
\end{equation*}
$$

If (11) holds and $y \in C^{2}\left([a, b], \mathbb{R}^{2}\right)$ is a solution of (9), then:

$$
|y(x)| \leq \max \left\{|y(a)|,|y(b)|, \frac{4}{3 a_{2}^{2}+8 a_{2} a_{3}+3 a_{3}^{2}} \max _{x \in[a, b]}|f(x)|\right\}, x \in[a, b] .
$$

In case $m=2, A_{i j}=I_{n}$, we shall consider the system:

$$
\begin{equation*}
L u:=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+A(x, y) \frac{\partial u}{\partial x}+B(x, y) \frac{\partial u}{\partial y}+C(x, y) u=f(x, y) \tag{12}
\end{equation*}
$$

where $A, B, C \in C\left(\bar{\Omega}, M_{n}(\mathbb{R})\right), f \in C\left(\bar{\Omega}, \mathbb{R}^{n}\right)$ and $\Omega \subseteq \mathbb{R}^{2}$ is a bounded domain. If $m_{F}^{A} \neq 0, m_{F}^{B} \neq 0$, then we have the following result:
Theorem 6. Suppose that:

$$
\begin{equation*}
e^{*} C(x, y) e \leq-\frac{1}{4} n\left[\left(\gamma_{F}^{A} m_{F}^{A}\right)^{2}+\left(\gamma_{F}^{B} m_{F}^{B}\right)^{2}\right], \tag{13}
\end{equation*}
$$

$\forall e \in C^{2}\left(\bar{\Omega}, \mathbb{R}^{n}\right),\|e\|=1, \forall(x, y) \in \Omega$.
If $u \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{n}\right), u \neq 0$, is a solution of (12), then:

$$
|u(x, y)| \leq \max \left\{\max _{(x, y) \in \partial \Omega}|u(x, y)|, \frac{4}{p^{2}(x, y)} \max _{(x, y) \in \bar{\Omega}}|f(x, y)|\right\},(x, y) \in \bar{\Omega}
$$

where
$p^{2}(x, y)=n\left(\gamma_{F}^{A} m_{F}^{A}\right)^{2}+n\left(\gamma_{F}^{B} m_{F}^{B}\right)^{2}-\left\|A(x, y)-\widetilde{\alpha}(x, y) I_{n}\right\|^{2}-\left\|B(x, y)-\widetilde{\beta}(x, y) I_{n}\right\|^{2}$.

Proof. According to Theorem 2 and Remark 1, if $m_{F}^{A} \neq 0, m_{F}^{B} \neq 0$, for each $(x, y) \in \Omega$, there exist $\widetilde{\alpha}(x, y), \widetilde{\beta}(x, y) \in \mathbb{R}$ such that:

$$
\begin{aligned}
& \left\|A(x, y)-\widetilde{\alpha}(x, y) I_{n}\right\|<\sqrt{n} \gamma_{F}^{A} m_{F}^{A} \\
& \left\|B(x, y)-\widetilde{\beta}(x, y) I_{n}\right\|<\sqrt{n} \gamma_{F}^{B} m_{F}^{B}
\end{aligned}
$$

We have:

$$
\begin{gathered}
e^{*} L e=-\left\|e_{x}^{\prime}\right\|^{2}-\left\|e_{y}^{\prime}\right\|^{2}+e^{*}\left(A(x, y)-\widetilde{\alpha}(x, y) I_{n}\right) e_{x}^{\prime}+e^{*}\left(B(x, y)-\widetilde{\beta}(x, y) I_{n}\right) e_{y}^{\prime}+ \\
+e^{*} C(x, y) e \leq \frac{1}{4}\left\|A(x, y)-\widetilde{\alpha}(x, y) I_{n}\right\|^{2}+\frac{1}{4}\left\|B(x, y)-\widetilde{\beta}(x, y) I_{n}\right\|^{2}+e^{*} C(x, y) e \leq \\
\leq \frac{1}{4}\left[\left\|A(x, y)-\widetilde{\alpha}(x, y) I_{n}\right\|^{2}+\left\|B(x, y)-\widetilde{\beta}(x, y) I_{n}\right\|^{2}-n\left(\gamma_{F}^{A} m_{F}^{A}\right)^{2}-n\left(\gamma_{F}^{B} m_{F}^{B}\right)^{2}\right]= \\
=-p^{2}(x, y)<0 .
\end{gathered}
$$

So $e^{*} L e \leq-p^{2}$ and hence and from Theorem 4, Theorem 6 is proved.
Remark 4. In case that $m_{F}^{A}=0, m_{F}^{B} \neq 0$, if $e^{*} C(x, y) e \leq-\frac{1}{4} n\left(\gamma_{F}^{B} m_{F}^{B}\right)^{2}$, then the conclusion holds with $p^{2}(x, y)=n\left(\gamma_{F}^{B} m_{F}^{B}\right)^{2}-\left\|B(x, y)-\widetilde{\beta}(x, y) I_{n}\right\|^{2}$.
Example 3. Let us consider the system (12) with $A=B=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{1}\end{array}\right)$. We suppose that $a_{2}, a_{3}>0$. In this case we shall have: $\widetilde{\alpha}=\widetilde{\beta}=a_{1}, \gamma_{F}^{A}=\gamma_{F}^{B}=\frac{a_{2}+a_{3}}{\sqrt{a_{2} a_{3}}}$,

$$
\begin{array}{r}
m_{F}^{A}=m_{F}^{B}=\sqrt{2 a_{2} a_{3}}, A-\widetilde{\alpha} I_{2}=B-\widetilde{\beta} I_{2}=\left(\begin{array}{cc}
0 & a_{2} \\
a_{3} & 0
\end{array}\right) . \\
e^{*} C(x, y) e \leq-2\left(a_{2}+a_{3}\right)^{2}, \tag{14}\\
e^{*} L e \leq \frac{a_{2}^{2}+a_{3}^{2}}{2}-2\left(a_{2}+a_{3}\right)^{2}<0 .
\end{array}
$$

If (14) holds and $u \in C^{2}\left(\Omega, \mathbb{R}^{2}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{2}\right), u \neq 0$, is a solution of (12), we have:

$$
|u(x, y)| \leq \max \left\{\max _{(x, y) \in \partial \Omega}|u(x, y)|, \frac{2}{3 a_{2}^{2}+8 a_{2} a_{3}+3 a_{3}^{2}} \max _{(x, y) \in \bar{\Omega}}|f(x, y)|\right\},(x, y) \in \bar{\Omega} .
$$

Let us consider now $A_{i j}=a_{i j} I_{n}, a_{i j} \in C(\bar{\Omega})$. System (2) becomes:

$$
\begin{equation*}
L u:=\sum_{i, j=1}^{m} a_{i j}(x) I_{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{m} A_{i}(x) \frac{\partial u}{\partial x_{i}}+A_{0}(x) u=f(x), \tag{15}
\end{equation*}
$$

where $A_{i}, A_{0} \in C\left(\bar{\Omega}, M_{n}(\mathbb{R})\right), f \in C\left(\bar{\Omega}, \mathbb{R}^{n}\right)$.
If $m_{F}^{i} \neq 0$, then we have the following result:
Theorem 7. Suppose (3) holds and:

$$
\begin{equation*}
e^{*} A_{0}(x) e \leq-\frac{1}{4 \delta^{2}} n \sum_{i=1}^{m}\left(\gamma_{F}^{i} m_{F}^{i}\right)^{2}, \forall e \in C^{2}\left(\Omega, \mathbb{R}^{n}\right),\|e\|=1, \forall x \in \Omega . \tag{16}
\end{equation*}
$$

If $u \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{n}\right), u \neq 0$, is a solution of (15), then:
$|u(x)| \leq \max \left\{\max _{x \in \partial \Omega}|u(x)|, \frac{4 \delta^{2}}{n \sum_{i=1}^{m}\left(\gamma_{F}^{i} m_{F}^{i}\right)^{2}-\sum_{i=1}^{m} \mid\left\|A_{i}(x)-\widetilde{\alpha}_{i}(x) I_{n}\right\|^{2}} \max _{x \in \bar{\Omega}}|f(x)|\right\}, x \in \bar{\Omega}$.
Remark 5. In case that $m_{F}^{i}=0$, if there exist $p \neq 0$ such that $e^{*} A_{0}(x) e \leq-p^{2}$, then:

$$
|u(x)| \leq \max \left\{\max _{x \in \mathcal{\partial} \Omega}|u(x)|, \frac{1}{p^{2}} \max _{x \in \bar{\Omega}}|f(x)|\right\}, x \in \bar{\Omega} .
$$

References

[1] C. Chifu-Oros, Minimum value of a matrix norm with applications to maximum principles for second order differential systems, (to appear).
[2] L. M. Kuks, Theorems of the Qualitative Theory of Strong Elliptical Systems of Second Order, (Russian), Usp. Mat. Nauk. SSSR, 17 (1962), 3, 181-184.
[3] C. Miranda, Sul teorema del masimo modulo per una classe di sistemi ellitici di equazioni del secundo ordine e per le equazioni a coefficienti complessi, Instituto Lombardo Rendiconti, 103, IV, 1970, 736-745.
[4] A. S. Muresan, Principii de maxim pentru ecuaţii cu derivate parţiale, Ph. D. Thesis, Cluj-Napoca, 1975.
[5] I. A. Rus, Un principe du maximum pour les solutions d'un system fortement elliptique, Glasnik Matematicki, 4(24)(1969), 75-78.
[6] I. A. Rus, A maximum principles for an elliptic system of partial differential equations, Proceedings of the conference on differential equations and their applications, Iaşi, oct. 1973, Ed. Academiei Române, Bucureşti, 1977, 77-80.
[7] I. A. Rus, Sur les proprietes des normes des solutions d'un system d'equations differentielles de second ordre, Studia Universitatis Babes-Bolyai, Series Mathematica-Physica, Fascicula 1, Cluj-Napoca, 1968, 19-26.
[8] T. Stys, Aprioristics estimations of solutions of certain elliptic system of differential second order equations, Bull. Acad. Pol. Sc., 13(1965), 639-640.

Babeş - Bolyai University, Faculty of Business, Department of Business, $7^{\text {th }}$, Horea Street, RO - 3400, Cluj - Napoca, Romania
E-mail address: cochifu@tbs.ubbcluj.ro

