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WEAKLY SINGULAR VOLTERRA AND FREDHOLM-VOLTERRA
INTEGRAL EQUATIONS
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Dedicated to Professor Gheorghe Micula at his 60th anniversary

Abstract. Some existence and uniqueness theorems are established for
weakly singular Volterra and Fredholm-Volterra integral equations in
C[a, b]. Our method is based on fixed point theorems which are applied to
the iterated operator and we apply the fiber Picard operator theorem to
establish differentiability with respect to parameter. This method can be
applied only for linear equations because otherwise we can’t compute the
iterated equation.

1. Introduction

The integral equation

u(x) = f(x) +

x∫
a

K1(x, s)u(s)ds, (1)

with f ∈ C[a, b] is weakly singular if there exists L1 ∈ C ([a, b]× [a, b]) and α ∈ (0, 1)
such that K1(x, s) = L1(x,s)

|x−s|α ∀ x, s ∈ [a, b] with x 6= s. In this case the kernel function
K1 is called weakly singular. The integral equation

u(x) = f(x) +

x∫
a

K1(x, s)u(s)ds +

b∫
a

K2(x, s)u(s)ds, (2)

with f ∈ C[a, b] is called weakly singular if at least one of the kernel functions K1 and
K2 is weakly singular. In this paper we give an existence and uniqueness theorem for
the equation 1 by using fixed point approach and we obtain the continuous dependence
and differentiability with respect to a parameter. For equation 2 we study two different
cases, in the first case K1 is weakly singular and K2 is continuous and in the second
case both kernels are weakly singular. In both cases we obtain existence, uniqueness,
continuous dependence and differentiability with respect to the parameter. We’ll use
the following theorems
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Theorem 1.1. If (X, d) is a complete metric space and T : X → X is an operator
with

d(Tu, Tv) ≤ L · d(u, v) ∀ u, v ∈ X, where 0 < L < 1,
then

1. T has an unique fixed point u∗.
2. The sequence un+1 = Tun, ∀ n ∈ N is convergent to u∗ for all u0 ∈ X.
3. d(un, u∗) ≤ Ln

1−L · d(u1, u0) ∀ n ∈ N.
Theorem 1.2. (Fiber Picard operator’s) [8] Let (V, d) be a generalized metric space
with d(v1, v2) ∈ Rp

+, and (W,ρ) a complete generalized metric space with ρ(w1, w2) ∈
Rm

+ . Let A : V ×W → V ×W be a continuous operator. If we suppose that:
a) A(v, w) = (B(v), C(v, w)) for all v ∈ V and w ∈ W ;
b) the operator B : V → V is a weakly Picard operator;
c) there exists a matrix Q ∈ Mm(R+) convergent to zero, such that the ope-

rator C(v, ·) : W → W is a Q contraction for all v ∈ V,

then the operator A is a weakly Picard operator. Moreover, if B is a Picard operator,
then the operator A is a Picard operator.
Theorem 1.3. If X is a set and T : X → X is a function such that the equation
Tn(u) = u has an unique solution u∗, than u∗ is the unique solution of the equation
Tu = u

Theorem 1.4. If (X, d) is a generalized complete metric space and T : X → X is
an operator such that T k is a contraction, then the sequence un+1 = Tun ∀ n ∈ N is
convergent to the unique fixed point of T k.

In order to apply these theorems to weakly singular integral equations we
need the following properties of the weakly singular kernels.

Theorem 1.5. If K(x, s) = L(x,s)
|x−s|α with 0 < α < 1 and L ∈ C ([a, b]× [a, b]), then

the operator T : C[a, b] → C[a, b],

(Tu)(x) =

x∫
a

K(x, s)u(s)ds

is well defined (Tu ∈ C[a, b]).
Proof. If a ≤ x < x′ ≤ b and δ1 > 0 we have

|(Tu)(x′)− (Tu)(x)| ≤
x−δ1∫
a

|K(x′, s)−K(x, s)||u(s)|ds+

+

x′−δ1∫
x−δ1

|K(x′, s)||u(s)|ds +

x∫
x−δ1

|K(x, s)||u(s)|ds+

+

x′∫
x′−δ1

|K(x′, s)||u(s)|ds.
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u ∈ C[a, b], implies that there exists M = max
s∈[a,b]

|u(s)|.

K : [x − δ1
2 , b] × [a, x − δ1] → R is continuous so it is uniform continuous and

∀ ε > 0 there exists δ2 > 0 such that
|K(x′, s)−K(x, s)| < ε

2M(b−a) if |x− x′| < δ2 and s ≤ x− δ1.

This implies

|(Tu)(x′)− (Tu)(x)| ≤ ε

2
+ M ·

x′−δ1∫
x−δ1

|K(x′, s)|ds+

+M ·
x∫

x−δ1

|K(x, s)|+ M ·
x′∫

x′−δ1

|K(x′, s)|ds,

if |x− x′| < δ2. On the other hand we have the following inequalities:

x′−δ1∫
x−δ1

|K(x′, s)|ds ≤ P ·
x′−δ1∫

x−δ1

ds

(x′ − s)α
= P ·

(
− (x′ − s)1−α

1− α

∣∣∣x′−δ1

x−δ

)

=
P

1− α

(
(x′ − x + δ1)1−α − δ1−α

1 )
)
≤ P

1− α
· (2(x′ − x))1−α <

ε

6M

where |x′ − x| < δ3, and P = max
x,s∈[a,b]

|L(x, s)|.

x∫
x−δ1

|K(x, s)| ≤ P ·
x∫

x−δ1

ds

(x− s)α
=

P

1− α

(
−(x− s)1−α

∣∣∣x
x−δ1

)
=

=
P

1− α
· δ1−α

1 <
ε

6M
for δ1 ≤ δ4.

x′∫
x′−δ1

|K(x′, s)| ≤ P

1− α
δ1−α
1 <

ε

6M

for δ1 ≤ δ3. From these inequalities we deduce

|(Tu)(x′)− (Tu)(x)| < ε

if |x− x′| < min(δ1, δ2, δ3, δ4), so the operator T is well defined.
Theorem 1.6. If K1 or K2 is weakly singular kernel, then the operator
T : C[a, b] → C[a, b],

(Tu)(x) =

x∫
a

K1(x, s)u(s)ds +

b∫
a

K2(x, s)u(s)ds

is well defined (Tu ∈ C[a, b]).
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Proof. As in theorem 1.1 we can prove that the operator T2 : C[a, b] →
C[a, b],

(T2u)(x) =

b∫
a

K2(x, s)u(s)ds

is well defined if K2 is a weakly singular kernel, so T is well defined because it is the
sum of two well defined operators .
Theorem 1.7. [6] If K1 and K2 are weakly singular kernels and

|K1(x, s)| ≤ P1

|x− s|α1
, |K2(x, s)| ≤ P2

|x− s|α2
,

where P1, P2 ∈ R, 0 ≤ α1 < 1, 0 ≤ α2 < 1, then the function

K3(x, s) =

b∫
a

K1(x, t)K2(t, s)dt

satisfies the following conditions:
1. If α1 + α2 > 1, the function K3(x, s) is a weakly singular kernel and

|K3(x, s)| < P3

|x− s|α1+α2−1
,

where P3 ∈ R.
2. If α1 + α2 = 1, the function K3(x, s) is continuous for x 6= s and

|K3(x, s)| < P3 + P4 ln |x− s|,
where P3, P4 ∈ R.

3. If α1 + α2 < 1, the function K3(x, s) is continuous in D = [a, b]× [a, b].
The proof can be found in [6] at pp. 374. An analogous theorem can be

proved for the Volterra integral operator.
Theorem 1.8. If the functions K1 and K2 are weakly singular kernels and

|K1(x, s)| ≤ P1

(x− s)α1
,

|K2(x, s)| ≤ P2

(x− s)α2
,

for x ≥ s, then the function

K3(x, s) =

x∫
s

K1(x, t)K2(t, s)dt

satisfies the following properties
1. If α1 + α2 > 1, then K3 is a weakly singular kernel and

|K3(x, s)| ≤ P3

(x− s)α1+α2−1
.

2. If α1 + α2 = 1, then K3 is continuous and |K3(x, s)| ≤ P4.
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3. If α1 + α2 < 1, then K3 is continuous and

|K3(x, s)| ≤ P4 · (x− s)1−α1−α2 .

2. The main results

2.1. The Volterra integral equation.

Theorem 2.1. If K(x, s, λ) = L(x,s,λ)
(x−s)α with L ∈ C ([a, b]× [a, b]× [λ1, λ2]) and

0 < α < 1, then the equation

u(x) = f(x) +

x∫
a

K(x, s, λ)u(s)ds (3)

with f ∈ C[a, b] and λ ∈ [λ1, λ2] has a unique solution in C([a, b]) and this solution can
be obtained by successive approximation. This solution depends continuously on λ and
if K is continuously differentiable with respect to λ, the solution is also continuously
differentiable with respect to λ.

Proof. Due to theorem 1.5 the operator

T : C[a, b] → C[a, b], (Tu)(x) = f(x) +

x∫
a

K(x, s, λ)u(s)ds

is well defined. Theorem 1.8 implies that there exists n ∈ N∗ such that the it-
erated kernel K(n) defined by the following relations K(1)(x, s, λ)=K(x, s, λ) and

K(j+1)(x, s, λ) =
x∫
s

K(x, t, λ) ·K(j)(t, s, λ)dt ∀ j ≥ 1 is continuous. But any solution

of the equation 3 satisfies the iterated equation

u(x) = f(x) +
n−1∑
i=1

x∫
a

K(i)(x, s, λ)f(s)ds +

x∫
a

K(n)(x, s, λ)u(s)ds. (4)

We apply theorem 1.1 to the operator T̄ : C[a, b] → C[a, b]

(T̄ u)(x) = f(x) +
n−1∑
i=1

x∫
a

K(i)(x, s, λ)f(s)ds +

x∫
a

K(n)(x, s, λ)u(s)ds. (5)

which has a continuous kernel, so by choosing a Bielecki metric in C[a, b] T̄ is a
contraction. This implies that the equation T̄ u = u has an unique solution u∗ in
C[a, b]. By the other hand from theorem 1.3 we obtain that u∗ is the unique solution
of the equation Tu = u, because T̄ = T (n). From theorem 1.4 we deduce that
the sequence of successive approximation un+1 = Tun is convergent to u∗ for every
u0 ∈ C[a, b]. This implies that equation 3 has an unique continuous solution, and this
can be approximated by successive approximation. By applying the same technique
to the equation

u(x, λ) = f(x) +

x∫
a

K(x, s, λ)u(s, λ)ds (6)
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we obtain that u∗ is the unique solution in C([a, b] × [λ1, λ2]), so the solution is
depending continuously on the parameter λ. To study the differentiability of the
solution we apply theorem 1.2 with the following spaces and operators:

a) V = C([a, b]× [λ1, λ2]) and B = T̄
b) W = C([a, b]× [λ1, λ2]) and

C(v, w)(x, λ) = g(x, λ) +

x∫
a

K(n)(x, s, λ) · w(s, λ)ds +

x∫
a

∂K(n)

∂λ
· v(s, λ)ds

where g(x, λ) =
n−1∑
i=1

x∫
a

∂K(i)(x,s)
∂λ f(s)ds

The operator A = (B,C) satisfies the conditions of theorem 1.2 because in C([a, b]×
[λ1, λ2]) we use a Bielecki metric and K(n) is a continuous function. This implies
the uniform convergence of the sequence vn+1 = V (vn) to the unique solution u∗

of equation 6 and the uniform convergence of the sequence wn+1 = C(vn, wn) to a
function w∗. If we choose v0 ∈ C1[a, b]× [λ1, λ2] and w0 = ∂v0

∂λ due to the operator C

(which was obtained by a formal differentiation of the operator B)we have wn = ∂vn

∂λ
∀ n ∈ N. The Weierstrass’s theorem implies that w∗ is continuous and w∗(x, λ) =
∂u∗(x,λ)

∂λ . So the solution u∗ is continuously differentiable with respect to the parameter
λ.
Remark 2.1. We can use a direct proof (without the iterated operators) if we use the
following inequality:

|Tu(x)− Tv(x)| ≤
x∫

a

max
x,s∈[a,b],λ∈[λ1,λ2]

|L(x, s, λ)|

|x− s|α
· |u(s)− v(s)|ds ≤

≤ L∗||u− v|| ·
x∫

a

eτ(s−a)

(x− s)α
ds ≤

 x∫
a

ds

(x− s)αp

 1
p

·

 x∫
a

eτ(s−a)qds

 1
q

≤

≤
(

(b− a)1−α·p

1− α · p

) 1
p

· eτ(x−a)

(τ · q)
1
q

,

where α · p < 1, 1
p + 1

q = 1, L∗ = max
x,s∈[a,b],λ∈[λ1,λ2]

|L(x, s, λ)| and

||u− v|| = max
x∈[a,b],λ∈[λ1,λ2]

|u(x, λ)− v(x, λ)| · e−τ(x−a).

So we can choose τ such that the operator T be a contraction with the corresponding
Bielecki metric.

2.2. The Fredholm-Volterra integral equation.
Theorem 2.2. For the equation

u(x) = f(x) +

x∫
a

K1(x, s, λ)y(s)ds +

b∫
a

K2(x, s, λ)y(s)ds (7)
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with
L1 = max

x,s∈[a,b],λ∈[λ1,λ2]
|K1(x, s, λ)|

and

L2 =
2 · max

x,s∈[a,b],λ∈[λ1,λ2]
|L(x, s, λ)|

1− α
· (b− a)1−α

where K1, L ∈ C([a, b]× [a, b]× [λ1, λ2]) and K2 is a weakly singular kernel
(K2(x, s, λ) = L(x,s,λ)

|x−s|α , 0 < α < 1) the iterated kernels are

K
(n+1)
1 (x, s, λ) =

x∫
s

K1(x, t, λ)K(n)
1 (t, s, λ)dt +

b∫
a

K2(x, t, λ)K(n)
1 (x, t, λ)dt (8)

and

K
(n+1)
2 (x, s, λ) =

x∫
a

K1(x, t, λ)K(n)
2 (t, s, λ)dt +

b∫
a

K2(x, t, λ)K(n)
2 (x, t, λ)dt (9)

and the resolvent kernels are

R1(x, s, λ) =
∞∑

j=1

K
(j)
1 (x, s, λ), (10)

R2(x, s, λ) =
∞∑

j=1

K
(j)
2 (x, s, λ). (11)

If L1 and L2 satisfies condition a) or b), there exist an unique continuous solution to
the equation 7, this solution depends continuously on λ and if the functions K1 and L
are continuously differentiable with respect to λ, then the solution is also continuously
differentiable with respect to λ. The solution of the equation 7 can be represented in
the form

u(x) = f(x) +

x∫
a

R1(x, s, λ)f(s)ds +

b∫
a

R2(x, s, λ)f(s)ds.

The series (10) and (11) are convergent if L1 and L2 satisfy the condition a) or b)

a) L1
2−L2(b−a) +

(
e

L1(b−a)
2−L2(b−a) − 2

)
L1L2(b− a) < 0;

b) 1
b−a ln 1−L2(b−a)

(b−a)2L1L2
+

(
1−L2(b−a)

(b−a)2 L1L2 − 2
)

(b− a)L1L2 > 0 and

1
b− a

ln
1− L2(b− a)
(b− a)2L1L2

(1− L2(b− a))+

+(b− a)L1L2

(
2− 1− L2(b− a)

(b− a)2L1L2

)
− L1 > 0.

Proof. Due to theorem 1.2 we can apply the same reasoning as in [1] theorem
2.2.
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SZILÁRD ANDRÁS

Remark 2.2. By applying the Fiber Picard operator theorem ([8]) as in [1] we can
prove that the solution is differentiable with respect to the parameter λ

Theorem 2.3. If in the equation 7 both kernels are singular, K1(x, s, λ) = L∗
1(x,s,λ)
|x−s|α1

and K2(x, s, λ) = L∗
2(x,s,λ)
|x−s|α2 with L∗

1, L
∗
2 ∈ C([a, b] × [a, b] × [λ1, λ2]), 0 < α1 < 1,

0 < α2 < 1 and the numbers

L1 = max
x,s∈[a,b],λ∈[λ1,λ2]

|K(n)
1 (x, s, λ)| (12)

and
L2 = max

x,s∈[a,b],λ∈[λ1,λ2]
|K(n)

2 (x, s, λ)| (13)

satisfies condition a) or b) from theorem 2.2 then equation 7 has an unique solution in
C[a, b]×[λ1, λ2]. If in addition the functions L∗

1 and L∗
2 are continuously differentiable

with respect to the parameter λ, the solution is also continuously differentiable with
respect to λ.

Proof. The iterated equation is

u(x) = f(x) +
n−1∑
j=1

x∫
a

K
(j)
1 (x, s, λ) · f(s)ds +

n−1∑
j=1

b∫
a

K
(j)
2 (x, s, λ) · f(s)ds+

+

x∫
a

K
(n)
1 (x, s, λ)u(s)ds +

b∫
a

K
(n)
1 (x, s, λ)u(s)ds

where the iterated kernels are defined by the relations 8 and 9. Due to theorem 1.5
and 1.6 the function

g1(x, λ) = f(x) +
n−1∑
j=1

x∫
a

K
(j)
1 (x, s, λ) · f(s)ds +

n−1∑
j=1

b∫
a

K
(j)
2 (x, s, λ) · f(s)ds

is a continuous function. From theorem 1.7 and 1.8 we deduce that if
max (α1, α2) < n−1

n and max
(

α2
1−α1

, α1
1−α2

)
< n than K

(n)
1 and K

(n)
2 are continuous

kernels so we can apply theorem 1.2 from [1] (because L1 and L2 satisfy a) or b)).
From this theorem we deduce that the equation 7 has an unique solution u∗ in C[a, b]×
[λ1, λ2]. This u∗ is also the unique solution of the equation 7 because of theorem 1.3
and can be approximated by successive approximation due to theorem 1.4. To study
the differentiability of the solution we apply theorem 1.2 again with the following
spaces and operators:

a) V = C([a, b]× [λ1, λ2]) and

(Bu)(x) = g1(x, λ) +

x∫
a

K
(n)
1 (x, s, λ)u(s)ds +

b∫
a

K
(n)
1 (x, s, λ)u(s)ds
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b) W = C([a, b]× [λ1, λ2]) and

C(v, w)(x, λ) =
∂g1(x, λ)

∂λ
+

x∫
a

K
(n)
1 (x, s, λ) · w(s, λ)ds+

+

x∫
a

∂K
(n)
1

∂λ
· v(s, λ)ds +

b∫
a

K
(n)
2 (x, s, λ) · w(s, λ)ds +

b∫
a

∂K
(n)
2

∂λ
· v(s, λ)ds,

where ∂g1(x,λ)
∂λ =

n−1∑
j=1

x∫
a

∂K
(j)
1 (x,s,λ)

∂λ · f(s)ds +
n−1∑
j=1

b∫
a

∂K
(j)
2 (x,s,λ)

∂λ · f(s)ds

The operator A = (B,C) satisfies the conditions of theorem 1.2 because in C([a, b]×
[λ1, λ2]) we use a Bielecki metric and K(n) is a continuous function. This implies the
uniform convergence of the sequence vn+1 = V (vn) to the unique solution u∗ of equa-
tion 7 and the uniform convergence of the sequence wn+1 = C(vn, wn) to a function
w∗. If we choose v0 ∈ C1[a, b]× [λ1, λ2] and w0 = ∂v0

∂λ due to the operator C (which
was obtained by a formal differentiation of the operator B)we have wn = ∂vn

∂λ ∀ n ∈ N.
The Weierstrass’s theorem implies that w∗ is continuous and w∗(x, λ) = ∂u∗(x,λ)

∂λ . So
the solution u∗ is continuously differentiable with respect to the parameter λ.
Remark 2.3. 1. Conditions 12 and 13 can be transferred inductively to the

original kernels, but the conditions obtained are much more technical.
2. By using the same inequalities as in remark 2.1 we can avoid the use of

the iterated kernels to obtain existence and uniqueness.
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[7] Pogorzelski, W., Integral equations and their applications, Pergamon Press, 1966.
[8] Rus, I. A., Fiber Picard operators and applications, Mathematica, Cluj Napoca, 1999.
[9] Srivastava, H. M., Buschman, R. G., Theory and applications of convolution integral

equations, Klemer Academic Publishers, 1992.

Department of Applied Mathematics, Babeş-Bolyai University,
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