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MAXIMAL FIXED POINT STRUCTURES
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Dedicated to Professor Gheorghe Micula at his 60th anniversary

Abstract. Examples, counterexamples and properties of the maximal
fixed point structures are given.

1. Introduction

Let X be a nonempty set and P (X) := {Y ⊆ X | Y 6= ∅}. For A,B ∈ P (X)
we denote
M (A,B) := {f : A → B | F is an operator}, M (A) := M (A,A) .

Definition 1.1. (Rus [39], [40], [41]). A triple (X, S (X) ,M) is a fixed point struc-
ture (briefly FPS) iff
(i) S (X) ⊆ P (X), S (X) 6= ∅;
(ii) M is an operator which attaches to each pair (A,B) , A,B ∈ P (X) , a nonempty
subset of M (A,B) such that, for any Y ∈ P (X), if Z ⊆ Y, Z 6= ∅, f (Z) ⊆ Z, then
f |Z∈ M (Z) , for all f ∈ M (Y ) ;
(iii) every Y ∈ S (X) has the fixed point property (briefly FPP ) with respect to
M (Y ) .

Definition 1.2. ( Rus [43]). The triple (X, S (X) ,M) which satisfies (i) and (iii)
in Definition 1.1 is called weak fixed point structure (briefly WFPS).

Let (X, S (X) ,M) be a FPS and S1 (X) ⊆ P (X) such that S1 (X) ⊆ S (X) .

Definition 1.3. (Rus [45]). The FPS (X, S (X) ,M) is maximal in S1(X) iff we
have
S (X) = {A ∈ S1 (X) | f ∈ M (A) implies that Ff 6= ∅} .

The aim of this paper is to give some examples of maximal FPS and to study
the maximal FPS. Some open problems are formulated. Throughout the paper we
follow terminologies and notations in [45] ( see also [41], [42]).
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2. Examples and counterexamples

Example 2.1. The trivial FPS is maximal in P (X) . In this case X is a nonempty
set, S (X) := {{x} | x ∈ X} and M (Y ) := M (Y ) . We remark that if cardY ≥ 2
there exists an operator f : Y → Y such that Ff = ∅.
Example 2.2. The Tarski FPS isn’t maximal in P (X) . In this case (X,≤) is a
partial ordered set, S (X) :={ Y ∈ P (X) | (Y,≤) is a complete lattice } and M (Y ) :=
{f : Y → Y | f is an increasing operator} . To prove this assertion we consider X :=
R2 which is partial ordered by

(x1, x2) ≤ (y1, y2) ⇔ x1 ≤ y1 and x2 ≤ y2.

We consider Y = {(1, 1) , (1, 5) , (2, 4)} and we remark that (Y,≤) has the FPP with
respect to increasing operators but (Y,≤) isn’t a lattice.
Remark 2.1. For other results see: [7], [30], [30], [34], [46].
Example 2.3. The Tarski FPS, (X, S (X) ,M) is maximal in S1(X), for all ordered
set (X,≤) , where S1 (X) := {Y ∈ P (X) | (Y,≤) is a lattice} .By a theorem of Davies
([14], [34]) it follows that Y ∈ S (X) .

Example 2.4. The Schauder FPS isn’t, in general, maximal in P (X) . In this ex-
ample X is a Banach space, S (X) := Pcp,cv (X) and M (A,B) := C (A,B) . For
Y /∈ Pcp,cv (X) with topological FPP see [4], [18], [24], [35] and [37].

We have
Theorem 2.1. The Schauder FPS is maximal in Pb,cl,cv (X) .

3. FPS of contractions

Let (X, d) be a complete metric space, S (X) := Pcl (X) and M (Y ) :=
{f : Y → Y | f is a contraction} . By definition (X, S (X) ,M) is the FPS of con-
tractions. It is clear that the FPS of contractions is maximal iff

(Y ∈ P (X) , f ∈ M (Y ) ⇒ Ff 6= ∅) ⇒ Y ∈ Pcl (X) .

This problem is studied by M-C. Anisiu and V. Anisiu [6]. The main results are the
following

Theorem 3.1. ([6], [12]) There exists a complete metric space and a nonclosed subset
with FPP with respect to contractions.
Theorem 3.2. ([6]) Let X be a Banach space and Y ∈ P (X) a convex set with
IntY 6= ∅. If each contraction f : Y → Y has a fixed point, then Y is closed.
Remark 3.1. For other results see [13], [22], [26], [28].

4. Some properties of the maximal FPS

Let C be the class of structured sets ( the class of sets, the class of all partial
ordered sets, the class of Banach spaces, the class of Hausdorff topological spaces,...).
Let S be an operator which attaches to each X ∈ C a nonempty set set S (X) ⊆
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P (X) . By M we denote an operator which attaches to each pair (A,B), A ∈ P (X),
B ∈ P (Y ), X, Y ∈ C, a subset M (A,B) ⊆ M (A,B) .

We have
Lemma 4.1. Let X ∈ C and (X, S (X) ,M) be a maximal FPS. Let A ∈ S (X) and
B ∈ P (A) . If there exists a retraction r ∈ M (A,B) of A onto B such that

f ∈ M (B) ⇒ f ◦ r ∈ A

then B ∈ S (X) .

Proof. Let f ∈ M (B) . Then f ◦ r ∈ M (A) . ¿From A ∈ S (X) it follows that
Ff◦r 6= ∅. Let x∗ ∈ Ff◦r. We have f (r (x∗)) = x∗. We remark that x∗ ∈ B and so we
have f (x∗) = x∗. By the maximality of (X, S (X) ,M) it follows that B ∈ S (X) .

Lemma 4.2. Let X, Y ∈ C. Let (X, S (X) ,M) and (Y, S (Y ) ,M) be two FPS. Let
A ∈ S (X) and B ∈ S (Y ). We suppose that:
i) (Y, S (Y ) ,M) is a maximal FPS;
ii) there exists a bijection ϕ ∈ M (A,B) such that ϕ−1 ◦ g ◦ ϕ ∈ M (A), for all
g ∈ M (B) .
Then B ∈ S (Y ) .

Proof. Let f ∈ M (B). Then, from ii), it follows that Fϕ−1◦f◦ϕ 6= ∅. Let x∗ ∈
Fϕ−1◦f◦ϕ. We remark that ϕ (x∗) ∈ Ff . So, by the maximality of (Y, S (Y ) ,M), we
have B ∈ S (Y ).

5. Open problems

The above considerations give rise to the following open problems.

Problem 1 Characterize the partial ordered sets with FPP with respect to increas-
ing operator.

References: K. Baclavski and A. Bjőrner [7], A.C. Davies [14], G. Markowsky [32],
J.D. Mashburn [33], I.A Rus [34], L.E. Ward [46].

Problem 2. Characterize the metric space with the FPP with respect to isometric
operators.

References: K. Goebel and W.A. Kirk [20], W.A. Kirk and B. Sims [28], A.T.-M.
Lau [29].

Problem 3.Characterise the metric space with the FPP with respect to contrac-
tions.

References: R.P. Agarwal, M. Meehan and D.O’Regan [4], M.C. Anisiu and V. Ani-
siu [6], V. Conserva and S. Rizzo [13], T.K. Hu [22], J. Jachymski [26], W.A. Kirk
and B. Sims [28], I.A.Rus [45], H. Cohen [12].

Problem 4. Characterize the topological spaces with FPP with respect to continu-
ous operators.

References: V.N. Akis [5], R.F. Brown [9], E.H. Connel [12], J. Dugundji and A.
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Granas [18], A.A. Fora [19], W. Hans [21], S.Y. Husseini [23], E. de Pascale, G. Trom-
betta and H. Weber [16], I.A. Rus [35], [37].

Problem 5. Characterize the categories ( S. MacLane [31]) with the FPP ( I.A.Rus
[38]).

References: J. Adàmek and V. Koubek [1], J. Adàmek, V. Koubek and J. Reiter-
mann [2], A. Bjōrner [8], J. Isbel and B. Mitchel [25], J. Lambek [30], I.A. Rus [34],
[38] and [43].
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