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Abstract. The aim of the paper is to prove the convergence of a Uzawa
type algorithm for a dual mixed variational formulation of a quasi-static
contact problem with friction. This problem is considered as a saddle point
problem which is approximated with the mixed finite element, where the
stress, displacement and tangential displacement on the contact boundary
will be simultaneously computed.

1. Introduction

The quasi-static model of the contact problems with friction, without the
inertia effects, was proposed by [14] and consists of the formulation obtained through
the approximation with finite differences of the variational inequality. The proof of
the existence and uniqueness is based on the hypothesis that the displacements satisfy
some conditions of regularity and the friction coefficient is small enough. The static
contact problem with friction cannot describe the evolutive state of the contact con-
ditions. For of this reason, the quasi-static formulation, of the contact problem with
friction is preferred, which contains a dynamic formulation of the contact conditions
and the inertial term is no longer used. Through the temporal discretization of the
quasi-static contact problem, the so called incremental problem is obtained, equiva-
lent with a sequence of static contact problems. Therefore, the quasi-static problem is
solved step by step, at each time small deformations and displacements are calculated
and are added at those calculated previously, as a result of a few small modifications
of the applied forces, of the contact zone and of the contact conditions. Although, at
each increment the dependence of the load-way is neglected, this hypothesis takes into
account the way the applied forces change (modify themselves). From a mathematical
point view, the problem obtained at each step is similar with a static problem.

This dual mixed variational formulation problem is descretized by the mixed
finite element method and an Uzawa type algorithm is proposed. The iterative for-
mulation of this algorithm is deduced and its convergence is proved.
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The existence of solutions for the discrete problem by the mixed element
method was obtained by Haslinger [7]. The contact problem has been recently studied
by Andersen [11] and Rocca and Cocou [6] who proved that there exists a solution
if the friction coefficient is small enough, and smooth and the contact functional is
regular.

In this article is assumed that normal component of the stress vector and the
contact zone is known.

2. Classical and variational formulation

Let Ω ⊂ Rd, d = 2 or 3, the polygonal domain occupied by a linear elastic
body, and its boundary is denoted by Γ. Let Γ1,Γ2 and Γc be three open disjoint
parts of Γ such that Γ = Γ1 ∪ Γ2 ∪ Γc, Γ1 ∩ Γc = ∅ and mes (Γ1) > 0. We assume
for the simplicity that Γc is a segment for d = 2 and a polygon for d = 3. We denote

by uuu = (u1, . . . , ud) the displacement field, εεε = (εij(u)) =

(
1
2

(ui,j + uj,i)

)
the strain

tensor and σσσ = (σij(u)) = (aijklεkl(u)) the stress tensor with the usual summation
convention, where i, j, k, l = 1, . . . , d. For the normal and tangential components of
the displacement vector and stress vector, we use the following notation: uN = ui ·ni,
uuuT = uuu−uuuN ·n, σσσN = σσσijuinj , (σσσT )i = σσσijnj−σσσN ·ni, where n = (ni) is the outward
unit normal vector to ∂Ω.

Lets us denote by fff and hhh the density of body forces and traction forces,
respectively. We assume that aijkl ∈ L∞(Ω), l ≤ i, j, k, l ≤ d, with usual condition of
symmetry and elasticity, that is

aijkl = ajikl = aklij , l < i, j, k, l ≤ d

∃ m0 > 0, ∀ ξ = (ξij) ∈ Rd2
, ξij = ξji, l ≤ i, j ≤ d, aijkl ξij ξkl ≥ m0|ξ|2 .

In this conditions, the fourth-order tensor aaa = (aijkl) is invertible a.e. on Ω
and we denote its inverse bbb = (bijkl), and εεεij(uuu)) = (bijklσkl(uuu)), i, j, k, l = 1, . . . , d.

The classical contact problem with dry friction in elasticity is which the nor-
mal stress σN (u) and Γc is assumed known, is follows: Find uuu = uuu(x, t) such that
uuu(0, ·) = uuu0(·) in Ω and all t ∈ [0, T ],

−divσ(u)σ(u)σ(u) = fff, in Ω (2.1)

σσσij(uuu) = aijkl · εkl(uuu), in Ω (2.2)

uuu = 0 on Γ1 (2.3)

σσσ ·nnn = hhh on Γ2 (2.4)

uN ≤ 0, σσσN (u) ≤ 0, uNσσσN (u) = 0 on Γc (2.5)

µF |σσσN (uuu)| = t, t > 0

|σσσT | < t ⇒ u̇T = 0; |σσσT | = t ⇒ ∃ λ ≥ 0, s.t. u̇T = −λσσσT on Γc (2.6)
where uuu0 is denoted the initial displacement of the body.

Condition (2.6) defines a form of Coulomb’s law of friction for elastostatic
problems: µF is the coefficient of friction µF ∈ L∞(Γc), µF ≥ µ0 a.e. on Γc.
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The dual mixed variational formulation of the (2.1) - (2.6) in which stress,
displacement and tangential displacement on contact zone are considerate unknown,
it is shown the saddle-point problem with the form:

Find (σσσ,uuu,λλλ) ∈ St × V × Λ for all t ∈ [0, T ], such that

L(σσσ,vvv,µµµ) ≤ L(σσσ,uuu,λλλ) ≤ L(τττ ,uuu,λλλ) ∀ (τττ ,vvv,µµµ) ∈ S0 × V × Λ, (2.7)

where uuu ∈ W 1,2(0, T ;V ), σσσ ∈ W 1,2(0, T ;S), fff ∈ W 1,2(0, T ; [L2(Ω)]d),
hhh ∈ W 1,2(0, T ; [L2(Γ)]d) with supp(h(t)) ⊂ Γ2 for all t ∈ [0, T ].

L(τ, v, µτ, v, µτ, v, µ) = J0(τττ)− (divτττ , v̇vv)− < ttt, µµµ >Γc
(2.8)

J0(τττ) =
1
2

a∗(τττ , τττ) + (fff, divσσσ + u̇uu) (2.9)

ttt = µF |σσσN (uuu)|, and µµµ = |uuuT | on Γc (2.10)

S0 =
{
τττ |τij , τij,j ∈ L2(Ω), τij = τji, τττ ·nnn = 0 a.e. on Γf

2

}
(2.11)

St =
{
τττ |τij , τij,j ∈ L2(Ω), τij = τji, τττ ·nnn = t a.e. on Γ2

}
(2.12)

S =
{
τττ |τij ∈ L2(Ω), τij = τji, τij,j ∈ L2(Ω)

}
endowed with inner product

(σσσ,τττ)S =
∫

Ω

σij τij dx. (2.13)

Norm ‖ · ‖S is then

‖τττ‖S = (τττ , τττ)1/2
S (2.14)

and a∗(σσσ,τττ) =
∫

Ω

bijkl σkl dx . (2.15)

Γf
2 can be regarded as part of Γ2 where h ≡ 0,

Λ = {µµµ ∈ H
1/2
00 (Γc)|µµµ ≥ 0 on Γf

2} (2.16)

V = {vvv ∈ H1(Ω)|vvv/Γ1 = 0} (2.17)

H
1/2
00 (Γc) = {µµµ ∈ H1/2(Γc)|ρ−1/2µµµ ∈ L2(Γc)} . (2.18)

The norm of H
1/2
00 (Γc) is defined by

00‖µµµ‖1/2,Γc
=
{
‖µµµ‖21/2,Γc

+ ‖d−1/2µµµ‖20,Γc

}1/2

, (2.19)

where d denotes the distance between the point on Γc and the end point of Γc see [4].
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3. The time discretisation and the mixed finite element approximation of
the saddle point problem

Let Ω ⊂ R2 be a bounded and (Th)h a triangulation of Ω. We assume
that each triangulation is compatible with the partition of Γ. i.e. each point where
the boundary condition changes is a node of a set Ωi, where Ω = ∪i∈Jh

Ωi, with
Ωk ∪ Ωl = ∅ for all k, l ∈ Jh, k 6= l.

The finite element approximation to the saddle-point problem (2.7) is as
follow:

Find (σσσh,uuuh,λλλh) ∈ Sh
t × Vh × Λh for all t ∈ [0, T ], such that

L(σσσh, vvvh,µµµh) ≤ L(σσσh,uuuh,λλλh) ≤ L(τττh,uuuh,λλλh), ∀ (τττh, vvvh,µµµh) ∈ Sh
0 × Vh × Λh (3.1)

where Sh
0 = S0 ∩ Sh, Sh

t = Sh, Λh = Mh ∩ Λ and Sh, Vh,Mh are subspaces of finite
elements of S, V and H

1/2
00 (Γc), respectively. Let Sh be RT1, Raviart-Thomas space,

Vh the space of the piecewise constant and Mh piecewise continuous linear subspace
of H

1/2
00 (Γc), is called the mortar space [10], as well.

We assume that the initial displacement field u satisfies the compatibility
conditions, see ([8]).

The discrete Babuška-Brezzi condition should be satisfied for the dual mixed
finite element method. It means to find an interpolation operator πh from SSS to Ωh,
such that:

b(τττ − πhτττ ,vvvh,λλλh) = 0 (3.2)

‖πhτττ‖s ≤ c‖τττ‖s, ∀ τττ ∈ S, (3.3)

that means, for all πhτττ ∈ Sh we have∫
Ω

div(τττ − πhτττ)vvvhdx +
∫

Γc

(τττN − πhτττN )µµµhds = 0, (∀ vvvh ∈ Vh,µµµh ∈ Λh). (3.4)

Let ∫
Ω

div(τττ − πhτττ)vvvhdx = 0, (∀ vvvh ∈ Vh) (3.5)∫
Γc

(τττN − (πhτττh)Nµµµhds = 0, ∀ µµµh ∈ Λh . (3.6)

Because σσσN (uuu) on Γc is regarded as given, applying Green’s formula to equa-
tion (3.5) in the finite element discrete form, is clear that the elements of subspace
Sh satisfies (3.2) and (3.3) and we finally obtain further

‖τττNh‖0,Γc
≤ ‖τττh‖0,Ω ≤ ‖τττh‖S , (∀ τττh ∈ SSSh). (3.7)

The discretization of the saddle-point of the problem (3.1) by introduce a
partition (t0, t1, . . . , tN ) of time interval [0, T ] and consider on incremental formulation
obtained by using the backward finite difference approximation of the time derivative
of u.

If we used uk
h = uh(x, tk), ∆uk

h = uk+1
h − uk

h, ∆tk = tk+1 − tk, u̇h(tk+1) =
∆uk

h/∆t, fk
h = fh(k∆t), hk

h = hh(k∆t), σk
h = σh(uk

h), λk
h = |uk

Th|, for k = 0, 1 . . . , N
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where ∆t =
T

N
.

In this case, we find (σσσk
h,uuuk

h,λλλk
h) ∈ Sh

t × Vh × Λh such that

L(σσσk
h, vvvk

h,µµµk
h) ≤ L(σσσk

h, uk
h, λk

h) ≤ L(τττk
h, uk

h, λk
h), ∀ (τττk

h, vvvk
h,µµµk

h) ∈ Sh
0 × Vh × Λh, (3.8)

k = 0, 1 . . . , N .
In this mode the quasi-static problem is approximated by a sequence of in-

cremental problems (3.8).
Although, every problem (3.2) is a static one, it requires appropriate updating

of the displacements and the loads after each increment.
The existence of the solution is guaranteed by the discrete Babuška-Brezzi condition
should by satisfied for dual mixed element method, see ([4] and [14]).

4. Convergence analysis of the Uzawa algorithm

On the convergence (see [11]) with the finite element discrete problem (3.1)
is following:
Proposition 4.1. If (σσσk

h,uuuk
h,λλλk

h) is the saddle-point of the problem (3.8), then
(i) J0(σσσk

h,uuuk
h)− (divσσσk

h,uuuk
h)− < µF

∣∣σσσk
N

∣∣ , λλλk
h >Γc≤

≤ J0(τττk
h,uuuk

h)− (divτττk
h,uuuk

h)− < µF

∣∣τττk
N

∣∣ , λλλk
h >Γc

, (∀ τττk
h ∈ Sh

0 ),

(ii) < µF

∣∣σσσk
N

∣∣ , µµµk
h − λλλk

h >Γc
+(divσσσk

h + fffk, vvvk
h − uuuk

h) ≤ 0,

(∀ µµµk
h ∈ Λh, vvvk

h ∈ Vh)
where λλλk

h = |vvvk
Th|,µµµh = |uuuk

Th| on Γc, k = 0, 1, . . . , N .
The proof can be deduced directly from the two inequalities showed at (3.8).

Proposition 4.2. The variational problem

(divσσσk
h + fffk, vvvk

h − uuuk
h)+ < µF

∣∣σσσk
N

∣∣ ,µµµk
h − λλλk

h >Γc
≤ 0 (∀ µµµk

h ∈ Λh, vvvk
h ∈ Vh) (4.1)

is equivalent to
divσσσk

h + fffk
h = 0, λλλk

h = PΛ(ρsssk
h + λλλk

h) (4.2)
where PΛ is the projection operator from L2(Γc) to Λh is the convex subset of
H1/2(Γc), ρ > 0, sssk

h = µF

∣∣σσσk
N

∣∣ , k = 0, 1, . . . , N .

Proof. The inequation (4.1) is equivalent to

(divσσσk
h + fffk,uuuk

h − vvvk
h) + sssk

h,λλλk
h −µµµk

h >Γc
≥ 0 (∀ µµµk

h ∈ Λh, vvvk
h ∈ Vh). (4.3)

Multiplying the inequation (4.3) by ρ and adding (uuuk
h − vvvk

h,uuuk
h) to the two sides of

(4.3), we have

(uuuk
h − vvvk

h, ρ(divσσσk
h + fffk) + uuuk

h)+ < λλλk
h −µµµk

h, ρsssk
h + λλλk

h >Γc
≥

≥ (uuuk
h − vvvk

h,uuuk
h)+ < λλλk

h −µµµk
h,λλλk

h >Γc . (4.4)

But PΛ is a projector operator,

(uuuk
h − vvvk

h, ρ(divσσσk
h + fffk

h) + uuuk
h) + (λλλk

h −µµµk
h, PΛ(ρsssk

h + λk
hλk
hλk
h))0,Γc

≥

≥ (uuuk
h − vvvk

h,uuuk
h)+ < λλλk

h −µµµk
h,λλλk

h >Γc
.
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Hence

(uuuk
h − vvvk

h, ρ(divσσσk
h + fffk

h)) + (λλλk
h −µµµk

h, PΛ(ρsssk
h + λλλk

h)− λλλk
h)0,Γc

≥ 0 . (4.5)

Because Vh and Λh are convex sets, we can put (0 < α < 1):

vvvk
h = (1− α)uuuk

h + α(ρ(divσσσk
h + fffk

h) + uuuk
h)

µµµk
h = (1− α)λλλk

h + αPΛ(ρsssk
h + λλλk

h)

}
. (4.6)

Substituting (4.6) in (4.5) yields

α(−ρ(divσσσk
h +fffk

h), ρ(divσσσk
h +fffk

h))+α(λλλk
h−PΛ(ρsssk

h +λλλk
h), PΛ(ρsssk

h +λλλk
h)−λλλk

h)0,Γc
≥ 0 ,

that is equivalent with

α‖ρ(divσσσk
h + fffk

h)‖20,Ω + α‖λλλk
h − PΛ(ρsssk

h + λλλk
h)‖20,Γc

≤ 0 (0 < α < 1, ρ > 0) ,

so we obtain

divσσσk
h + fffk

h = 0 and λλλk
h = PΛ(ρsssk

h + λλλk
h), ρ > 0, k = 0, 1, . . . , N.

From this results we can define the following Uzawa algorithm type:
a) Given uuunk

h ∈ Vh,λλλnk
h ∈ Λh, we can define σσσnk

h ∈ Sh
t such that

J0(σσσnk
h )− (divσσσnk

h ,uuunk
h )− < sssnk

h ,λλλnk
h >Γc

≤

≤ J0(τττnk
h )− (divτττnk

h ,uuunk
h )+ < tttnk

h ,λλλnk
h >Γc

, ∀ τττnk
h ∈ Sh

0 ; (4.7)

b) Find uuu
(n+1)k
h and λλλ

(n+1)k
h =

∣∣∣vvv(n+1)k
Th

∣∣∣ by using the following iterative
method:

uuu
(n+1)k
h = uuunk

h + ρn(divσσσnk
h + fffk) (4.8)

λλλ(n+1)k
n = PΛ(ρρρ nsssnk

h + λλλnk
h ), (4.9)

when ρn > 0 is chosen properly, k = 0, 1, . . . , N .

We define the following bounded linear operator: gτ : Sh → V × L2(Γc) by

gτ (vvv,µµµ) = (divτττ ,ννν)+ < sss,µµµ >Γc
, s = µF |σσσN (vvv)|, µµµ = |vvvT | .

Proposition 4.3. The operator gτ : Sh → V × L2(Γc) is Lipschitz continuous, i.e.
there exists a constant c > 0, such that

‖gτ (τττ1)− gτ (τττ2)‖V×L2(Γc
≤ c‖τττ1 − τττ2‖s, ∀ τττ1, τττ2 ∈ Sh,

where ‖ · ‖V×L2(Γc) denotes the norm of product space V × L2(Γc).

Proof is obtained from definition of gr and from (3.7).

Theorem 4.4. There exists the constant α0 and α1, with 0 < α0 ≤ ρn ≤ α1, such
that, the Uzawa type algorithm a)-b), is convergent in sense that σσσnk

h → σσσk
h strongly

in S.
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Proof. We denote rrrnk
1 = uuunk

h −uuuk
h, rrrnk

2 = λλλnk
h −λλλk

h, and from (4.7)-(4.9) we can deduce:∥∥rrr(n+1)k
1

∥∥2

0,Ω
+
∥∥rrr(n+1)k

2

∥∥2

0,Γc
=
∥∥uuu(n+1)k

h − uuuk
h

∥∥2

0,Ω
+
∥∥λλλ(n+1)k

h − λλλk
h

∥∥2

0,Γc
=

=
∥∥uuunk

h + ρn(divσσσnk
h + fffk)− uuunk

h − ρn(divσσσnk
h + fffk)

∥∥2

0,Ω
+

+
∥∥PΛ(ρnsssnk

h + λλλnk
h )− PΛ(ρnsssnk

h + λλλnk
h

∥∥2

0,Γc
≤

≤
∥∥rrrnk

1 + ρndiv (σσσnk
h − σσσk

h)
∥∥2

0,Ω
+
∥∥ρn(sssnk

h − sssk
h) + (λλλnk

h − λλλk
h)
∥∥2

0,Γc
=

=
∥∥rrrnk

1

∥∥2

0,Ω
+ 2ρn(rrrnk

1 ,div(σσσnk
h − σσσk

h)) + ρ2
n

∥∥div(σσσnk
h − σσσk

h)
∥∥2

0,Ω
+

+
∥∥rrrnk

2

∥∥2

0,Γc
+ 2ρn(rrrnk

2 , sssnk
h − sssk

h)0,Γc
+ ρρρ2

n

∥∥sssnk
h − sssk

h

∥∥2

0,Ω
=

=
∥∥rrrnk

1

∥∥2

0,Ω
+
∥∥rrrnk

2

∥∥2

0,Γc
+ 2ρn(rrrnk

1 , div(σσσnk
h − σσσk

h)) + (rrrnk
2 , (sssnk

h − sssk
h))0,Γc

+

+ ρ2
n

∥∥div(σσσnk
h − σσσk

h)
∥∥2

0,Ω
+
∥∥sssnk

h − sssk
h

∥∥2

0,Γc
. (4.10)

With the Proposition 4.3 and (4.10) can be regarded as positive algebraic
equations with degree two in ρ, we get

a(σσσnk
h − σσσk

h,σσσnk
h − σσσk

h) + (rrrnk
1 ,div(sssnk

h − sssk
h))+ < rrrnk

2 , sssnk
h − sssk

h >Γc
≤ 0 ,

where a is a linear symmetric form a : S × S → R, which with (4.10) implying:∥∥r(n+1)k
1

∥∥2

0,Ω
+
∥∥rrr(n+1)k

2

∥∥2

0,Γc
≤
∥∥rrrnk

1

∥∥2

0,Ω
+
∥∥rrrnk

2

∥∥2

0,Γc
−

−2ρna(σσσnk
h − σσσh,σσσnk

h − σk
hσk
hσk
h) + 2ρ2

n

∥∥σσσnk
h − σσσk

h

∥∥2

S
≤

≤
∥∥rrrnk

1

∥∥2

0,Ω
+
∥∥rrrnk

2

∥∥2

0,Γc
− (2ρn − ρ2

n)
∥∥σσσnk

h − σσσk
h

∥∥2

S
.

For this inequation, we suppose 2ρn − 2ρ2
n ≥ β > 0, and we choose α0 =

1−
√

1− 2β

2
, α1 =

1 +
√

1− 2β

2
such that for ρn ∈ [α0, α1], then we have:∥∥rrr(n+1)k

1

∥∥2

0,Ω
+
∥∥rrr(n+1)k

2

∥∥2

0,Γc
+ β

∥∥σσσnk
h − σσσk

h

∥∥2

S
≤
∥∥rrrnk

1

∥∥2

0,Ω
+
∥∥rrrnk

2

∥∥2

0,Γc
(4.11)

From (4.11) results that the sequence
(∥∥rrrnk

1

∥∥2

0,Ω
+
∥∥rrrnk

2

∥∥2

0,Γc

)
n

is decreasing

and has a finite limit, so that β
∥∥σσσnk

h − σσσk
h

∥∥2

S
→ 0 for n → ∞, and Theorem 4.4 is

proved.

The solution σσσk
h of (3.8) is a fixed point of function Mh : Sh → Sh, so that

σσσk
h is the limit of a sequence (σσσnk

h )n, defined by σσσnk
h = Mhσσσ

(n−1)k
h , (see [13]).

Theorem 4.5. In the conditions of Theorem 4.4, if α0 < ρn < α1 is true (α1 are
chosen according to Theorem 4.4, then for the sequences

{
uuunk

h

}
n
,
{
λλλnk

h

}
n

defined by
(4.8)− (4.9) we have:

a) lim
n→∞

∥∥uuu(n+1)k
h − uuuk

h

∥∥
0,Ω

= 0, lim
n→∞

∥∥λλλ(n+1)k
h − λλλk

h

∥∥
0,Γc

= 0;

b)
{
uuunk

h ,λλλnk
h

}
n
→ {uh, λh} weakly in Vh × Λh where

{
uuuk

h,λλλk
h

}
is such that

σσσk
h,uuuk

h,λλλk
h is a saddle-point of L(τττk

h, vvvk
h,µµµk

h) on Sh
t × Vh × Λh.
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The proof is similar to that of Theorem 4.4, see [3].

5. Conclusions

We have analyzed, with Uzawa type algorithm of dual mixed variational
formulation of the reduced version of a contact problem with friction in which it is
assumed that the normal contact component of stress vector is known. For a more
general contact problem, the existence solution is proved, but in very special cases.
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