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Abstract. A collocation method based on optimal nodal splines is pre-
sented for the numerical solution of linear Volterra integral equations of
the second kind with weakly singular kernel. Since the considered spline
operator is a bounded projector we can prove that, for sequences of locally
uniform meshes, the approximate solution error converges to zero at ex-
actly the same optimal rate as the spline approximation error. We consider
in particular sequences of graded meshes, for which the local uniformity is
proved. Finally, we give an upper bound for the condition number of the
collocation system and we present some numerical examples.

1. Introduction

The Volterra integral equation of the second kind

y(x) = f(x) +
∫ x

0

k(x, s)y(s)ds, x ∈ I ≡ [0, X] (1)

with weakly singular kernel k provides mathematical model describing a wide variety
of applicative problems. Particularly interesting kernels are the convolution ones, of
the form k(x−s), where k(t) ∈ C(O,X]∩L1(O,X), but k(t) may become unbounded
as t → 0. Examples of convolution kernels are

k(t) = λ|t|−α , 0 < α < 1 (2)
k(t) = λ log |t| , (3)

where λ ∈ R.
If f ∈ C(I), then (1) has a unique solution y ∈ C(I). As f becomes smoother,

y also becomes smoother, but only for x > 0. In general there will be no increase in
smoothness of the solution at x = 0. At the same time, very special choices of f may
force smoother behaviour at the origin [13].

In the recent literature, some collocation methods, based on piecewise poly-
nomials for solving (1) with the above kernels, have been studied (cfr. [2,12] and
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references therein). In order to find an approximate solution sufficiently smooth in
(0, X], one may use polynomial splines of order m, belonging to Cν(I), 0 ≤ ν ≤ m−2.

In this context we propose a new product collocation method, for numerically
solving (1), based on optimal nodal splines of order m > 2 . We generate a sequence
of spline approximations {yn} for the solution of (1) and we analyze its convergence
to y. Since the constructed approximation operator is a bounded projection operator,
it will be proved that ||y−yn|| converges to zero at exactly the same rate as the norm
of nodal spline approximation error for sequences of locally uniform (l.u.) meshes.

In order to reflect the possible singular behaviour of the solution near to the
initial point, we will resort to a sequence of graded meshes. Indeed in this context we
will prove also that the above sequence is l.u..

The paper is organized as follows. In Section 2 we give some preliminaries
relative to the nodal spline space of our interest, the construction and convergence
properties of the approximating operator. In Section 3 we give our spline collocation
method for the problem (1). Section 4 is devoted to the error analysis and in Section
5 we study the condition number for the collocation method. Finally, in Section 6
we present some numerical results; in one case, in particular, we will show the better
performance of the sequence of graded partitions with respect to the uniform one,
when the solution has the first derivative singular at x = 0.

2. On optimal nodal splines

We briefly review the definition and the main properties of the optimal nodal
splines of interest in this context [5-8].

Let I = [0, X] be a given finite interval of the real line R , for a fixed integer
m ≥ 3 and n ≥ m− 1, we define a partition Πn of I by

Πn : 0 = τ0 < τ1 < ... < τn = X ,

generally called “primary partition”. We insert m − 2 distinct points throughout
(τν , τν+1), ν = 0, ..., n− 1 obtaining a new partition of I

Xn : 0 = x0 < x1, < ... < x(m−1)n = X,

where x(m−1)i = τi, i = 0, ..., n.
Let

Rn = max
0≤k,j≤n−1
|k−j|=1

τk+1 − τk

τj+1 − τj
, (4)

we say that the sequence of primary partitions {Πn;n = m − 1,m, ...} is l.u. if, for
all n, there exists a constant A ≥ 1 such that Rn ≤ A, i.e.

1
A
≤ τk+1 − τk

τj+1 − τj
≤ A , k, j = 0, 1, ..., n− 1 and |k − j| = 1 . (5)

Since the convergence results of the nodal splines we shall consider are based
on the local uniformity property of the primary partitions sequence and one of our
objectives is the use of graded meshes, in the following proposition we shall prove
that a sequence of primary graded partitions is l.u.
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Proposition 1. Let [0, X] be a finite interval. The sequence of partitions {Πn},
obtained by using graded meshes [3] of the form

τi =
(

i

n

)r

X , 0 ≤ i ≤ n , (6)

with grading exponent r ∈ R assumed ≥ 1, is l.u., i.e. it satisfies (5) with A = 2r−1.
Proof. For r = 1, the partition is uniform and (5) is satisfied with A = 1.

Consider now r > 1 and k = j + 1. We can write

f(j) =
τj+2 − τj+1

τj+1 − τj
=

(
1 + 1

j+1

)r

− 1

1−
(
1− 1

j+1

)r , j = 0, 1, ..., n− 2

and f(0) = 2r − 1.

Consider now the function f(x) = (1+ 1
x+1 )

r−1

1−(1− 1
x+1 )

r , x ∈ R+. Then f(j) =

f(x), x ∈ N . One can verify that limx→∞ f(x) = 1 and f ′(x) < 0 for all x.
Then

1 ≤ f(j) ≤ 2r − 1 . (7)
If k = j − 1, for j = 1, 2, ..., n− 1 we have

τj − τj−1

τj+1 − τj
=

1
(j+1)r−jr

jr−(j−1)r

=
1

f(j − 1)

and using (7), the thesis follows.

Now, after introducing two integers [5]

i0 =


1
2 (m + 1) m odd

1
2m + 1 m even

and i1 = (m + 1)− i0

and two integer functions

pν =

 0 ν = 0, 1, ..., i1 − 2
ν − i1 + 1 ν = i1 − 1, ..., n− i0
n− (m− 1) ν = n− i0 + 1, ..., n− 1

qν =

 m− 1 ν = 0, 1, ..., i1 − 2
ν + i0 ν = i1 − 1, ..., n− i0
n ν = n− i0 + 1, ..., n− 1

consider the set {wi(x); i = 0, 1, ..., n} of functions defined as follows [6,7]

wi(x) =


li(x) x ∈ [τ0, τi1−1], i ≤ m− 1
si(x) x ∈ (τi1−1, τn−i0+1), n ≥ m

li(x) x ∈ [τn−i0+1, τn], i ≥ n− (m− 1)
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where

li(x) =
m−1∏
k=0
k 6=i

x− τk

τi − τk
(8)

li(x) =
m−1∏
k=0

k 6=n−i

x− τn−k

τi − τn−k
(9)

si(x) =
m−2∑
r=0

j1∑
j=j0

αi,r,jB(m−1)(i+j)+r(x) (10)

with j0 = max{−i0, i1−2−i}, j1 = min{−i0+m−1, n−i0−i}. The coefficients αi,r,j

are given in [5] and the B-splines sequence is constructed from the set of the normalized
B-splines defined in [14] for i = (m−1)(i1−2), (m−1)(i1−2)+1, ..., (m−1)(n−i0+1).
Then, the following locality property holds [6]

si(x) = 0 , x 6∈ [τi−i0 , τi+i1 ]. (11)

Each wi(x) is nodal with respect to Πn, in the sense that

wi(τj) = δi,j , i, j = 0, 1, ..., n . (12)

Therefore, being det[wi(τj)] 6= 0, the functions wi(x), i = 0, 1, ..., n , are linearly
independent. Let SΠn

= span{wi(x); i = 0, 1, ..., n}, it is proved in [7] that, for all
s ∈ SΠn

, one has s ∈ Cm−2(I).
For all g ∈ B(I), where B(I) is the set of real-valued functions on I, we

consider the spline operator Wn : B(I) → SΠn , so defined

Wng =
n∑

i=0

g(τi)wi(x) , x ∈ I .

By (12), for 0 ≤ ν < n we can write:

Wng =
qν∑

i=pν

g(τi)wi(x), x ∈ [τν , τν+1] . (13)

It is proved in [6,7] that Wnp = p, for all p ∈ Pm , where Pm denotes the set of
polynomials of order m (degree ≤ m− 1), and Wng(τi) = g(τi), for i = 0, 1, ..., n, i.e.
Wn is an interpolatory operator.

Using the results in [6,7,8] we deduce that, for l.u. {Πn}, Wn is a bounded
projection operator in SΠn . In fact, it is easy to show that

Wns = s , for all s ∈ SΠn

and,if we denote:

||Wn|| = sup{||Wnh|| : h ∈ C(I), ||h|| < 1},
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with ||h|| = max
x∈I

|h(x)| , considering that

||Wn|| ≤ (m + 1)

[
m−1∑
λ=1

(Rn)λ

]m−1

,

where Rn is defined in (4), from (5) we obtain ||Wn|| < ∞ .
Finally, for all g ∈ Cν(I), 0 ≤ ν < m, assuming that {Πn} is l.u., there

results

||g −Wng|| = O(Hν
nω(g(ν);Hn; I)), (14)

where Hn = max
1≤i≤n

(τi−τi−1) and, for all g ∈ C(I), ω(g; δ; I) = max
x,x+h∈I
0<h≤δ

|g(x+h)−g(x)|.

3. Spline collocation method

Consider now the linear integral equation (1) and a sequence of nodal spline
spaces {SΠn

;n = m − 1,m, ...} spanned by {wi(x); i = 0, ..., n} and based on a se-
quence of l.u. primary partitions {Πn}.

For some fixed n we consider a spline yn ∈ SΠn written in the form

yn(x) =
n∑

j=0

αjwj(x), αj ∈ R . (15)

Substituting (16) in (1) we obtain

yn(x)−
∫ x

0

k(x, s)yn(s)ds + rn(x) = f(x) ,

where rn(x) is the residual term obtained approximating y by yn in (1).
The values αj in (16), with j = 0, 1, ..., n , are choosen by requiring that

rn(τj) = 0, j = 0, 1, ..., n . (16)

This leads to determine α0, α1, ..., αn as the solution of a linear system that,
using (13), can be written in the form:

αj [1− µj(τj)]−
n∑

i=0
i6=j

µi(τj)αi = f(τj), j = 0, 1, ..., n , (17)

where

µi(τj) =
∫ τj

0

k(τj , s)wi(s)ds . (18)

By (8)-(12) and (14) we can explicitly write each weight of the set {µi(τj);
i, j = 0, 1, ..., n} as follows.
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For i = 0, 1, ...,m− 1:

µi(τj) =



0 j = 0∫ τj

τ0

k(τj , s)li(s)ds 0 < j ≤ i1 − 1

∫ τi1−1

τ0

k(τj , s)li(s)ds +
∫ τj

τi1−1

k(τj , s)si(s)ds ,

i1 − 1 < j ≤ i + i1∫ τi1−1

τ0

k(τj , s)li(s)ds +
∫ τi1+i

τi1−1

k(τj , s)si(s)ds , i + i1 < j ≤ n .

For i = m, ..., n−m:

µi(τj) =



0 0 ≤ j ≤ i− i0∫ τj

τi−i0

k(τj , s)si(s)ds i− i0 < j ≤ i + i1

∫ τi+i1

τi−i0

k(τj , s)si(s)ds i + i1 < j ≤ n .

For i = n−m + 1, ..., n:

µi(τj) =



0 0 ≤ j ≤ i− i0∫ τj

τi−i0

k(τj , s)si(s)ds i− i0 < j ≤ n−m + i1

∫ τn−m+i1

τi−i0

k(τj , s)si(s)ds +
∫ τj

τn−m+i1

k(τj , s)li(s)ds,

n−m + i1 < j ≤ n .

We remark that writing the system (17) in the form Aα = f , where A =
{aji}n

j,i=0 is the coefficient matrix, α = [α0...αn]T , f = [f(τ0)...f(τn)]T , the entries of
A are as follows:

ajj =
{

1 j = 0
1− µj(τj) j = 1, ..., n

(19)

and for j 6= i :
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aji =


−µi(τj) i = 0, ...,m− 1; j = 1, ..., n

i = m, ..., n; j = i− i0 + 1, ..., n

0 i = 1, ...,m− 1; j = 0
i = m, ..., n; j = 0, ..., i− i0 .

(20)

The algorithm for the numerical evaluation of {µi(τj)} is based on the pro-
cedure given in [4] and on the knowledge of integrals of the type∫ xr+1

xr

k(τj , s)sνds , ν = 0, 1, ...,m− 1 . (21)

For some kernels, as those ones given in (2) and (3), the integrals (22) can
be easily evaluated in a closed form [10].

Once we have the solution α of the system (18), by (16) we can obtain the
approximation yn(x) of the solution y(x) of (1).

4. Error analysis

In order to carry out the error analysis for the proposed method, we write
the integral equation (1) in the operator form

(I − K̃)y = f , (22)

where

K̃y =
∫

I

k̃(x, s)y(s)ds, x ∈ I (23)

and

k̃(x, s) =
{

k(x, s) , 0 ≤ s ≤ x
0, s > x

(24)

We remark that, for the kernels k(x, s) considered in Section 1, k̃(x, s) satisfies
the following properties:

(i) k̃(x, s) is Riemann− integrable as a function of s , for all x ∈ I ,

(ii) lim
x→x′

∫
I
|k̃(x′, s)− k̃(x, s)|ds = 0, for x′, x ∈ I,

(ii) max
x∈I

∫
I
|k̃(x, s)|ds < ∞ .

Therefore, we conclude that the operator K̃ is a bounded compact operator
on C(I) .

In Section 2 it has been remarked that, considering a sequence of l.u. pri-
mary partitions {Πn}, the spline operator Wn is a bounded interpolating projection
operator, then the condition (17) can be rewritten as

Wnrn = 0 or, equivalently,

(I −WnK̃)yn = Wnf . (25)
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Now, we will prove that the equation (26) has a unique solution yn. Then we
will study the convergence of yn to y and we will give an upper bound for ||y − yn||.

In order to get the above results, we prove the following lemma.
Lemma 1. Given a sequence of l.u. partitions {Πn}, for the sequence of projections
{Wn : C(I) → SΠn

}, there results

||K̃ −WnK̃|| → 0 as n →∞ (26)

Proof. Being K̃ : C(I) → C(I) a compact operator and since (15) with ν = 0 holds,
we obtain the convergence result (27).

Theorem 1. Let {Πn} be a sequence of l.u. partitions. Consider the bounded pro-
jection operator Wn from C(I) to SΠn

.
For all n sufficiently large, say n ≥ N , the operator (I −WnK̃)−1 from C(I)

to C(I) exists. Moreover it is uniformly bounded, i.e.:

sup
n≥N

||(I −WnK̃)−1|| ≤ M < ∞ (27)

and
||y − yn|| ≤ ||(I −WnK̃)−1|| ||y −Wny|| . (28)

This leads to ||y − yn|| converging to zero exactly with the same rate of
||y −Wny||.

Proof. Adapting properly the results in [1], we write:

I −WnK̃ = (I − K̃)[I − (I − K̃)−1(WnK̃ − K̃)] .

Using Lemma 1, we can find an integer N such that

εN = sup
n≥N

||K̃ −WnK̃|| < 1

||(I − K̃)−1||
.

Then, for n ≥ N , the inverse of [I − (I − K̃)−1(WnK̃ − K̃)] exists and exploiting the
geometric series theorem, there results

||[I − (I − K̃)−1(WnK̃ − K̃)]−1|| ≤ 1

1− εN ||(I − K̃)−1||
.

Therefore:

||(I −WnK̃)−1|| ≤ ||(I − K̃)−1||
1− εN ||(I − K̃)−1||

≡ M < ∞ . (29)

In order to show (29) we multiply (23) by Wn and then rearrange to obtain

(I −WnK̃)y = Wnf + (I −Wn)y (30)

If we subtract (26) from (31) we obtain

y − yn = (I −WnK̃)−1(y −Wny) ,

and using (30) the thesis follows.

78



A NODAL SPLINE COLLOCATION METHOD

5. Condition number of the collocation method

We can also obtain an upper bound for the condition number of the linear
system (18), by adapting some general results in [1].

For a given matrix B ∈ Rd×d we will use the row norm so defined:

||B|| = max
0≤j≤(d−1)

d−1∑
i=0

|Bj,i| .

If we denote by Γn = [wi(τj)]ni,j=0, using (13), there results Γn = I. Thus we
can write

||A−1|| ≤ ||Wn|| ||Γ−1
n || ||(I −WnK̃)−1|| = ||Wn|| ||(I −WnK̃)−1|| .

From (20), (21) we obtain:
n∑

i=0

|aj,i| ≤
n∑

i=0

|µi(τj)|+ 1 .

Therefore, setting ||K̃|| = max0≤t≤X

∫ X

0
|k̃(t, s)|ds, there results:

||A|| ≤ max
0≤j≤n

n∑
i=0

∫ τj

0

|k(τj , s)wi(s)|ds + 1 ≤ ||Wn|| ||K̃||+ 1

and then
cond(A) ≤ ||Wn|| ||(I −WnK̃)−1|| (||Wn|| ||K̃||+ 1) .

6. Numerical examples

In order to test the proposed method, we consider equations of the type (1)
with

k(x, s) = λ(x− s)−
1
2 , x ∈ [0, 1], λ ∈ R

In particular, we shall present some numerical results in the following cases:

λ = −1
4
, f(x) =

1√
1 + x

+
π

8
− 1

4
sin−1 1− x

1 + x
, (31)

for which the exact solution is 1√
1+x

and

λ = −1 , f(x) =
√

x +
1
2
πx , (32)

for which the exact solution is y(x) =
√

x.
Referring to the equation defined by (32) we use our collocation method,

based on cubic nodal splines (m = 4) with uniform primary partition Πn , for increas-
ing values of n. We report in Table 1 the corresponding absolute errors |y(x)− yn(x)|
evaluated at the coinciding collocation points. In the last row of the table we also
present the collocation matrix condition numbers.
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Table 1
|y(x)− yn(x)| for the equation (32), m = 4

x n = 10 n = 20 n = 40
.1 0.10E-5 0.37E-7 0.15E-8
.2 0.55E-6 0.24E-7 0.94E-9
.3 0.39E-6 0.18E-7 0.12E-8
.4 0.30E-6 0.14E-7 0.47E-9
.5 0.24E-6 0.12E-7 0.76E-9
.6 0.21E-6 0.10E-7 0.11E-8
.7 0.18E-6 0.93E-8 0.11E-8
.8 0.15E-6 0.78E-8 0.57E-9
.9 0.58E-7 0.10E-7 0.37E-8
1.0 0.21E-6 0.80E-8 0.95E-9

condition number 1.35 1.35 1.34

Now we consider the equation defined by (33), whose exact solution y(x) =√
x has unbounded derivatives at x = 0. We use our collocation method and we

remark that the knowledge of the behaviour of the solution suggests the use of a
sequence of graded primary meshes of the form (6). Indeed we have proved in Section
2 that such a sequence of partitions Πn is l.u., ensuring that the hypotheses of Theorem
1 are satisfied.

In Table 2, for increasing values on n, we compare absolute errors |y(x) −
yn(x)|, obtained using quadratic nodal splines and uniform partitions, with those ones
resulting with the same splines and graded meshes of the form (6), with r = 2. As it
was expected, the choice of graded primary partitions allows to obtain more accurate
results in particular in a neighbouring of x = 0. In the last row of Table 2 we carry
the condition number of collocation matrix.

Table 2
|y(x)− yn(x)| for the equation (33), m = 3

x n = 10 n = 20 n = 40
r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

0.01 0.58E-1 0.17E-2 0.43E-1 0.28E-3 0.24E-1 0.30E-4
0.51 0.99E-3 0.23E-4 0.33E-3 0.94E-5 0.11E-3 0.22E-5
1. 0.42E-3 0.12E-3 0.14E-3 0.12E-4 0.49E-4 0.24E-5

condition number 2.46 2.33 2.44 2.28 2.43 2.26

7. Conclusions

In this paper we have considered the numerical solution of linear Volterra
integral equations of the second kind with weakly singular kernel of the form (2) and
(3). In order to obtain a sufficiently smooth approximate solution in (0, X], here we
have proposed and analyzed a collocation method based on optimal nodal splines.
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We remark that the above method could also be applied to obtain the starting
values in [0, T ], with T < X, for another one based on piecewise polynomials on [T,X].
Such scheme has been used in [9], with a method based on quasi interpolatory splines
defined in [11].

Finally, the generalization of the obtained results to the nonlinear equations
would be interesting and its systematic study is under investigation.
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