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A CHARACTERIZATION OF π-CLOSED SCHUNCK CLASSES

RODICA COVACI

Dedicated to Professor Gheorghe Micula at his 60th anniversary

Abstract. A characterization of π-closed Schunck classes, followed by
some consequences and applications in the formation theory of finite π-
solvable groups are given.

1. Preliminaries

All groups considered in the paper are finite. Let π be a set of primes, π′ the
complement to π in the set of all primes and Oπ′(G) the largest normal π′-subgroup
of a group G.

We first give some useful definitions.
Definition 1.1. ([9], [10], [12]) a) A class X of groups is a homomorph if

X is epimorphically closed, i.e. if G ∈ X and N is a normal subgroup of G, then
G/N ∈ X .

b) A homomorph X is a formation if G/N1 ∈ X and G/N2 ∈ X imply
G/(N1 ∩N2) ∈ X .

c) A formation X is saturated if X is Frattini closed, i.e. if G/φ(G) ∈ X
implies G ∈ X , where φ(G) denotes the Frattini subgroup of G.

d) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H
with coreGH = {1}, where coreGH = ∩{Hg/g ∈ G}.

e) A homomorph X is a Schunck class if X is primitively closed, i.e. if any
group G, all of whose primitive factor groups are in X , is itself in X .

Definition 1.2. a) ([8]) A group G is π-solvable if every chief factor of G
is either a solvable π-group or a π′-group. For π the set of all primes, we obtain the
notion of solvable group.

b) A class X of groups is said to be π-closed if

G/Oπ′ ∈ X ⇒ G ∈ X .

A π-closed homomorph, formation, respectively Schunck class is called π-homomorph,
π-formation, respectively π-Schunck class.

Definition 1.3. ([9], [10]) Let X be a class of groups, G a group and H a
subgroup of G.
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a) H is X -maximal in G if: (i) H ∈ X ; (ii) H ≤ H∗ ≤ G, H∗ ∈ X imply
H = H∗.

b) H is an X -projector of G if, for any normal subgroup N of G, HN/N is
X -maximal in G/N .

c) H is an X -covering subgroup of G if: (i) H ∈ X ; (ii) H ≤ K ≤ G, K0 CK,
K/K0 ∈ X imply K = HK0.

The following results will be used in the paper.
Theorem 1.4. ([4]) Let X be a class of groups, G a group and H a subgroup

of G.
a) If H is an X -covering subgroup or an X -projector of G, then H is X -

maximal in G.
b) If X is a homomorph, any X -covering subgroup of G is an X -projector of

G.
Theorem 1.5. ([9]) If X is a homomorph, G a group, N a normal subgroup

of G, K/N an X -covering subgroup of G/N and H is an X -covering subgroup of K,
then H is an X -covering subgroup of G.

Theorem 1.6. ([1]) A solvable minimal normal subgroup of a group is
abelian.

Theorem 1.7. ([1]) If S is a maximal subgroup of G with coreGS = {1} and
N is a minimal normal subgroup of G, then G = SN and S ∩N = {1}.

Theorem 1.8. ([10]) Let X be a class of groups. X is a saturated formation
if and only if X is both a Schunck class and a formation.

Theorem 1.9. ([2], [3], [4]) Let X be a π-homomorph. The following condi-
tions are equivalent:

(1) X is a Schunck class;
(2) any π-solvable group has X -covering subgroups;
(3) any π-solvable group has X -projectors.

2. The main result

In preparation for the main theorem of the paper, we give the following
lemma.

Lemma 2.1. Let X be a π-Schunck class, G a π-solvable group, such that
G 6∈ X , N a minimal normal subgroup of G with G/N ∈ X and H and X -covering
subgroup of G. Then H is a complement of N in G, i.e. G = HN is H ∩N = {1}.

Proof. Using that H is an X -covering subgroup of G, from H ≤ G ≤ G,
N C G, G/N ∈ X follows that G = HN .

We prove now that H ∩N = {1}.
G is π-solvable group, hence the minimal normal subgroup N of G, being a

chief factor of G, is either a solvable π-group or a π′-group. If we suppose that N is
a π′-group, we obtain that N ≤ Oπ′(G), hence

G/Oπ′ ∼= (G/N)/(Oπ′(G)/N).
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But G/N ∈ X and X is a homomorph. So G/Oπ′(G) ∈ X , hence, X being π-closed,
G ∈ X , in contradiction with the hypothesis G 6∈ X . It follows that N is a solvable
π-group. By 1.6., N is abelian.

We prove that H ∩ N is a normal subgroup of G. Indeed, if g ∈ G and
x ∈ H ∩N , we have g = nh, with n ∈ N , h ∈ H and

g−1xg = (nh)−1x(nh) = h−1n−1(xn)h = h−1n−1(nx)h = h−1xh ∈ H ∩N,

where we used that N is abelian and that H ∩N is normal in H.
Finally, N being a minimal normal subgroup of G and H∩N CG, H∩N ⊆ N ,

we have H ∩ N = {1} or H ∩ N = N . If we suppose that H ∩ N = N , it follows
that N ⊆ H, hence G = HN = H, a contradiction with G 6∈ X and H ∈ X . So
H ∩N = {1}. �

Theorem 2.2. Let X be a π-homomorph. The following conditions are
equivalent:

(1) X is a Schunck class;
(2) if G is a π-solvable group, G 6∈ X and N is a minimal normal subgroup

of G such that G/N ∈ X , then N has a complement in G;
(3) any π-solvable group G has X -covering subgroups;
(4) any π-solvable group G has X -projectors.
Proof. (1) implies (2). Let G be a π-solvable group, G 6∈ X and N a minimal

normal subgroup of G such that G/N ∈ X . By (1) and 1.9., G has an X -covering
subgroup H. By Lemma 2.1., H is a complement of N in G.

(2) implies (3). We prove by induction on |G| that any π-solvable group G
has X -covering subgroups.

Two cases are possible:
1. G ∈ X . In this case, G is its own X -covering subgroup.
2. G 6∈ X . Let N be a minimal normal subgroup of G. By the induction,

G/N has an X -covering subgroup E/N . We consider two possibilities:
a) G/N ∈ X . Then, by 1.4.a) and 1.3.a), E/N = G/N . Applying (2) for the

π-solvable group G, G 6∈ X and for its minimal normal subgroup N with G/N ∈ X ,
we obtain that N has a complement V in G, i.e. G = NV and N ∩ V = {1}.

We notice that V ∈ X , because

V ∼= V/(N ∩ V ) ∼= NV/N = G/N ∈ X .

By 1.2.a), N is either a solvable π-group or a π′-group. If we suppose that
N is a π′-group, then N ≤ Oπ′(G) and so

G/Oπ′(G) ∼= (G/N)/(Oπ′(G)/N) ∈ X ,

where we used that G/N ∈ X is a homomorph. Applying that X is π-closed, we get
G ∈ X , a contradiction. It follows that N is a solvable π-group, hence, by 1.6., N is
abelian.

Let us consider two cases:
i) coreGV 6= {1}. By the induction, G/coreGV has an X -covering subgroup

H/coreGV .
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We notice that H 6= G, else H = G implies G/coreGV = H/coreGV ∈ X and
so G/coreGV is its own X -covering subgroup, hence, by 1.4.a), G/coreGV is its own
X -maximal subgroup. But V ∈ X and X homomorph imply that V/coreGV ∈ X . It
follows that V/coreGV = G/coreGV and so V = G, contradicting that G 6∈ X and
V ∈ X . Hence H 6= G.

The induction for H leads to the existence of an X -covering subgroup L of
H. Then H/coreGV is an X -covering subgroup of G/coreGV and L is an X -covering
subgroup of H. Applying 1.5., we conclude that L is an X -covering subgroup of G.

ii) coreGV = {1}. In this case, we prove that V is an X -covering subgroup
of G.

We proved that V ∈ X .
Let now V ≤ K ≤ G, K0CK and K/K0 ∈ X . We shall prove that K = V K0.
First, V is a maximal subgroup of G. Indeed, V 6= G, because V ∈ X and

G 6∈ X . Let now V ≤ V ∗ < G. We show that V = V ∗. Suppose V < V ∗ and
let v∗ ∈ V ∗ \ V ⊂ G = V N and put v∗ = vn, where v ∈ V , n ∈ N . We have
n = v−1v∗ ∈ N ∩ V ∗.

Let us prove that N ∩V ∗ = {1}. We notice that G = NV ≤ NV ∗ ≤ G imply
G = NV ∗. Further, N ∩V ∗ is a normal subgroup of G, because if g ∈ G, x ∈ N ∩V ∗

we can prove that g−1xg ∈ N ∩ V ∗. Indeed, if we take g ∈ G = NV ∗ written as
g = mv∗, with m ∈ N , v∗ ∈ V ∗, we have

g−1xg = (mv∗)−1(mv∗) = (v∗)−1(m−1x)mv∗ =

= (v∗)−1(xm−1)mv∗ = (v∗)−1xv∗ ∈ N ∩ V ∗,

where we used that N is abelian and that N ∩V ∗CV ∗. Hence N ∩V ∗ is normal in G.
N is a minimal normal subgroup of G and N ∩V ∗ ⊆ N . It follows that N ∩V ∗ = {1}
or N ∩ V ∗ = N . But N ∩ V ∗ = N implies N ⊆ V ∗ and so G = NV ∗ = V ∗, in
contradiction with the choice of V ∗. Hence N ∩ V ∗ = {1}.

From n = v−1v∗ ∈ N ∩ V ∗ = {1}, we deduce n = 1 and so v−1v∗ = 1, which
means v∗ = v ∈ V , in contradiction with the choice of v∗. It follows that V = V ∗.
This completes the proof that V is a maximal subgroup of G.

By the above, we have for K with V ≤ K ≤ G two possibilities: K = V or
K = G.

If K = V , we have K0 C K = V and so K = KK0 = V K0.
If K = G, we reason as follows. Let us notice that K0 6= {1}, else

G = K ∼= K/K0 ∈ X ,

a contradiction with G 6∈ X . Let M be a minimal normal subgroup of G such that
M ⊆ K0. So we are in hypotheses of 1.7.: V is a maximal subgroup of G with
coreGV = {1} and M is a minimal normal subgroup of G. It follows that G = V M
and so

K = G = V M ≤ V K0 ≤ G,

hence K = G = V K0.
b) G/N 6∈ X . In this case, we have E/N 6= G/N , because E/N ∈ X .

So E 6= G. By the induction, E has an X -covering subgroup F . But E/N is an
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X -covering subgroup in G/N . Theorem 1.5. leads to the conclusion that F is an
X -covering subgroup of G.

(3) implies (4). Follows immediately from 1.9.
(4) implies (1). Follows also from 1.9. �

3. Consequences

Theorem 2.2. has some consequences on π-closed formations. In [5], we gave:
Theorem 3.1. ([5]) Let X be a π-formation. The following conditions are

equivalent:
(1) X is saturated;
(2) if G is a π-solvable group and G 6∈ X , but for the minimal normal subgroup

N of G we have G/N ∈ X , then N has a complement in G;
(3) any π-solvable group G has X -covering subgroups.
From 2.2., 3.1. and 1.8., we obtain:
Corollary 3.2. If X is a π-formation satisfying condition (2) from 2.2.,

then:
a) X is a Schunck class;
b) X is Frattini closed, hence X is a saturated formation;
c) any π-solvable group G has X -covering subgroups;
d) any π-solvable group G has X -projectors.

4. Some applications

Finally, we give some applications of the main theorem of this paper, con-
cerning to:

1. the existence and conjugacy given in [7] of X -maximal subgroups in finite
π-solvable groups, where X is a π-Schunck class;

2. the π-Schunck classes with the P property, introduced in [6].
4.1. In [7] we proved the following result:
Theorem 4.1.1. ([7]) Let X be a π-Schunck class, G a π-solvable group and

A an abelian normal subgroup of G with G/A ∈ X . Then:
(1) there is a subgroup S of G with S ∈ X and AS = G;
(2) there is an X -maximal subgroup S of G with AS = G;
(3) if S1 and S2 are X -maximal subgroups of G with AS1 = G = AS2, then

S1 and S2 are conjugate in G.
Applying 4.1.1. and 2.2., we can prove the following theorem:
Theorem 4.1.2. If X is a π-Schunck class, G is a π-solvable group, G 6∈ X

and N is a minimal normal subgroup of G such that G/N ∈ X , then:
a) N has a complement H in G;
b) N is a solvable π-group, hence N is abelian;
c) H is X -maximal in G;
d) H is conjugate to any X -maximal subgroup S of G with NS = G.
Proof. a) Applying theorem 2.2., we obtain that N has a complement H in

G, i.e. HN = G and H ∩N = {1}.
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b) N being a minimal normal subgroup of the π-solvable group G, N is either
a solvable π-group, hence by 1.6. N is abelian, or N is a π′-group. We shall prove
that the case N is π′-group is not possible in our hypotheses. Indeed, if we suppose
that N is a π′-group, we have N ≤ Oπ′(G) and

G/Oπ′(G) ∼= (G/N)/(Oπ′(G)/N) ∈ X ,

hence, by the π-closure of X , G ∈ X , a contradiction.
c) In order to prove that H is X -maximal in G. let us first notice that H ∈ X .

Indeed, we have

H ∼= H/{1} = H/(H ∩N) ∼= HN/N = G/N ∈ X .

Let now H ≤ H∗ ≤ G and H∗ ∈ X . We prove that H = H∗. Suppose that H < H∗.
Then there is an element h∗ ∈ H∗ \H ⊂ G = HN and h∗ = hn, with h ∈ H, n ∈ N .
Then n = h−1h∗ ∈ H∗ ∩ N = {1} and so n = 1 and h∗ = h ∈ H, in contradiction
with the choice of h∗. The fact that H∗ ∩N = {1} follows from H∗ ∩N C G (since
N is abelian and H∗ ∩N CH∗) and from the hypotheses that N is a minimal normal
subgroup of G.

d) Since we are in the hypotheses of 4.1.1, there is an X -maximal subgroup
S of G with NS = G. Applying now 4.1.1.(3), we conclude that H is conjugate to S.
�

4.2. In [6], we introduced the P property on a class X of groups. We say
that X has the P property if, for any π-solvable group G, we have:

N minimal normal subgroup of G, N π′-group ⇒ G/N ∈ X .
Using theorem 2.2., we can prove the following result:
Theorem 4.2.1. If X is a π-Schunck class with the P property and G is a

π-solvable group, G 6∈ X , then any minimal subgroup N of G which is a π′-group has
a complement in G.

Proof. By the P property, we have G/N ∈ X . But X being a π-Schunck
class, theorem 2.2. shows that X satisfies condition (2). Applying (2) for the π-
solvable group G with G 6∈ X and for the minimal subgroup N of G with G/N ∈ X ,
we conclude that N has a complement in G. �
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class X , Studia Univ. Babeş-Bolyai, Math., XLVII, No. 3, 2002, 53-62.

68



A CHARACTERIZATION OF π-CLOSED SCHUNCK CLASSES
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