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A CHARACTERIZATION OF n-CLOSED SCHUNCK CLASSES

RODICA COVACI

Dedicated to Professor Gheorghe Micula at his 60'" anniversary

Abstract. A characterization of w-closed Schunck classes, followed by
some consequences and applications in the formation theory of finite m-
solvable groups are given.

1. Preliminaries

All groups considered in the paper are finite. Let 7 be a set of primes, 7’ the
complement to 7 in the set of all primes and O,/(G) the largest normal 7’-subgroup
of a group G.

We first give some useful definitions.

Definition 1.1. (][9], [10], [12]) a) A class X of groups is a homomorph if
X is epimorphically closed, i.e. if G € X and N is a normal subgroup of G, then
G/N e X.

b) A homomorph X is a formation if G/N; € X and G/Ny € X imply
G/(Nl ﬂNQ) e X.

¢) A formation X is saturated if X is Frattini closed, i.e. if G/¢(G) € X
implies G € X, where ¢(G) denotes the Frattini subgroup of G.

d) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H
with coreq H = {1}, where coregH = N{HY/g € G}.

e) A homomorph X is a Schunck class if X is primitively closed, i.e. if any
group G, all of whose primitive factor groups are in &, is itself in X.

Definition 1.2. a) ([8]) A group G is w-solvable if every chief factor of G
is either a solvable m-group or a w’-group. For 7 the set of all primes, we obtain the
notion of solvable group.

b) A class X of groups is said to be 7-closed if

G/OpeX = GeX.
A 7-closed homomorph, formation, respectively Schunck class is called w-homomorph,
w-formation, respectively m-Schunck class.

Definition 1.3. ([9], [10]) Let X be a class of groups, G a group and H a
subgroup of G.
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a) H is X-mazimal in G if: (1) H € &; (i) H < H* < G, H* € X imply
H=H"

b) H is an X-projector of G if, for any normal subgroup N of G, HN/N is
X-maximal in G/N.

c) H is an X-covering subgroup of G if: (i) H € X; (i) H < K <G, Kx< K,
K/Ky € X imply K = HKj.

The following results will be used in the paper.

Theorem 1.4. ([4]) Let X be a class of groups, G a group and H a subgroup
of G.

a) If H is an X-covering subgroup or an X-projector of G, then H is X-
mazximal in G.

b) If X is a homomorph, any X-covering subgroup of G is an X-projector of
G.

Theorem 1.5. ([9]) If X is a homomorph, G a group, N a normal subgroup
of G, K/N an X-covering subgroup of G/N and H is an X-covering subgroup of K,
then H is an X -covering subgroup of G.

Theorem 1.6. ([1]) A solvable minimal normal subgroup of a group is
abelian.

Theorem 1.7. ([1]) If S is a mazimal subgroup of G with coreqS = {1} and
N is a minimal normal subgroup of G, then G = SN and SN N = {1}.

Theorem 1.8. ([10]) Let X be a class of groups. X is a saturated formation
if and only if X is both a Schunck class and a formation.

Theorem 1.9. ([2], [3], [4]) Let X be a w-homomorph. The following condi-
tions are equivalent:

(1) X is a Schunck class;

(2) any m-solvable group has X -covering subgroups;

(3) any m-solvable group has X-projectors.

2. The main result

In preparation for the main theorem of the paper, we give the following
lemma.

Lemma 2.1. Let X be a w-Schunck class, G a m-solvable group, such that
G ¢ X, N a minimal normal subgroup of G with G/N € X and H and X-covering
subgroup of G. Then H is a complement of N in G, i.e. G=HN is HNN = {1}.

Proof. Using that H is an X-covering subgroup of G, from H < G < G,
N <G, G/N € X follows that G = HN.

We prove now that H N N = {1}.

G is m-solvable group, hence the minimal normal subgroup N of G, being a
chief factor of G, is either a solvable m-group or a 7’-group. If we suppose that N is
a m'-group, we obtain that N < O,/ (G), hence

G/Ox = (G/N)/(Ox (G)/N).
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But G/N € X and X is a homomorph. So G/O,/(G) € X, hence, X being w-closed,
G € X, in contradiction with the hypothesis G ¢ X. It follows that NV is a solvable
m-group. By 1.6., N is abelian.

We prove that H N N is a normal subgroup of G. Indeed, if ¢ € G and
z € HN N, we have g = nh, withn € N, h € H and

g tzg = (nh)"tx(nh) = h'n"Y(an)h = b 'n"Y(nx)h = h~'zh € HN N,

where we used that N is abelian and that H N [N is normal in H.

Finally, IV being a minimal normal subgroup of G and HNN<1G, HONN C N,
we have HNN = {1} or HN N = N. If we suppose that H N N = N, it follows
that N C H, hence G = HN = H, a contradiction with G ¢ X and H € X. So
HAN={1}. O

Theorem 2.2. Let X be a w-homomorph. The following conditions are
equivalent:

(1) X is a Schunck class;

(2) if G is a m-solvable group, G ¢ X and N is a minimal normal subgroup
of G such that G/N € X, then N has a complement in G;

(3) any w-solvable group G has X -covering subgroups;

(4) any w-solvable group G has X -projectors.

Proof. (1) implies (2). Let G be a m-solvable group, G ¢ X and N a minimal
normal subgroup of G such that G/N € X. By (1) and 1.9., G has an X-covering
subgroup H. By Lemma 2.1., H is a complement of N in G.

(2) implies (3). We prove by induction on |G| that any m-solvable group G
has X-covering subgroups.

Two cases are possible:

1. G € X. In this case, G is its own X-covering subgroup.

2. G ¢ X. Let N be a minimal normal subgroup of G. By the induction,
G/N has an X-covering subgroup E/N. We consider two possibilities:

a) G/N € X. Then, by 1.4.a) and 1.3.a), E/N = G/N. Applying (2) for the
m-solvable group G, G ¢ X and for its minimal normal subgroup N with G/N € X,
we obtain that N has a complement V in G, i.e. G =NV and NNV = {1}.

We notice that V € X, because

V>V/(NNV)=NV/N =G/N € X.

By 1.2.a), N is either a solvable m-group or a n’-group. If we suppose that
N is a w’-group, then N < O,/(G) and so

G/0x(G) = (G/N)/(Ox (G)/N) € X,

where we used that G/N € X is a homomorph. Applying that X is w-closed, we get
G € X, a contradiction. It follows that N is a solvable m-group, hence, by 1.6., N is
abelian.

Let us consider two cases:

i) coreqgV # {1}. By the induction, G/coregV has an X-covering subgroup
H/coregV.
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We notice that H # G, else H = G implies G/coregV = H/coregV € X and
so G/coregV is its own X-covering subgroup, hence, by 1.4.a), G/coregV is its own
X-maximal subgroup. But V € X and X homomorph imply that V/coreqV € X. It
follows that V/coreqV = G/coregV and so V = G, contradicting that G ¢ X and
V € X. Hence H # G.

The induction for H leads to the existence of an X-covering subgroup L of
H. Then H/coregV is an X-covering subgroup of G/coregV and L is an X-covering
subgroup of H. Applying 1.5., we conclude that L is an X'-covering subgroup of G.

ii) coreqgV = {1}. In this case, we prove that V is an X-covering subgroup
of G.

We proved that V € X.

Let now V < K < G, Ko <K and K/Ky € X. We shall prove that K = V Kj.

First, V is a maximal subgroup of G. Indeed, V # G, because V € X and
G & X. Let now V < V* < G. We show that V' = V*. Suppose V < V* and
let v* € V*\V C G = VN and put v* = vn, where v € V, n € N. We have
n=vlv*e NNV*.

Let us prove that NNV* = {1}. We notice that G = NV < NV* < G imply
G = NV*. Further, N NV* is a normal subgroup of G, because if g € G, x € NNV*
we can prove that g~'zg € N N V*. Indeed, if we take ¢ € G = NV* written as
g =mv*, with m € N, v* € V*, we have

g 'zg = (mv*) " (mw*) = (v*) " m T e)yme* =
= (") Ham Hmo* = (vF)lawt € NNV,
where we used that N is abelian and that NNV* <V*. Hence NNV* is normal in G.
N is a minimal normal subgroup of G and NNV* C N. It follows that NNV* = {1}
or NNV*=N. But NNV* = N implies N C V* and so G = NV* = V* in
contradiction with the choice of V*. Hence N N V* = {1}.

From n =v"1v* € NNV* = {1}, we deduce n = 1 and so v~ 'v* = 1, which
means v* = v € V, in contradiction with the choice of v*. It follows that V = V*.
This completes the proof that V' is a maximal subgroup of G.

By the above, we have for K with V < K < G two possibilities: K =V or
K=aG.

If K=V, wehave Ko <K =V and so K = KKy = VK.

If K = G, we reason as follows. Let us notice that Ky # {1}, else

G=K=~K/Ky€X,

a contradiction with G € X. Let M be a minimal normal subgroup of G such that
M C Ky. So we are in hypotheses of 1.7.: V is a maximal subgroup of G with
coregV = {1} and M is a minimal normal subgroup of G. It follows that G = VM
and so

K=G=VM<VKy, <G,

hence K = G = VK.
b) G/N ¢ X. In this case, we have E/N # G/N, because E/N € X.
So E # G. By the induction, E has an X-covering subgroup F. But E/N is an
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X-covering subgroup in G/N. Theorem 1.5. leads to the conclusion that F is an
X-covering subgroup of G.

(3) implies (4). Follows immediately from 1.9.

(4) implies (1). Follows also from 1.9. O

3. Consequences

Theorem 2.2. has some consequences on m-closed formations. In [5], we gave:

Theorem 3.1. ([5]) Let X be a w-formation. The following conditions are
equivalent:

(1) X is saturated;

(2) if G is a w-solvable group and G & X, but for the minimal normal subgroup
N of G we have G/N € X, then N has a complement in G;

(3) any w-solvable group G has X -covering subgroups.

From 2.2., 3.1. and 1.8., we obtain:

Corollary 3.2. If X is a w-formation satisfying condition (2) from 2.2.,
then:

a) X is a Schunck class;

b) X is Frattini closed, hence X is a saturated formation;

¢) any w-solvable group G has X -covering subgroups;

d) any m-solvable group G has X -projectors.

4. Some applications

Finally, we give some applications of the main theorem of this paper, con-
cerning to:

1. the existence and conjugacy given in [7] of X-maximal subgroups in finite
m-solvable groups, where X is a m-Schunck class;

2. the m-Schunck classes with the P property, introduced in [6].

4.1. In [7] we proved the following result:

Theorem 4.1.1. ([7]) Let X be a w-Schunck class, G a w-solvable group and
A an abelian normal subgroup of G with G/A € X. Then:

(1) there is a subgroup S of G with S € X and AS = G;

(2) there is an X-maximal subgroup S of G with AS = G;

(3) if S1 and Sy are X-maximal subgroups of G with AS; = G = ASs, then
S1 and Sy are conjugate in G.

Applying 4.1.1. and 2.2., we can prove the following theorem:

Theorem 4.1.2. If X is a w-Schunck class, G is a w-solvable group, G ¢ X
and N is a minimal normal subgroup of G such that G/N € X, then:

a) N has a complement H in G;

b) N is a solvable w-group, hence N is abelian;

¢) H is X-mazimal in G;

d) H is conjugate to any X-mazximal subgroup S of G with NS = G.

Proof. a) Applying theorem 2.2., we obtain that N has a complement H in
G,ie. HN =G and HNN ={1}.
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b) N being a minimal normal subgroup of the m-solvable group G, N is either
a solvable m-group, hence by 1.6. N is abelian, or N is a 7’-group. We shall prove
that the case N is w’-group is not possible in our hypotheses. Indeed, if we suppose
that N is a n’-group, we have N < O/ (G) and

G/O0x(G) = (G/N)/(Ox (G)/N) € X,

hence, by the m-closure of X, G € X, a contradiction.
c) In order to prove that H is X-maximal in G. let us first notice that H € X.
Indeed, we have

H=~H/{1}=H/(HNN)= HN/N =G/N € X.

Let now H < H* < G and H* € X. We prove that H = H*. Suppose that H < H*.
Then there is an element h* € H*\ H C G = HN and h* = hn, with h € H, n € N.
Then n = h™*h* € H* NN = {1} and so n = 1 and h* = h € H, in contradiction
with the choice of h*. The fact that H* N N = {1} follows from H* N N < G (since
N is abelian and H* NN < H*) and from the hypotheses that N is a minimal normal
subgroup of G.

d) Since we are in the hypotheses of 4.1.1, there is an X-maximal subgroup
S of G with NS = G. Applying now 4.1.1.(3), we conclude that H is conjugate to S.
O

4.2. In [6], we introduced the P property on a class X of groups. We say
that X has the P property if, for any m-solvable group G, we have:

N minimal normal subgroup of G, N 7’-group = G/N € X.

Using theorem 2.2., we can prove the following result:

Theorem 4.2.1. If X is a w-Schunck class with the P property and G is a
w-solvable group, G & X, then any minimal subgroup N of G which is a ©'-group has
a complement in G.

Proof. By the P property, we have G/N € X. But X being a m-Schunck
class, theorem 2.2. shows that X satisfies condition (2). Applying (2) for the =-
solvable group G with G ¢ X and for the minimal subgroup N of G with G/N € X,
we conclude that N has a complement in G. O

References

[1] Baer, R., Classes of finite groups and their properties, lllinois J. Math., 1, No. 2, 1957,
115-187.

[2] Covaci, R., Projectors in finite w-solvable groups, Studia Univ. Babes-Bolyai, Math.,
XXII, No. 1, 1977, 3-5.

[3] Covaci, R., Some properties of projectors in finite w-solvable groups, Studia Univ. Babeg-
Bolyai, Math., XXVI, No. 1, 1981, 5-8.

[4] Covaci, R., Projectors and covering subgroups, Studia Univ. Babes-Bolyai, Math.,
XXVII, 1982, 33-36.

[5] Covaci, R., On saturated m-formations, Studia Univ. Babeg-Bolyai, Math., XXXI, No.
4, 1986, 70-72.

[6] Covaci, R., On m-Schunck classes with the P property, Babes-Bolyai University Research
Seminars, Preprint No. 5, 1988, 22-34.

[7] Covaci, R., X-mazimal subgroups in finite w-solvable groups with respect to a Schunck
class X, Studia Univ. Babeg-Bolyai, Math., XLVII, No. 3, 2002, 53-62.

68



A CHARACTERIZATION OF n-CLOSED SCHUNCK CLASSES

Cunihin, S. A., O teoremah tipe Sylowa, Dokl. Akad. Nauk SSSR, 66, No. 2, 1949,
165-168.

Gaschiitz, W., Zur Theorie der endlichen auflésbaren Gruppen, Math. Z., 80, No. 4,
1963, 300-305.

Gaschiitz, W., Selected topics in the theory of soluble groups, Australian National Uni-
versity, Canberra, 1969.

Huppert, B., Endliche Gruppen I, Berlin - New York, Springer-Verlag, 1967.

Schuck, H., H-Untergruppen in endlichen auflésbaren Gruppen, Math. Z., 97, No. 4,
1967, 326-330.

FacuLTty OF MATHEMATICS AND COMPUTER. SCIENCE,
BABES-BoLyAal UNIVERSITY, CLUJ-NAPOCA, ROMANIA

69



