# MINIMUM VALUE OF A MATRIX NORM WITH APPLICATIONS TO MAXIMUM PRINCIPLES FOR SECOND ORDER PARABOLIC SYSTEMS 

CRISTIAN CHIFU-OROS

Dedicated to Professor Gheorghe Micula at his $60^{\text {th }}$ anniversary


#### Abstract

The purpose of this paper is to use an estimation of minimum value of a matrix norm to improve some maximum principles given by I.A. Rus in 1968.


## 1. Introduction

Let $M$ be the linear space of vectorial functions $u=\left(u_{1}(x, t), \ldots, u_{n}(x, t)\right)$ which belongs to $C(\Omega)$ and are twice continuous differentiable in $x$ and continuous differentiable in $t . \Omega \subseteq \mathbb{R}^{2}$ is a bounded domain. In $M$ we consider the following system:

$$
\begin{equation*}
L u:=p^{2} I_{n} \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial u}{\partial x}+C u-I_{n} \frac{\partial u}{\partial t}=0 \tag{1}
\end{equation*}
$$

where $p \in \mathbb{R}^{*}, B=\left(b_{i j}(x, t)\right), C=\left(c_{i j}(x, t)\right)$ are squared matrixes defined on $\Omega$.
Let $P_{o}\left(x_{o}, t_{o}\right) \in \Omega$. We will denote by $S\left(P_{o}\right)$ the set of points Q for which there exist an arch on which the ordinate $t$ is non-decreasing beginning with the point Q.

There are some maximum principles for the solution of system (1) (see for example [2] and [3]).

Let $u=u(x, t)$ be a solution of the system (1). In [3] the following principle is given:

Theorem 1. Suppose that for each $(x, t) \in \Omega$, there exist $\widetilde{\beta}(x, t) \in \mathbb{R}$ such that:

$$
\xi\left(\begin{array}{cc}
-p^{2} I_{n} & 0 \\
B(x, t)-\widetilde{\beta}(x, t) I_{n} & C(x, t)
\end{array}\right) \xi^{*}<0, \forall \xi \in \mathbb{R}^{2 n}, \xi \neq 0
$$

If $R(x, t):=\left(\sum_{i=1}^{n} u_{i}^{2}\right)^{1 / 2}$ attains his maximum in $P_{o} \in \Omega$, then $R(Q)=$ $R\left(P_{o}\right)$, for each $Q \in S\left(P_{o}\right)$.

Remark 1. If, for each $(x, t) \in \Omega$, there exist $\widetilde{\beta}(x, t) \in \mathbb{R}$ and $\varepsilon(x, t)>0$ such that:
(i) $\xi C(x, t) \xi^{*}<-\left(\frac{\varepsilon(x, t)}{p}\right)^{2}\|\xi\|^{2}, \forall \xi \in \mathbb{R}^{n}, \xi \neq 0$;
(ii) $\left\|B(x, t)-\widetilde{\beta}(x, t) I_{n}\right\|_{2} \leq 2 \varepsilon(x, t)$,
where $\|\cdot\|_{2}$ is the spectral norm, then (2) holds.
The aim of this paper is to give some conditions which imply (ii).
Let $A \in M_{n}(\mathbb{R}), J$ the Jordan normal form of $A$. We know that there exist a nonsingular matrix $T$ such that $A=T J T^{-1}$.

We shall denote:

$$
\begin{aligned}
\widetilde{\alpha} & =\left\{\begin{array}{l}
\frac{1}{n} \sum_{k=1}^{s} n_{k} \lambda_{k}, \lambda_{k} \in \mathbb{R} \\
\frac{1}{n} \sum_{k=1}^{s} n_{k} \operatorname{Re} \lambda_{k}, \lambda_{k} \in \mathbb{C} \backslash \mathbb{R}
\end{array}\right. \\
\gamma_{F} & =\|T\|_{F} \cdot\left\|T^{-1}\right\|_{F} \\
m_{F} & =\left\|J-\widetilde{\alpha} I_{n}\right\|_{F}
\end{aligned}
$$

where $\lambda_{k}$ are the eigenvalues of $A, n_{k}$ is the number of $\lambda_{k}$ which appears in Jordan blocks (generated by $\lambda_{k}$ ) and $\|\cdot\|_{F}$ is the euclidean norm of a matrix (see [1]).

We shall use the following result given in [1]:
Theorem 2. Let $\varphi_{\|\cdot\|}: \mathbb{R} \rightarrow \mathbb{R}, \varphi_{\|\cdot\|}(\alpha)=\left\|A-\alpha I_{n}\right\|,\|\cdot\|$ being one of the following norms: $\|\cdot\|_{F},\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$. In these conditions:

$$
\varphi_{\|\cdot\|}(\widetilde{\alpha}) \leq \sqrt{n} \gamma_{F} m_{F}
$$

In section 2 of this paper we shall give the main result in case of system 1 and in section 3 , using the same instrument, we shall try to improve a maximum principle in case of elliptic-parabolic systems.

## 2. Main result in parabolic case

Using Theorem 2 and choosing $\varepsilon(x, t)=\frac{1}{2} \sqrt{n} \gamma_{F} m_{F}$, Theorem 1 becomes:
Theorem 3. Suppose that $\xi C(x, t) \xi^{*}<-\frac{1}{4 p^{2}} n \gamma_{F}^{2} m_{F}^{2}\|\xi\|^{2}, \forall \xi \in \mathbb{R}^{n}, \xi \neq 0$, $\forall(x, t) \in \Omega$. If $R(x, t)=\left(\sum_{i=1}^{n} u_{i}^{2}\right)^{1 / 2}$ attains his maximum in $P_{o} \in \Omega$, then $R(Q)=$ $R\left(P_{o}\right)$, for each $Q \in S\left(P_{o}\right)$.
Example 1. Let us consider the system (1) with $B=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{1}\end{array}\right)$ and without restraining the generality we shall suppose that $a_{2}, a_{3}>0$. In this case we shall have: $\widetilde{\beta}=a_{1}, \varepsilon=a_{2}+a_{3}$ and:

$$
\begin{gather*}
\left\|B-a_{1} I_{2}\right\|_{2} \leq\left\|B-a_{1} I_{2}\right\|_{F}=\sqrt{a_{2}^{2}+a_{3}^{2}}<2\left(a_{2}+a_{3}\right)=\sqrt{2} \gamma_{F} m_{F}=2 \varepsilon \\
\xi C(x, t) \xi^{*}<-\frac{1}{p^{2}}\left(a_{2}+a_{3}\right)^{2}\|\xi\|^{2} \tag{3}
\end{gather*}
$$

So if (3) holds than we have:

$$
\xi\left(\begin{array}{ll}
-p^{2} I_{2} & 0 \\
B-\widetilde{\beta} I_{2} & C
\end{array}\right) \xi^{*}<\frac{1}{4 p^{2}}\left[a_{2}^{2}+a_{3}^{2}-4\left(a_{2}+a_{3}\right)^{2}\right]\left\|\xi^{\prime}\right\|^{2}<0
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \in \mathbb{R}^{4}, \xi \neq 0, \xi^{\prime}=\left(\xi_{3}, \xi_{4}\right) \in \mathbb{R}^{2}, \xi^{\prime} \neq 0$.

## 3. Elliptic-parabolic case

Let us consider now the following system:

$$
\begin{equation*}
L u:=\frac{\partial^{2} u}{\partial x^{2}}+y^{p} \frac{\partial^{2} u}{\partial y^{2}}+A \frac{\partial u}{\partial x}+B \frac{\partial u}{\partial y}+C u=0 \tag{4}
\end{equation*}
$$

where $L$ is defined in $M=C^{2, n}(\Omega) \cap C^{0, n}(\bar{\Omega}), A=\left(a_{i j}(x, y)\right), B=\left(b_{i j}(x, y)\right)$, $C=\left(c_{i j}(x, y)\right)$ are squared matrixes defined on $\bar{\Omega}, p \in \mathbb{R}_{+}$.
$\Omega$ is a domain included in the half-plan $y>0$ and which has a part of frontier laying on $y=0$, between the points $P(0,0)$ and $Q(1,0)$. The operator $L$ is elliptic in $\Omega$ and parabolic on $\widehat{P Q}$.

Let $u \in C^{2}\left(\Omega, \mathbb{R}^{n}\right) \cap C\left(\bar{\Omega}, \mathbb{R}^{n}\right), u=u(x, y)$, be a solution of $(3)$ and

$$
R(x, y):=\left(\sum_{i=1}^{n} u_{i}^{2}\right)^{1 / 2}
$$

Theorem 4. ([3])If:

1. for each $(x, y) \in \Omega$, there exist $\widetilde{\alpha}(x, y), \widetilde{\beta}(x, y) \in \mathbb{R}$ such that

$$
\xi\left(\begin{array}{ccc}
-I_{n} & 0 & 0  \tag{5}\\
0 & -y^{p} I_{n} & 0 \\
A(x, y)-\widetilde{\alpha}(x, y) I_{n} & B(x, y)-\widetilde{\beta}(x, y) I_{n} & C(x, y)
\end{array}\right) \xi^{*}<0
$$

for all $\xi \in \mathbb{R}^{3 n}, \xi \neq 0$;
2. $B$ is symmetric such that if $\lambda_{1}(x, y)$ is the first eigenvalue, then $\lambda_{1}(x, 0)>0 ;$
3. $u$ is a regular solution of (3) and $R>0$ in $\Omega$;
4. $\lim _{y \rightarrow 0} \frac{\partial R(x, y)}{\partial y}$ exist and is bounded,
then $R=R(x, y)$ cannot attain his maximum value on $\widehat{P Q}$ (open).
Remark 2. If, for each $(x, y) \in \Omega$, there exist $\widetilde{\alpha}(x, y), \widetilde{\beta}(x, y) \in \mathbb{R}$ and $\varepsilon_{1}(x, y), \varepsilon_{2}(x, y)>0$ such that:

$$
(i) \xi C(x, y) \xi^{*}<-\left(\varepsilon_{1}^{2}(x, y)+y^{-p} \varepsilon_{2}^{2}(x, y)\right)\|\xi\|^{2}, \forall \xi \in \mathbb{R}^{n}, \xi \neq 0
$$

$(i i)\left\|A(x, y)-\widetilde{\alpha}(x, y) I_{n}\right\|_{2} \leq 2 \varepsilon_{1}(x, y),\left\|B(x, y)-\widetilde{\beta}(x, y) I_{n}\right\|_{2} \leq 2 \varepsilon_{2}(x, y)$,
then (5) holds.
Using Theorem 2 and choosing $\varepsilon_{1}=\frac{1}{2} \sqrt{n} \gamma_{F}^{A} m_{F}^{A}$ and $\varepsilon_{2}=\frac{1}{2} \sqrt{n} \gamma_{F}^{B} m_{F}^{B}$, the remark from above becomes:

Remark 3. If:

$$
\xi C(x, y) \xi^{*}<-\frac{1}{4} n\left[\left(\gamma_{F}^{A} m_{F}^{A}\right)^{2}+\left(\gamma_{F}^{B} m_{F}^{B} y^{-\frac{p}{2}}\right)^{2}\right]\|\xi\|^{2}, \forall \xi \in \mathbb{R}^{n}, \xi \neq 0, \forall(x, y) \in \Omega
$$

then (5) holds.
Example 2. Let us consider the system (2) with $A=B=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{1}\end{array}\right)$.
For $\widetilde{\alpha}=\widetilde{\beta}=a_{1}$ and $a_{2}, a_{3}>0$, we have $\varepsilon_{1}=\varepsilon_{2}=a_{2}+a_{3}, A-a_{1} I_{2}=$ $B-a_{1} I_{2}=\left(\begin{array}{cc}0 & a_{2} \\ a_{3} & 0\end{array}\right)$.
If $\xi C(x, y) \xi^{*}<-\left(a_{2}+a_{3}\right)^{2}\left(1+y^{-p}\right)\|\xi\|^{2}$, then:

$$
\xi\left(\begin{array}{ccc}
-I_{2} & 0 & 0 \\
0 & -y^{p} I_{2} & 0 \\
A-\widetilde{\alpha} I_{2} & B-\widetilde{\beta} I_{2} & C
\end{array}\right) \xi^{*}<\frac{1}{4}\left[a_{2}^{2}+a_{3}^{2}-4\left(a_{2}+a_{3}\right)^{2}\right]\left(1+y^{-p}\right)\left\|\xi^{\prime}\right\|^{2}<0
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}, \xi_{6}\right) \in \mathbb{R}^{6}, \xi \neq 0, \xi^{\prime}=\left(\xi_{5}, \xi_{6}\right) \in \mathbb{R}^{2}, \xi^{\prime} \neq 0$.

## References

[1] C. Chifu-Oros, Minimum value of a matrix norm with applications to maximum principles for second order differential systems, (to appear).
[2] M.H. Protter, H.T. Weinberger, Maximum principles in differential equations, PrenticeHall, Englewood-Cliffs, New Jersey, 1967.
[3] I.A. Rus, Sur les proprietes des normes des solutions d'un system d'equations differentielles de second ordre, Studia Universitatis Babes-Bolyai, Series Mathematica-Physica, Fascicula 1, p. 19-26, Cluj-Napoca, 1968.

Babeş-Bolyai University, Faculty of Business, Department of Business, $7^{t h}$, Horea Street, RO-3400, Cluj -Napoca, Romania
E-mail address: cochifu@tbs.ubbcluj.ro

