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ABOUT SOME VOLTERRA PROBLEMS SOLVED
BY A PARTICULAR SPLINE COLLOCATION
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Abstract. In this paper we propose a deficient spline collocation method
for a special Volterra integral equation problem. The existence and unique-
ness of the approximating spline are investigated. Some numerical exam-
ples illustrate the efficiency of the proposed numerical method.

1. Introduction

The theory and applications of the Volterra integral equations of the form

y(x) =
∫ x

0

K(x, t, y(t))dt + g(x), x ∈ [0, T ]

is an important subject within applied mathematics. Volterra integral equations are
used as mathematical models for many and varied physical phenomena and processes
but they occur as reformulations of other mathematical problems.

In the present work we consider the following Volterra equation with constant
delay τ > 0:

y(x) =
∫ x

0

K1(x, t, y(t))dt +
∫ x−τ

0

K2(x, t, y(t))dt + g(x), x ∈ J = [0, T ] (1)

with y(x) = ϕ(x), x ∈ [τ, 0).
Equation (1) is worth studying as it is frequently encountered in physical and

biological modeling processes (e.g. [5]).
We assume that the given functions

ϕ : [−τ, 0] → IR, g : J → IR,K1 : Ω× IR → IR(Ω :=[(x, t) : 0≤ t≤ x≤ T ]),
K2 : Ωτ × IR → IR(Ωτ := J × [−τ, T − τ ])

are at least continuous on their domains such that (1) possesses a unique solution
y ∈ C(J), and ϕ ∈ Cm−2[−τ, 0], g ∈ Cm−2[0, T ].

In the following, let us assume in (1) that :
1. K1 satisfies the following Lipschitz condition :

‖ K1(x, t, y1)−K1(x, t, y2) ‖≤ L1 ‖ y1 − y2 ‖
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∀(x, t, y1), (x, t, y2) ∈ J × J × IR, t ≤ x

with L1 ≥ 0 a constant independent of x and t.
2. K2 satisfies the following Lipschitz condition :

‖ K2(x, t, z1)−K2(x, t, z2) ‖≤ L2 ‖ z1 − z2 ‖

∀(x, t, z1), (x, t, z2) ∈ J × J × IR, t ≤ x

with L2 ≥ 0 also a constant independent of x and t.
Recently, various aspects of numerical methods for (1) have been studied from

the point of view of polynomial collocation methods (e.g. [1], [2], [8]). In this context
here we propose to approximate the solution of (1) by means of functions pertaining
to the class of splines s : J → IR,( s ∈ Sm, s ∈ Cm−2) of degree m ≥ 2 and deficiency
d ≥ 2.

We already used an analogous deficient spline collocation method in the case
of delay differential equations [3], [4]. As it revealed simple and efficient, here we
propose to extend it to Volterra integral equations with delay argument to provide
an alternative to the discrete collocation method proposed in [1]. Indeed our method
presents some advantages:

• it does not require any additional initial value
• it provides a global approximation of the solution
• in case of need, the lenght of each collocation step can be modified, and

similarly the degree m of the used spline functions and deficiency d
• the proposed numerical method reveals extremely easy to be implemented

in the linear case.
We emphasize that this method is peculiar for solutions belonging to low

regularity class. Indeed we use m = 2 or m = 3 only; so that the used splines are
s ∈ C0 or at most s ∈ C1; there is numerical evidence that it suffices in order to
approximate solutions belonging to class C0 or C1.

In Section 2 we present the numerical method to approximate the solution
by collocation of deficient spline functions; Section 3 is devoted to theoretical results
referring to existence and unicity of the numerical solution and there we recall also
some results about convergence and numerical stability. In the last Section we re-
port some examples relating to integral equations with solutions characterized by low
regularity.

2. Construction of approximating spline solution

In this section we describe the numerical model used to approximate the
solution of (1).

Firstly we shall construct a polynomial spline function of degree m > 1, which
we denote by s. On the interval J := [0, T ] the spline function s is defined in [tk, tk+1]
where tk := t0 + kh, k = 0, 1, · · · , N ; t0 := 0, tN = T , h := T

N as :

sk(t) :=
m−2∑
j=0

s
(j)
k−1(tk)

j!
(t− tk)j +

ak

(m− 1)!
(t− tk)m−1 +

bk

m!
(t− tk)m
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We choose to determine coefficients ak, bk by the following system of collocation
conditions:

sk(tk +
h

2
) =

k−1∑
j=0

∫ tj+1

tj

K1(tk +
h

2
, t, sj(t))dt +

∫ tk+ h
2

tk

K1(tk +
h

2
, t, sk(t))dt +

+
k−1∑
j=0

∫ tj+1−τ

tj

K2(tk+
h

2
, t, sj−1(t))dt+

∫ tk+
h
2−τ

tk

K2(tk+
h

2
, t, sk−1(t))dt + g(tk+

h

2
)

sk(tk+1) =
k−1∑
j=0

∫ tj+1

tj

K1(tk+1, t, sj(t))dt +
∫ tk+1

tk

K1(tk+1, t, sk(t))dt + (2)

+
k−1∑
j=0

∫ tj+1−τ

tj

K2(tk+1, t, sj−1(t))dt +
∫ tk+1−τ

tk

K2(tk+1, t, sk−1(t))dt + g(tk+1)

provided that

s−1(0)=y(0)=ϕ(0), s′−1(0)=y′(0)=ϕ′(0),· · · ,s
(m−2)
−1 (0)=y(m−2)(0)=ϕ(m−2)(0)

Our model is thus reduced to compute the solution of the non-linear system (2),
through which the spline is globally determined on the interval J .

3. The theoretical results

It remains to prove that for h sufficiently small, the parameters ak, bk, 0 ≤
k ≤ N − 1 can be uniquely determined from (2).

Theorem. Let as consider the Volterra equation (1). If K1 and K2 satisfy
the hypotheses 1 and 2, and if h is small enough, then there exists a unique spline
solution s of (1) given by the above construction.

Proof. If we set

Ak(t) =
m−2∑
j=0

s
(j)
k−1(tk)

j!
(t− tk)j

then (2) becomes:
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ak =
(

2
h

)m−1

(m− 1)![−Ak(tk +
h

2
)− bk

m!

(
h

2

)m

+

+
k−1∑
j=0

∫ tj+1

tj

K1(tk+
h

2
, t, Aj(t)+

aj

(m−1)!
(t−tj)m−1+

bj

m!
(t−tj)m)dt+

+
∫ tk+ h

2

tk

K1(tk +
h

2
, t, Ak(t) +

ak

(m− 1)!
(t− tk)m−1 +

bk

m!
(t− tk)m)dt +

+
k−1∑
j=0

∫ tj+1−τ

tj

K2(tk+
h

2
, t, Aj−1(t)+

aj−1

(m−1)!
(t−tj−1)m−1+

bj−1

m!
(t−tj−1)m)dt+

+
∫ tk+

h
2−τ

tk

K2(tk+
h

2
, t, Ak−1(t)+

ak−1

(m−1)!
(t−tk−1)m−1+

bk−1

m!
(t−tk−1)m)dt+g(tk+

h

2
)]

bk =
m!
hm

[−Ak(tk+1)− ak
hm−1

(m− 1)!
+

+
k∑

j=0

∫ tj+1

tj

K1(tk+1, t, Aj(t)+
aj

(m−1)!
(t−tj)m−1+

bj

m!
(t−tj)m)dt+

+
k∑

j=0

∫ tj+1−τ

tj

K2(tk+1, t, Aj−1(t)+
aj−1

(m−1)!
(t−tj−1)m−1+

bj−1

m!
(t−tj−1)m)dt+g(tk+1)]

thus we can deduce
ak = F1(ak, bk)
bk = F2(ak, bk)

where F1 and F2 are the right hand side of the above equations.
Now we define the application F : IR2 → IR2 as (ak, bk) → F (ak, bk) :=

(F1(ak, bk), F2(ak, bk)) and

d(F (a′k, b′k), F (a′′k , b′′k)) := |F1(a′k, b′k)− F1(a′′k , b′′k)|+ |F2(a′k, b′k)− F2(a′′k , b′′k)|

At first, for m > 1, we have

|F1(a′k, b′k)− F1(a′′k , b′′k)| ≤ hL1

m
(2|a′k − a′′k |+

3h

2(m + 1)
|b′k − b′′k |)

and similarly

|F2(a′k, b′k)− F2(a′′k , b′′k)| ≤ L1(3|a′k − a′′k |+
5h

2(m + 1)
|b′k − b′′k |)

and taking account that

|F2(a′k, b′k)− F2(a′′k , b′′k)| = |F2(F1(a′k, b′k), b′k)− F2(F1(a′′k , b′′k), b′′k)|
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from the previous relations at last it follows that

d(F (a′k, b′k), F (a′′k , b′′k)) ≤ hL1( 2+6L1
m |a′k − a′′k |+

+ 3h+9L1h+5m
2m(m+1) |b′k − b′′k |) ≤ MhL1d((a′k, b′k), (a′′k , b′′k))

where M = max{(1 + 3L1), 1
6 ( 3h

2 + 9h
2 L1 + 5)}. The upper bound was obtained using

m = 2.
Therefore, for MhL1 < 1, that is h < 1

ML1
, F is a contraction and system

(2) has a unique solution, which can be found by iterative method.
It is worth noting that these conditions can be greatly simplified for the linear

case when in (1) we have K1(x, t, y(t)) = k1(x, t)y(t) and K2(x, t, y(t)) = k2(x, t)y(t);
this case can be treated in a very simple and efficient way.

About the convergence and the numerical stability, we recall results presented
in [6], where the case of integral equations without delay arguments is studied. The
comprehensive investigation of the convergence will be approached elsewhere.

4. Numerical examples

In the following we present some numerical results to enlighten the features
of the proposed numerical method. We emphasize that we will show examples just
for the linear case and with exact solution belonging to a low regularity class, because
our method is dedicated just to these cases, even though it works also for general
cases.

Our computer programs are written in MATLAB5.3, which has a machine
precision ε ' 10−16.

Example 1.

Consider the following integral equation with delay arguments:

y(x) = g(x) +
∫ x

0

y(s)ds−
∫ x−τ

0

y(s)ds

τ = 1, y(x) = 0 for x ∈ [−1, 0]

g(x) =

 x− x2

2 for x ∈ [0, 1/2]

x2

2 − 2x + 5
4 for x ∈ [1/2, 1]

The exact solution is:

y(x) =

 x for x ∈ [0, 1/2]

1− x for x ∈ [1/2, 1]
where y ∈ C0[0, 1].

Using m = 2 and d = 2, we built spline s ∈ C0. With integration step
h = 0.5, we obtain numerical results with an error of order 10−15, which means that
in practice our results are exact within the machine precision.
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Figure 1 refers just to the case h = 0.5; there solid line shows the exact
solution in [0, 1] together with the history in [−1, 0]; squares show the integration
points and circles show intermediate points of the numerical solution computed by
means of the analytical expression of spline relating to each integration interval.
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Fig. 1

It is evident that the numerical solution coincides with the exact solution.

Example 2.

Consider the following integral equation with delay arguments:

y(x) = g(x) +
∫ x

0

y(s)ds−
∫ x−τ

0

y(s)ds

τ = 1, y(x) = 0 for x ∈ [−1, 0]

g(x) =
{

100x− 50x2 for x ∈ [0, 1/2]
−400(x− 1)3 + 100(x− 1)4 − 75

4 for x ∈ [1/2, 1]
The exact solution is:

y(x) =

 100x for x ∈ [0, 1/2]

−400(x− 1)3 for x ∈ [1/2, 1]

Using m = 2 and d = 2, we built splines s ∈ C0. Even in this case the
solution y to be approximated belongs to class C0, but it is the linear in the first
integration subinterval only. Therefore we used a large integration step h1 = 0.5 in
[0, 1/2] and a shorter step h2 in [1/2, 1].
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Figure 2 refers just to the case h1 = 0.5 and h2 = 0.125; there solid line
shows the exact solution in [0, 1] together with the history in [−1, 0]; rectangles show
the integration points and circles show intermadiate points of the numerical solution
computed by means of the analytical expression of spline relating just to the first
three integration intervals (for graphical convenience).
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Fig. 2

It is evident that even in this case results are very satisfactory.
In more details, the numerical solution in x = 1 is computed with an error

equal to 1.0E−2 when h2 = 0.25 and with an error equal to 6.6E−4 when h2 = 0.125.
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