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Abstract. The weighted uniform sampling method to reduce of variance
is investigated by using the multivariate Schoenberg spline operator on the
unit hypercube. The new estimators obtained for the random numerical
integration are numerically compared with the crude Monte Carlo estima-
tors.

1. Introduction

It is known that definite integrals can be estimated by probabilistic consid-
erations, and these are rather when multiple integrals are concerned. The integral
is interpreted as the mean value of certain random variable, which is an unknown
parameter. To estimate this parameter, i.e. the definite integral, one regards the
sample mean of the sampling from a suitable random variable. This sample mean
is an unbiased estimator for the definite integral and is referred as the crude Monte
Carlo estimator.

Generally, this method is not fast–converging ratio to the volume of sampling,
and efficiency depends on the variance of the estimator, which is expressed by the
variance of the integrand. Consequently, for improving the efficiency of Monte Carlo
method, it must reduce as much as possible the variance of the integrated function.
There is a lot of procedures for reducing of the variance in the Monte Carlo method.
In the following we approach the reducing of variance by the so–called weighted uni-
form sampling method, using the multivariate Schoenberg spline operator on the unit
hypercube.

Numerical experiments are considered comparatively with the crude Monte
Carlo estimates.

2. Multivariate B-spline functions

Let Dn = [0, 1]n be the n–dimensional unit hypercube. We consider the
fixed vectors m = (m1, . . . ,mn) and k = (k1, . . . , kn), whose components are integer
positive values, namely mi > 0 and ki > 1, i = 1, n.
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An extended rectangular partition ∆ of the domain Dn is defined by the
following one–dimensional extended partitions:

∆i : t
(i)
1 = · · · = t

(i)
ki

= 0 < t
(i)
ki+1 6 · · · 6 t

(i)
ki+mi−1 < 1 = t

(i)
ki+mi

= · · · = t
(i)
2ki+mi−1,

for all i = 1, n, where t
(i)
j < t

(i)
ki+j , j = 1, ki + mi − 1.

If one denotes the multi–index set

J =
{

j = (j1, . . . , jn)
∣∣ ji = 1,mi + 2ki − 1, i = 1, n

}
,

the partition ∆ is given by the cartesian product

∆ = ∆1 × · · · ×∆n =
{

tj =
(
t
(1)
j1

, . . . , t
(n)
jn

) ∣∣∣∣ j ∈ J

}
.

The points of ∆ are called knots of the partition.
Using the knots of the partition ∆, one defines the (n–variate) B–spline

functions

M i,k (x) = M
(1)
i1,k1

(x1) · · ·M (n)
in,kn

(xn) , x = (x1, . . . , xn) ∈ Dn, (1)

for every multi–index i = (i1, . . . , in) ∈ I, where

I =
{

i = (i1, . . . , in)
∣∣ ij = 1,mj + kj − 1, j = 1, n

}
.

The factors from the right side of the formula (1) are the (one–variate) B–spline
functions, i.e.

M
(j)
ij ,kj

(xj) =
[
t
(j)
ij

, . . . , t
(j)
ij+kj

; kj (t− xj)
kj−1
+

]
, ij = 1,mj + kj − 1, j = 1, n,

where [z0, z1, . . . , zr; f (t)] denotes the r-th divided difference relative to the knots z0,
z1,. . . , zr of the function f (t).

The normalized (n–variate) B–spline functions are defined by

N i,k (x) = N
(1)
i1,k1

(x1) · · ·N (n)
in,kn

(xn) , x = (x1, . . . , xn) ∈ Dn, (2)

for every i = (i1, . . . , in) ∈ I, where

N
(j)
ij ,kj

(xj) =
t
(j)
ij+kj

− t
(j)
ij

kj
M

(j)
ij ,kj

(xj)

are the (one–variate) normalized B–spline functions. We recall the following prop-
erties of B–spline functions:

(i) N i,k (x) > 0,

(ii) N i,k (x) = Ai,kM i,k (x) , Ai,k =
n∏

j=1

t
(j)
ij+kj

− t
(j)
ij

kj
,

(iii)
∑
i∈I

N i,k (x) = 1,

(iv)
∫

Dn

M i,k (x) dx = 1.
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3. Schoenberg spline operator

Using the knots of partition ∆, one defines the nodes

ξi,k =
(
ξ
(1)
i1,k1

, . . . , ξ
(n)
in,kn

)
, i = (i1, . . . , in) ∈ I,

where

ξ
(j)
ij ,kj

=
t
(j)
ij+1 + · · ·+ t

(j)
ij+kj−1

kj − 1
, ij = 1,mj + kj − 1, j = 1, n.

We remark that 0 = ξ
(j)
1,kj

< ξ
(j)
2,kj

< · · · < ξ
(j)
mj+kj−1,kj

= 1, j = 1, n, and conse-
quently the nodes ξi,k, i ∈ I, belong to Dn.

The (n–variate) Schoenberg spline operator relative to a real function f de-
fined on Dn is given by

S∆ (f) (x) = (S∆f) (x) =
∑
i∈I

N i,k (x) f
(
ξi,k

)
, x ∈ Dn. (3)

Some important properties are recalled here:
(i) S∆ (f) (x) is a polynomial spline of degree ki in the i-th variable,
(ii) S∆ (f) defines a positive linear operator,
(iii) If mi = 1, then S∆ (f) (x) is a polynomial of degree ki − 1 in the i-th

variable, and consequently if mi = 1, for all i = 1, n, the S∆ (f) (x) is the
multivariate Bernstein polynomial,

(iv) S∆ (f) = f, for all f (x) = xs1
1 . . . xsn

n , si = 0, 1, i = 1, n,
(v) If f ∈ C (Dn), then S∆ (f) converges uniformly to the function f as

‖∆1‖
k1

+ · · ·+ ‖∆n‖
kn

→ 0, where ‖∆i‖ denotes the norm of the partition ∆i.
Taking into account that

N
(j)
ij ,kj

(0) = δ1,ij , N
(j)
ij ,kj

(1) = δmj+kj−1,ij , ij = 1,mj + kj − 1, j = 1, n,

where δr,s denotes the Kronecker symbol, we have S∆ (f) (e) = f (e) , for all the
vertices e of the hypercube Dn.

4. Crude Monte Carlo method

Let X be an n–dimensional random variable having the probability density
function ρ : Rn → R. In the random numerical integration the multidimensional
integral

I [ρ; f ] =
∫

Rn

ρ (x) f (x)dx (4)

is interpreted as the mean value of the random variable f (X), where f : Rn → R
usually belongs to L2

ρ (Rn), in other words
∫

Rn ρ (x) f2 (x)dx exists, and therefore
the mean value I [ρ; f ] exists.

Using a basic statistical technique, the mean value given by (4) can be es-
timated by taking N independent samples (random numbers) xi, i = 1, N , with
the probability density function ρ. These random numbers are regarded as values of
the independent identically distributed random variables Xi, i = 1, N , i.e. sample
variables with the common probability function ρ.
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We use the same notation ĪN [ρ; f ] for the sample mean of random variables
f (Xi), i = 1, N , and respectively for its value, i.e.

ĪN [ρ; f ] =
1
N

N∑
i=1

f (Xi) ,

ĪN [ρ; f ] =
1
N

N∑
i=1

f (xi) .

The estimator ĪN [ρ; f ] satisfies the following properties:

E
(
ĪN [ρ; f ]

)
= I [ρ; f ] , (unbiased estimator of I [ρ; f ]),

V ar
(
ĪN [ρ; f ]

)
→ 0, N →∞,

ĪN [ρ; f ] → I [ρ; f ] , N →∞, (with probability 1).

Taking into account these results, the crude Monte Carlo integration formula is de-
fined by

I [ρ; f ] =
∫

Rn

ρ (x) f (x)dx u
1
N

N∑
i=1

f (xi) . (5)

It must remark that in (4) the domain of integration is only apparently the
whole n–dimensional Euclidean space. Thus, it is possible that the density ρ (x) = 0,
x /∈ D, where D is a region of the n–dimensional Euclidean space Rn, therefore the
integral (4) becomes

I [ρ; f ] =
∫

D

ρ (x) f (x) dx,

and the crude Monte Carlo method must be interpreted in an appropriate manner.

5. Weighted uniform sampling method

This method was given in [8], reconsidered in [11], and recently in [6] it was
compared with other methods for reducing of the variance.

Let us consider the integral

I [f ] =
∫

D

f (x) dx = V

∫
D

1
V

f (x)dx,

where D ⊂ Rn and V = Volume (D).
The crude Monte Carlo estimator for I [f ] is

Īc
N [f ] =

V

N

N∑
i=1

f (Xi) ,

with the sampling variables Xi, i = 1, N , independent uniformly in the region D, i.e.
these have the common density probability function

ρ (x) =


1
V

, if x ∈ D,

0, if x /∈ D.
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The method of weighted uniform sampling consists in the considering a function
g : D → R such that ∫

D

g (x) dx = 1,

and the corresponding sampling function

Īw
N [g; f ] =

( N∑
i=1

f (Xi)
)/( N∑

i=1

g (Xi)
)

,

where Xi, i = 1, N , are the same above sampling variables.
If one denotes by ΘN and Θ̃N , the sample means of f (Xi) and respectively

of g (Xi), i = 1, N , we have

Īw
N [g; f ] =

ΘN

Θ̃N

·

Taking into account that the sample means

ΘN =
1
N

N∑
i=1

f (Xi) = Īc
N [f ] /V,

Θ̃N =
1
N

N∑
i=1

g (Xi) = Īc
N [g] /V

are unbiased estimators for I [f ] and I [g] = 1 respectively, it results that

E (ΘN )

E
(
Θ̃N

) = I [f ] ·

However Īw
N [g; f ] is a biased estimator for I [f ], satisfying only asymptotical relation

E
(
Īw
N [g; f ]

)
u I [f ] .

For the variance of the estimator Īw
N [g; f ] we have [6]:

V ar(Īw
N [g; f ]) =

V 2

N
V ar [f (X)− I [f ] g (X)] + O

(
1

N2

)
,

that is

V ar(Īw
N [g; f ]) u

V 2

N
V ar [f (X)− I [f ] g (X)] .

On the other hand we have

V ar(Īc
N [f ]) =

V 2

N
V ar [f (X)] ·

In this manner, the comparison of the variances of the two estimators Īc
N [f ] and

Īw
N [g; f ] is reduced to compare the variances V ar [f (X)] and V ar [f (X)−I [f ] g (X)].

Because

V ar [f (X)]− V ar [f (X)− I [f ] g (X)] = I [f ]
[
2Cov (f (X) , g (X))− I [f ]σ2 [g]

]
,
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the covariance Cov (f (X) , g (X)) controls the magnitude of difference of the two
variances, it must that g has the same monotonicity as f .

In the following we consider the function g from the weighted uniform sam-
pling method given by the multivariate spline function corresponding to the integrand
f defined by Schoenberg spline operator.

If the integration region is the unit hypercube Dn, the crude Monte Carlo
estimator is

Īc
N [f ] =

1
N

N∑
i=1

f (Xi) ,

where the sampling variables Xi, i = 1, N , are independent uniformly distributed
on Dn.

The function g from presented weighted uniform sampling method is the
following

g (x) = K · (S∆f) (x) ,

where (S∆f) (x) is given by (3) and the constant K is such that∫
Dn

g (x) dx = 1.

From this condition we have that

g (x) =
(S∆f) (x)∑

i∈I Ai,kf
(
ξi,k

) =
∑

i∈I N i,k (x) f
(
ξi,k

)∑
i∈I Ai,kf

(
ξi,k

) ·

Finally, the random numerical integration formula is given by

Īw
N [g; f ] =

[∑
i∈I Ai,kf

(
ξi,k

)][∑N
i=1 f (xi)

]
∑N

i=1

[∑
i∈I N i,k (xi) f

(
ξi,k

)] · (6)

The random points xi, i = 1, N , are independent uniformly distributed in the hyper-
cube Dn.

We must remark that the spline functions give a more flexible method than
Bernstein polynomials, which have been used in [3], for the same uniform sampling
method. This is because the nodes in the Schoenberg spline operator are not neces-
sarily equidistant, like in the Bernstein operator. Consequently, if some smoothness
informations for the integrand f are known, we can require more nodes in the domain
of integration where the function f has a bed smoothness.

6. Numerical experiments

Numerical examples are considered in the unidimensional (n = 1) and
bidimensional (n = 2) cases for the estimator (6) with the integrand f given by
f (x) = 1

1+x and f (x, y) = 1
1+x+y respectively. The interior knots for the variable

x are 0.1, 0.3, 0.5, 0.7, 0.9, and 0.2, 0.5, 0.8 for the variable y. The numerical results
comprised in the following two tables compare the estimates obtained by the weighted
uniform sampling technique and the crude Monte Carlo method.
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Each table contains: the sampling volume N , the orders k (or k1, k2) of
the spline functions, the estimates given by the two methods Īc

N [f ] and Īw
N [g; f ],

the error estimates Errc and Errw respectively, and the ratio Errc/Errw. We also
remark that the estimations and the error estimates from each row of tables represent
the mean values in one hundred of samplings.

I [f ] = log 2 = 0.69314718...

N k Īc
N [f ] Īw

N [g; f ] Errc Errw Errc/Errw

50 2 0.6911300 0.6931458 2.017e-03 1.394e-06 1447.4

100 2 0.6910238 0.6931734 2.123e-03 2.621e-05 81.0

300 2 0.6921497 0.6931548 9.975e-04 7.649e-06 130.4

500 2 0.6922726 0.6931520 8.745e-04 4.836e-06 180.9

50 3 0.6911300 0.6931688 2.017e-03 2.161e-05 93.3

100 3 0.6910238 0.6931799 2.123e-03 3.274e-05 64.9

300 3 0.6921497 0.6931633 9.975e-04 1.609e-05 62.0

500 3 0.6922726 0.6931567 8.745e-04 9.477e-06 92.3

50 5 0.6911300 0.6931639 2.017e-03 1.674e-05 120.5

100 5 0.6910238 0.6931832 2.123e-03 3.598e-05 59.0

300 5 0.6921497 0.6931694 9.975e-04 2.219e-05 44.9

500 5 0.6922726 0.6931605 8.745e-04 1.336e-05 65.5

I [f ] = log 27
16 = 0.5232481...

N k1 k2 Īc
N [f ] Īw

N [g; f ] Errc Errw Errc/Errw

50 2 2 0.5208017 0.5233035 2.446e-03 5.539e-05 44.2

100 2 2 0.5216731 0.5232890 1.575e-03 4.082e-05 38.6

300 2 2 0.5225268 0.5232643 7.214e-04 1.615e-05 44.7

50 2 3 0.5208017 0.5233042 2.446e-03 5.610e-05 43.6

100 2 3 0.5216731 0.5232827 1.575e-03 3.452e-05 45.6

300 2 3 0.5225268 0.5232604 7.214e-04 1.227e-05 58.8

50 2 4 0.5208017 0.5233092 2.446e-03 6.108e-05 40.1

100 2 4 0.5216731 0.5232843 1.575e-03 3.618e-05 43.5

300 2 4 0.5225268 0.5232619 7.214e-04 1.380e-05 52.3

50 3 4 0.5208017 0.5233095 2.446e-03 6.133e-05 39.9

100 3 4 0.5216731 0.5232821 1.575e-03 3.393e-05 46.4

300 3 4 0.5225268 0.5232607 7.214e-04 1.260e-05 57.3

50 4 4 0.5208017 0.5233096 2.446e-03 6.146e-05 39.8

100 4 4 0.5216731 0.5232812 1.575e-03 3.310e-05 47.6

300 4 4 0.5225268 0.5232622 7.214e-04 1.403e-05 51.4

50 5 5 0.5208017 0.5233079 2.446e-03 5.980e-05 40.9

100 5 5 0.5216731 0.5232791 1.575e-03 3.097e-05 50.8

300 5 5 0.5225268 0.5232640 7.214e-04 1.582e-05 45.6
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