SCHURER-STANCU TYPE OPERATORS

DAN BĂRBOSU
Dedicated to Professor Gheorghe Micula at his $60^{\text {th }}$ anniversary

$$
\begin{aligned}
& \text { Abstract. Considering two non-negative parameters } \alpha, \beta \text { which satisfy } \\
& 0 \leq \alpha \leq \beta \text { and a given non-negative integer } p \text {, the Stancu-Schurer type } \\
& \text { operators } \left.\widetilde{S}_{m, p}^{(\alpha, \beta)}: C(0,1+p]\right) \rightarrow C([0,1]) \\
& \qquad\left(\widetilde{S}_{m, p}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) f\left(\frac{k+\alpha}{m+\beta}\right)
\end{aligned}
$$

are introduced and some approximation properties of these operators are studied.

1. Preliminaries

Let $p \geq 0$ be a given integer. In 1962, F. Schurer (see ([7])), introduced and studied the linear positive operator $\widetilde{B}_{m, p}: C([0,1+p]) \rightarrow C([0,1])$, defined for any $f \in C([0,1+p])$ and any $m \in \mathbb{N}$ by

$$
\begin{equation*}
\left(\widetilde{B}_{m, p} f\right)(x)=\sum_{k=0}^{m+p} \widetilde{p}_{m k}(x) f(k / m) \tag{1.1}
\end{equation*}
$$

where $\widetilde{p}_{m k}(x)=\binom{m+p}{k} x^{k}(1-x)^{m+p-k}$ are the fundamental Schurer polynomials.
Considering the given real parameters α, β which satisfy $0 \leq \alpha \leq \beta$, in 1968, D.D. Stancu (see ([9])), constructed the linear positive operators $P_{m}^{(\alpha, \beta)}: C([0,1]) \rightarrow$ $C([0,1])$ defined for any $f \in C([0,1])$ and any $m \in \mathbb{N}$ by

$$
\begin{equation*}
\left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0} p_{m k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1.2}
\end{equation*}
$$

where $p_{m k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k}$ are the fundamental Bernstein polynomials.
Note that for $p=0$, the operator (1.1) reduces to the classical Bernstein operator and for $\alpha=\beta=0$, the operator (1.2) reduces also to the classical Bernstein operator. Follows that the above operators generalize the classical Bernstein operator.

[^0]Let $\widetilde{S}_{m, p}^{(\alpha, \beta)}: C([0,1+p] \rightarrow C([0,1])$ be defined for any $f \in C([0,1+p])$ and any $m \in \mathbb{N}$, by:

$$
\begin{equation*}
\left(\widetilde{S}_{m, p}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1.3}
\end{equation*}
$$

For $\alpha=\beta=0$ the operator (1.3) reduces to the Schurer operator (1.1) and for $p=0$, (1.3) reduces to the Stancu operator (1.2).

In what follows the operator defined by (1.3) will be called Schurer-Stancu type operator.
The focus of the paper is to investigate approximation properties of operator (1.3).
2. Main results

Lemma 2.1. The Shurer-Stancu operators, defined by (1.3), are linear and positive.
Proof. The assertions follows from definition (1.3).
Like usually, let us to denote by $e_{k}(s)=s^{k}, k \in \mathbb{N}$ the test functions.
Lemma 2.2. For any $x \in[0,1+p]$ and any $m \in \mathbb{N}$ the Schurer-Stancu operators (1.3) verify

$$
\begin{gather*}
\left(\widetilde{S}_{m, p}^{(\alpha, \beta)} e_{0}\right)(x):=\widetilde{S}_{m, p}^{(\alpha, \beta)}(1 ; x)=1 \tag{2.1}\\
\left(\widetilde{S}_{m, p}^{(\alpha, \beta)} e_{1}\right)(x):=\widetilde{S}_{m, p}^{(\alpha, \beta)}(s ; x)=\frac{m+p}{m+\beta} x+\frac{\alpha}{m+\beta} \tag{2.2}\\
\left(\widetilde{S}_{m, p}^{(\alpha, \beta)} e_{2}\right)(x)=\widetilde{S}_{m, p}^{(\alpha, \beta)}\left(s^{2} ; x\right)= \\
=\frac{1}{(m+\beta)^{2}}\left\{(m+p)^{2} x^{2}+(m+p) x(1-x)+\right. \\
\left.+2 \frac{\alpha m(m+p)}{m+\beta} x+\frac{\alpha^{2}(3 m+\beta)}{m+\beta}\right\} \tag{2.3}
\end{gather*}
$$

Proof. Using the definition (1.3), we get

$$
\widetilde{S}_{m, p}^{(\alpha, \beta)}(1 ; x)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x)=\widetilde{B}_{m, k}(x)=\widetilde{B}_{m, p}(1 ; x)=1
$$

where we used a well known property of $\widetilde{B}_{m, p}(\operatorname{see}([7]))$.
Next

$$
\begin{aligned}
\widetilde{S}_{m, p}^{(\alpha, \beta)}(s ; x) & =\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \frac{k+\alpha}{m+\beta}= \\
& =\frac{m}{m+\beta} \sum_{k=0}^{m+\beta} \widetilde{p}_{m, k}(x) \cdot \frac{k}{m}+\frac{\alpha}{m+\beta} \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x)= \\
& =\frac{m}{m+\beta} \widetilde{B}_{m, p}(s ; x)+\frac{\alpha}{m+\beta} \widetilde{B}_{m, p}(1 ; x)
\end{aligned}
$$

But (see ([7])):

$$
\widetilde{B}_{m, p}(s ; x)=\left(1+\frac{p}{m}\right) x, \widetilde{B}_{m, p}(1 ; x)=1
$$

We can then conclude that

$$
\widetilde{S}_{m, p}^{(\alpha, \beta)}(s ; x)=\frac{m+\beta}{m+\beta} x+\frac{\alpha}{m+\beta},
$$

i.e. (2.2) holds.

In a same way, we obtain

$$
\begin{gathered}
\widetilde{S}_{m, p}^{(\alpha, \beta)}\left(s^{2} ; x\right)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \cdot\left(\frac{k+\alpha}{m+\beta}\right)^{2}= \\
=\frac{1}{(m+\beta)^{2}}\left\{m^{2} \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \cdot\left(\frac{k}{m}\right)^{2}+\right. \\
\left.+2 \alpha m \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \frac{k}{m}+\alpha^{2} \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x)\right\}= \\
=\frac{1}{(m+\beta)^{2}}\left\{m^{2} \widetilde{B}_{m, p}\left(s^{2} ; x\right)+2 \alpha m \widetilde{B}_{m, p}(s ; x)+\alpha^{2} \widetilde{B}_{m, p}(1 ; x)\right\}
\end{gathered}
$$

But (see ([7]))

$$
\widetilde{B}_{m, p}\left(s^{2} ; x\right)=\frac{m+p}{m^{2}}\left\{(m+p) x^{2}+x(1-x)\right\}
$$

Taking into account of the above equalities, we get

$$
\begin{aligned}
\widetilde{S}_{m, p}^{(\alpha, \beta)}\left(s^{2} ; x\right) & =\frac{1}{(m+\beta)^{2}}\left\{(m+p)^{2} x^{2}+(m+p) x(1-x)+\right. \\
& \left.+2 \alpha m \cdot \frac{m+p}{m+\beta} x+2 \alpha^{2} \cdot \frac{m}{m+\beta}+\alpha^{2}\right\}= \\
& =\frac{1}{(m+\beta)^{2}}\left\{(m+p)^{2} x^{2}+(m+p) x(1-x)+\right. \\
& \left.+2 \frac{\alpha m(m+p)}{m+\beta} x+\frac{\alpha^{2}(3 m+\beta)}{m+\beta}\right\}
\end{aligned}
$$

i.e. (2.3) holds and the proof ends.

Lemma 2.3. The operators (1.3) verify

$$
\begin{gather*}
\widetilde{S}_{m, p}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right)=\frac{(p-\beta)^{2}}{(m+\beta)^{2}} x^{2}+\frac{m+p}{(m+\beta)^{2}} x(1-x)+ \\
+\frac{2 \alpha\left(m p-2 m \beta-\beta^{2}\right)}{(m+\beta)^{3}} x+\frac{\alpha^{2}(3 m+\beta)}{(m+\beta)^{3}} \tag{2.4}
\end{gather*}
$$

Proof. The linearity of $\widetilde{S}_{m, p}^{(\alpha, \beta)}$ (see Lemma 2.1) leads us to

$$
\begin{aligned}
\widetilde{S}_{m, p}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right) & =\widetilde{S}_{m, p}^{(\alpha, \beta)}\left(s^{2} ; x\right)-2 x \widetilde{S}_{m, p}^{(\alpha, \beta)}(s ; x)+ \\
& +x^{2} \widetilde{S}_{m, p}^{(\alpha, \beta)}(1 ; x)
\end{aligned}
$$

Applying next Lemma 2.2, we get (2.4).

We are now ready to establish an important convergence property of the sequence $\left\{\widetilde{S}_{m, p}^{(\alpha, \beta)} f\right\}_{m \in \mathbb{N}}$ contained in
Theorem 2.1. The sequence $\left\{\widetilde{S}_{m, p}^{(\alpha, \beta)} f\right\}_{m \in \mathbb{N}}$ converges to f, uniformly on $[0,1]$, for any $f \in C([0,1+p])$.

Proof. Because
$\lim _{m \rightarrow \infty}\left\{\frac{(p-\beta)^{2}}{(m+\beta)^{2}} x^{2} \frac{m+p}{(m+\beta)^{2}} x(1-x)+\frac{2 \alpha\left(m p-2 m \beta-\beta^{2}\right)}{(m+\beta)^{3}} x+\frac{\alpha^{2}(3 m+\beta)}{(m+\beta)^{3}}\right\}=0$
uniformly on $[0,1]$, we can apply the well known Bohman-Korovkin Theorem and we arrive to the desired result.

For evaluating the rate of convergence, we will use the first order modulus of smoothness (see ([1])). Let us to recall the definition of this modulus.
Definition 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a real valued function, bounded on $[a, b]$. The first order modulus of smoothness is the function $\omega_{1}:[0, b-a] \rightarrow[0,+\infty)$, defined for any $\delta \in[0, b-a]$ by

$$
\begin{equation*}
\omega_{1}(f ; \delta)=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: x, x^{\prime} \in[0, b-a],\left|x-x^{\prime}\right| \leq \delta\right\} \tag{2.5}
\end{equation*}
$$

It is well known the following result, due to O. Shisha and B. Mond (see([8])). Theorem 2.2. Let $\left(L_{m}\right)_{m \in \mathbb{N}}, L_{m}: C([a, b]) \rightarrow B([a, b])$ be a sequence of linear positive operators, reproducing the constant functions. For any $f \in C([a, b])$, any $x \in[a, b]$ and any $\delta \in[0, b-a]$, the following

$$
\begin{equation*}
\left|\left(L_{m} f\right)(x)-f(x)\right| \leq\left\{1+\delta^{-1} \sqrt{L_{m}\left(\left(e_{1}-x\right)^{2} ; x\right)}\right\} \omega_{1}(\delta) \tag{2.6}
\end{equation*}
$$

holds.
Theorem 2.3. For any $f \in C([0,1+p])$ and any $x \in[0,1]$ the Schurer-Stancu operators (1.3) verify

$$
\begin{equation*}
\left|\left(\widetilde{S}_{m_{1}}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq 2 \omega_{1}\left(\sqrt{\delta_{m, p, \alpha, \beta, x}}\right) \tag{2.7}
\end{equation*}
$$

where:

$$
\begin{align*}
\delta_{m, p, \alpha, \beta, x}= & \frac{(p-\beta)^{2}}{(m+\beta)^{2}}+\frac{m+p}{(m+\beta)^{2}} x(1-x)+ \\
+ & \frac{2 \alpha\left(m p-2 m \beta-\beta^{2}\right)}{(m+\beta)^{3}} x+\frac{\alpha^{2}(3 m+\beta)}{(m+\beta)^{2}} \tag{2.8}\\
& \beta \in\left[0, \sqrt{m^{2}+m p}\right] \tag{2.9}
\end{align*}
$$

Proof. Applying Theorem 2.2 and Lemma 2.3, follows

$$
\left|\left(S_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq\left(1+\delta^{-1} \cdot \sqrt{\delta_{m, p, \alpha, \beta, x}}\right) \omega_{1}(\delta)
$$

for any $\delta>0$. Choosing $\delta=\sqrt{\delta_{m, p, \alpha, \beta, x}}$ in the above inequality we arrive to (2.8) and the proof ends.

Remark 2.1. In Theorem 2.3 is expressed the order of local approximation of f by $\widetilde{S}_{m}^{(\alpha, \beta)} f$. For obtaining the order of global approximation, we must take in (2.8) the maximum of $\delta_{m, p, \alpha, \beta, x}$ when $x \in[0,1]$. Clearly, this maximum depends of the relations between α, β, p.

References

[1] Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, ClujNapoca, 2000 (Romanian).
[2] Bărbosu, D., A Voronovskaja type theorem for the operator of D.D. Stancu, BULLETINS for APPLIED \& COMPUTER MATHEMATICS, BAM 1998 - C/2000, T.U. Budapest (2002), 175-182.
[3] Bărbosu, D., Bărbosu, M., Properties of the fundamental polynomials of BernsteinSchurer (to appear in Procced. of "icam3", International Conference on Applied Mathematics, 3-th Edition, Baia Mare - Borşa, october 10-13, 2002).
[4] Bărbosu, D., The Voronovskaja theorem for Bernstein-Schurer operators, (to appear in Procced. of "icam3", International Conference on Applied Mathematics, 3-th Edition, Baia Mare - Borşa, october 10-13, 2002).
[5] Bohman, H., On approximation of continuous and analitic functions, Ark. Mat., 2(1952), 43-56.
[6] Korovkin, P.P., On convergence of linear positive operators in the space of continuous functions, (Russian), Dokl. Akad. Nauk SSSR (N.S.), 90(1953), 961-964.
[7] Schurer, F., Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft:Report, 1962.
[8] Shisha, O., Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A, 60(1968), 1196-1200.
[9] Stancu D.D., Approximation of functions by a new class of linear polynomials operators, Rev. Roum. Math. Pures et Appl., 13(1968), No.8, 1173-1194.
[10] Stancu, D.D., Coman, Gh., Agratini, O., Analiză numerică şi teoria aproximării, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian).

North University of Baia Mare, Faculty of Sciences,
Department of Mathematics and Computer Science, Victoriei 76, 4800 Baia Mare, Romania
E-mail address: dbarbosu@ubm.ro, danbarbosu@yahoo.com

[^0]: Received by the editors: 29.04.2003.
 2000 Mathematics Subject Classification. 41A36, 41A25, 41A63.
 Key words and phrases. linear positive operators, Bohman-Korovkin theorem, first order modulus of smoothness, Shisha-Mond theorem.

