SOME APPLICATIONS OF AN ASYMPTOTICAL FIXED POINT THEOREMS FOR INTEGRAL EQUATIONS WITH DEVIATING ARGUMENT

T. BARANYAI
Dedicated to Professor Gheorghe Micula at his $60^{\text {th }}$ anniversary

Abstract. In this paper we will present an application of an asymptotical fixed point theorem for integral equation with deviating argument.

The following result is well known : ([1], [2])
Theorem 1. Let the following integral equation with deviating argument:

$$
\begin{equation*}
x(t)=h(t)+\int_{a}^{t} f(s, x(g(s))) d s, t \in[a, b] . \tag{1}
\end{equation*}
$$

We suppose that:
(a) $h \in C([a, b],[a, b]), h(a)=0$
(b) $g:[a, b] \longrightarrow[a, b], a \leq g(t) \leq t \leq b$
(c) $f \in C([a, b] \times \mathbb{R})$
$\exists L_{f}>0,|f(t, u)-f(t, v)| \leq L_{f}|u-v|$ for all $t \in[a, b], u, v \in \mathbb{R}$
Then the equation (1) has an unique solution in $C[a, b]$.
In proving of this theorem are apply the contraction principle for the following operator:

$$
\begin{gathered}
A: C[a, b] \longrightarrow C[a, b] \\
A(x)(t):=h(t)+\int_{a}^{t} f(s, x(g(s))) d s, t \in[a, b]
\end{gathered}
$$

In the following we prove the existence and the unicity of the solution of the integral equation (1) without using condition (b) for the operator g. In the proof of theorem 1 are use the Bielicki norm, but in the following theorem we use the Cebîşev norm and an asymptotic fixed point principle.

[^0]Let X be a Banach space. We consider the following integral equation:

$$
\begin{equation*}
x(t)=h(t)+\int_{a}^{t} f(s, x(g(s))) d s, t \in[a, b] \tag{2}
\end{equation*}
$$

Theorem 2. We suppose that:
(a) $g \in C([a, b],[a, b])$
(b) $h \in C([a, b],[a, b]), h(a)=0$
(c) $f \in C([a, b] \times X, X)$
$\exists L_{f}>0,\|f(t, u)-f(t, v)\|_{X} \leq L_{f}\|u-v\|_{X}$ for all $t \in[a, b], u, v \in X$.
Then the equation (2) has an unique solution in $C([a, b], X)$.
Proof. We consider the operator

$$
\begin{gathered}
A: C([a, b], X) \longrightarrow C([a, b], X) \\
A(x)(t):=h(t)+\int_{a}^{t} f(s, x(g(s))) d s
\end{gathered}
$$

Then the iterates of A are:

$$
\begin{aligned}
A^{2}(x)(t)= & h(t)+\int_{a}^{t} f(s, A(x)(g(s))) d s \\
& \ldots \\
A^{n+1}(x)(t)= & h(t)+\int_{a}^{t} f\left(s, A^{n}(x)(g(s))\right) d s
\end{aligned}
$$

We have the following estimations ([3]):

$$
\begin{gathered}
|A(x)(t)-A(y)(t)| \leq L_{f} \int_{a}^{t}|x(g(s))-y(g(s))| d s \leq \\
\leq L_{f}\|x-y\|_{C} \frac{t-a}{1!}, \quad \forall t \in[a, b] \quad\left(\| \|_{C} \text { is the Cebîşev norm }\right) \\
\left|A^{2}(x)(t)-A^{2}(y)(t)\right| \leq L_{f} \int_{a}^{t}|x(A(s))-y(A(s))| d s \leq \\
\leq L_{f}\|x-y\|_{C} \int_{a}^{t} \frac{s-a}{1!} d s \leq L_{f}^{2}\|x-y\|_{C} \frac{(t-a)^{2}}{2!}, \quad \forall t \in[a, b] \\
\quad \ldots \\
\left|A^{k}(x)(t)-A^{k}(y)(t)\right| \leq L_{f}^{k}\|x-y\|_{C} \frac{(t-a)^{k}}{k!}, \quad \forall t \in[a, b], \forall k \in \mathbb{N} \\
\left\|A^{k}(x)-A^{k}(y)\right\| \leq \frac{\left[L_{f}(b-a)\right]^{k}}{k!}\|x-y\|_{C}, \quad \forall k \in \mathbb{N} .
\end{gathered}
$$

So there exists a natural number k such that that:

$$
A^{k} \text { is contraction with the contraction constant } \alpha=\frac{\left[L_{f}(b-a)\right]^{k}}{k!}<1
$$

Now we apply an asymptotical variant of contraction principle ([2]) and we have that, the integral equation (2) has an unique solution. Q.E.D.

Remarks.

1. When we take $X=\mathbb{R}^{m}$ we have a result for the following system of integral equations:

$$
\begin{aligned}
x_{1}(t)= & \left.h_{1}(t)+\int_{a}^{t} f_{1}\left(s, x_{1}(g(s)), \ldots, x_{m}(g(s))\right)\right) d s \\
x_{2}(t)= & \left.h_{2}(t)+\int_{a}^{t} f_{2}\left(s, x_{1}(g(s)), \ldots, x_{m}(g(s))\right)\right) d s \quad t \in[a, b] \\
& \ldots \\
x_{m}(t)= & \left.h_{m}(t)+\int_{a}^{t} f_{m}\left(s, x_{1}(g(s)), \ldots, x_{m}(g(s))\right)\right) d s
\end{aligned}
$$

2. When $X=l^{2}(\mathbb{R})$ we have a result for the following infinit sistem of integral equations:

$$
x_{i}(t)=h_{i}(t)+\int_{a}^{t} f_{i}\left(s, x_{1}(g(s)), \ldots, x_{n}(g(s)), \ldots\right) d s, \quad t \in[a, b], i \in \mathbb{N}^{*}
$$

References

[1] I. A. Rus, Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
[2] I. A. Rus, Generalized contractions and applications, Cluj University Press, ClujNapoca, 2001.
[3] I. A. Rus, Aplicaţii cu iterate φ-contracţii, Studia Univ. Babeş-Bolyai, Mathematica, 25, (1980), fasc.4, 47-50.

Department of Mathematics, Babeş-Bolyai University,
Teacher Training College, Satu Mare
E-mail address: baratun@yahoo.com

[^0]: Received by the editors: 29.09 .2003 .
 2000 Mathematics Subject Classification. 45D05, 47H10.
 Key words and phrases. Banach space, asymptotical fixed point theorems, integral equations with deviating argument.

