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Abstract. In this paper we will present an application of an asymptotical
fixed point theorem for integral equation with deviating argument.

The following result is well known : ([1], [2])
Theorem 1. Let the following integral equation with deviating argument:

x(t) = h(t) +

t∫
a

f(s, x(g(s)))ds, t ∈ [a, b]. (1)

We suppose that:
(a) h ∈ C([a, b], [a, b]), h(a) = 0
(b) g : [a, b] −→ [a, b], a ≤ g(t) ≤ t ≤ b
(c) f ∈ C([a, b]× R)
∃Lf > 0, |f(t, u)− f(t, v)| ≤ Lf |u− v| for all t ∈ [a, b], u, v ∈ R

Then the equation (1) has an unique solution in C[a, b].
In proving of this theorem are apply the contraction principle for the following

operator:

A : C[a, b] −→ C[a, b] ,

A(x)(t) := h(t) +

t∫
a

f(s, x(g(s)))ds, t ∈ [a, b].

In the following we prove the existence and the unicity of the solution of the
integral equation (1) without using condition (b) for the operator g. In the proof of
theorem 1 are use the Bielicki norm, but in the following theorem we use the Ceb̂ışev
norm and an asymptotic fixed point principle.
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Let X be a Banach space. We consider the following integral equation:

x(t) = h(t) +

t∫
a

f(s, x(g(s)))ds, t ∈ [a, b] (2)

Theorem 2. We suppose that:
(a) g ∈ C([a, b], [a, b])
(b) h ∈ C([a, b], [a, b]), h(a) = 0
(c) f ∈ C([a, b]×X, X)
∃Lf > 0, ‖f(t, u)− f(t, v)‖X ≤ Lf ‖u− v‖X for all t ∈ [a, b], u, v ∈ X.

Then the equation (2) has an unique solution in C([a, b], X).
Proof. We consider the operator

A : C([a, b], X) −→ C([a, b], X)

A(x)(t) := h(t) +

t∫
a

f(s, x(g(s)))ds,

Then the iterates of A are:

A2(x)(t) = h(t) +

t∫
a

f(s,A(x)(g(s)))ds,

. . .

An+1(x)(t) = h(t) +

t∫
a

f(s,An(x)(g(s)))ds

We have the following estimations ([3]):

|A(x)(t)−A(y)(t)| ≤ Lf

t∫
a

|x(g(s))− y(g(s))| ds ≤

≤ Lf ‖x− y‖C

t− a

1!
, ∀t ∈ [a, b] (‖ ‖C is the Ceb̂ışev norm)

∣∣A2(x)(t)−A2(y)(t)
∣∣ ≤ Lf

t∫
a

|x(A(s))− y(A(s))| ds ≤

≤ Lf ‖x− y‖C

t∫
a

s− a

1!
ds ≤ L2

f ‖x− y‖C

(t− a)2

2!
, ∀t ∈ [a, b]

. . .∣∣Ak(x)(t)−Ak(y)(t)
∣∣ ≤ Lk

f ‖x− y‖C

(t− a)k

k!
, ∀t ∈ [a, b], ∀k ∈ N∥∥Ak(x)−Ak(y)

∥∥ ≤ [Lf (b− a)]k

k!
‖x− y‖C , ∀k ∈ N.
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So there exists a natural number k such that that:

Ak is contraction with the contraction constant α =
[Lf (b− a)]k

k!
< 1.

Now we apply an asymptotical variant of contraction principle ([2]) and we
have that, the integral equation (2) has an unique solution. Q.E.D.

Remarks.
1. When we take X = Rm we have a result for the following system of integral

equations:

x1(t) = h1(t) +

t∫
a

f1(s, x1(g(s)), . . . , xm(g(s))))ds

x2(t) = h2(t) +

t∫
a

f2(s, x1(g(s)), . . . , xm(g(s))))ds t ∈ [a, b]

. . .

xm(t) = hm(t) +

t∫
a

fm(s, x1(g(s)), . . . , xm(g(s))))ds

2. When X = l2(R) we have a result for the following infinit sistem of integral
equations:

xi(t) = hi(t) +

t∫
a

fi(s, x1(g(s)), . . . , xn(g(s)), . . . )ds, t ∈ [a, b], i ∈ N∗.
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