GENERAL EXISTENCE RESULTS FOR THE ZEROS OF A COMPACT NONLINEAR OPERATOR DEFINED IN A FUNCTIONAL SPACE

CEZAR AVRAMESCU

Dedicated to Professor Gheorghe Micula at his $60^{\text {th }}$ anniversary

Abstract

Let X be a Banach space whose the elements are functions defined on a non-empty set Ω with values in a prehilbertian space H. Let $B:=\{x \in X,\|x\| \leq 1\}, S:=\{x \in X,\|x\|=1\}$ and let $f: \bar{B} \rightarrow X$ be a compact operator. one shows that if f fulfills on S certain conditions, then the equation $(*) f(x)=0$ admits solutions. The particular case when Ω is a topological compact space and $X=C\left(\Omega, \mathbb{R}^{n}\right)$ is also considered.

1. Many existence problems in analysis are reduced to an equation of type

$$
\begin{equation*}
f(x)=0, \tag{1}
\end{equation*}
$$

where f is an operator defined between two adequate functional spaces. Generally, the problem (1) is reduced many times to a fixed point problem for the mapping $x \rightarrow x+f(x)$, but not always this reducing is adequate.

Through the results concerning directly the equation (1) we mention the one of Miranda [3], which considers the particular case when f maps in a finite dimensional space. The case considered in what follows is much more general.
2. Let Ω be a non-empty arbitrary set, H be a real prehilbertian space and X be a subset of H^{Ω}; suppose that X is a Banach space endowed with the norm $\|\cdot\|$.

Denote by $\langle\|\rangle$ the scalar product of H and define a mapping from $X \times X$ to \mathbb{R}^{Ω},

$$
\begin{equation*}
(x, y) \rightarrow[x \mid y](t):=\langle x(t) \mid y(t)\rangle, \text { for all } t \in \Omega \tag{2}
\end{equation*}
$$

Let us consider

$$
\begin{equation*}
[x \mid y]>0 \tag{3}
\end{equation*}
$$

if

$$
\begin{equation*}
[x \mid y](t)>0, \text { for all } t \in \Omega \tag{4}
\end{equation*}
$$

for the inequality " $<$ " the convention being the same.
Denote

$$
\bar{B}:=\{x \in X, \quad\|x\| \leq 1\}, S:=\{x \in X, \quad\|x\|=1\} .
$$

Let $f: \bar{B} \rightarrow X$ be a given operator; one can proof the following result.
Theorem 1. Suppose that:
i) f is a compact operator;
ii) $[x \mid f(x)]<0$, for all $x \in S$;
iii) $0 \notin \overline{f(\bar{B})} \backslash f(\bar{B})$.

Then the equation (1) admits solutions.
Proof. By means of contradiction suppose that

$$
\begin{equation*}
f(x) \neq 0, x \in \bar{B} \tag{5}
\end{equation*}
$$

Then the operator

$$
\begin{equation*}
F(x):=\frac{1}{\|f(x)\|} \cdot f(x) \tag{6}
\end{equation*}
$$

is defined on \bar{B} and is continuous; in addition,

$$
\begin{equation*}
F(\bar{B}) \subset S \tag{7}
\end{equation*}
$$

We shall proof that $F(\bar{B})$ is a relatively compact set.
If $y_{n} \in F(\bar{B})$, then $y_{n}=F\left(x_{n}\right), x_{n} \in \bar{B}$, i.e.

$$
y_{n}=\frac{1}{\left\|f\left(x_{n}\right)\right\|} \cdot f\left(x_{n}\right)
$$

Since $f(\bar{B})$ is relatively compact, it results that $\left(f\left(x_{n}\right)\right)_{n}$ contains a convergent subsequence; one can admit that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=z \in \overline{f(\bar{B})} \tag{8}
\end{equation*}
$$

It remains to show that $z \neq 0$ to conclude that $\left(y_{n}\right)_{n}$ given by (7) is convergent. But

$$
\begin{equation*}
0 \in \overline{f(\bar{B})} \tag{9}
\end{equation*}
$$

implies by (5)

$$
0 \in \overline{f(\bar{B})} \backslash f(\bar{B})
$$

which is not true.
Hence, F fulfills the hypotheses of Schauder's fixed point theorem and so it will admit a fixed point which, by (6) will belong to S.

By

$$
x=F(x), x \in S
$$

it results

$$
\begin{equation*}
x \cdot\|f(x)\|=f(x), x \in S \tag{10}
\end{equation*}
$$

therefore

$$
\begin{equation*}
[x \mid x]^{2} \cdot\|f(x)\|=[x \mid f(x)] . \tag{11}
\end{equation*}
$$

But

$$
[x \mid x]^{2} \geq 0
$$

which contradicts hypothesis ii).
The theorem is proved.

Remark 1. Hypothesis iii) can be replaced with a formulation of "aprioric estimate" type, i.e.
ii) if $0 \in \overline{f(\bar{B})}$, then $0 \in f(\bar{B})$.

Remark 2. The importance of the result is the fact that one doesn't suppose any link between the topologies of H and X and the special properties for the applications $x: \Omega \rightarrow X$, too.

Remark 3. Hypothesis iii) is useless if f is a closed operator or if $\operatorname{dim} X<$ ∞.
3. In this section we consider the case

$$
X=C\left(\Omega, \mathbb{R}^{n}\right):=\left\{x: \Omega \rightarrow \mathbb{R}^{n}, x \text { continuous }\right\}
$$

Suppose that Ω is a compact topological space and consider in X the norm

$$
\|x\|:=\sup _{t \in \Omega}|x(t)|,
$$

where the norm in \mathbb{R}^{n} is given by

$$
|x|=\max _{1 \leq i \leq n}\left\{\left|x_{i}\right|\right\}, x=\left(x_{i}\right)_{i \in \overline{1, n}} \in \mathbb{R}^{n}
$$

Obviously, the result contained in Theorem 1 yields, but in this case one can replace hypothesis ii) with another weaker one. To this aim, set

$$
\begin{aligned}
S_{i}^{+} & :=\left\{x \in \bar{B}, x(t)=\left(x_{j}(t)\right)_{j \in \overline{1, n}}, x_{j}(t) \equiv 1\right\} \\
S_{i}^{-} & :=\left\{x \in \bar{B}, x(t)=\left(x_{j}(t)\right)_{j \in \overline{1, n}}, x_{j}(t) \equiv-1\right\} .
\end{aligned}
$$

Clearly,

$$
\cup_{i=1}^{n}\left(S_{i}^{+} \cup S_{i}^{-}\right) \subset S
$$

Theorem 2. Suppose that:
i) $f=\left(f_{i}\right)_{i \in \overline{1, n}}: \bar{B} \rightarrow X$ is a compact operator;
ii) $\left\{\begin{array}{l}\left(f_{i}(x)\right)(t) \leq 0, x \in S_{i}^{+}, t \in \Omega, i \in \overline{1, n} \\ \left(f_{i}(x)\right)(t) \geq 0, x \in S_{i}^{-}, t \in \Omega, i \in \overline{1, n}\end{array}\right.$;
iii) $0 \notin \overline{f(\bar{B})} \backslash f(\bar{B})$.

Then the equation (1) admits solutions.
Proof. As in Theorem 1, if (5) holds, then by using again the operator F, one can deduce similarly the relation (10).

One gets

$$
(x \in S) \Longleftrightarrow\left(\sup _{t \in \Omega}|x(t)|=1\right) \Longleftrightarrow\left((\exists) t_{0} \in \Omega, \quad\left|x\left(t_{0}\right)\right|=1\right)
$$

Hence, since $x \in S$,

$$
\begin{equation*}
\text { (ヨ) } t_{0} \in \Omega \text {, (} \exists \text {) } i \in \overline{1, n},\left|x_{i}\left(t_{0}\right)\right|=1 \text {. } \tag{12}
\end{equation*}
$$

Suppose firstly that $x_{i}\left(t_{0}\right)=1$; by (5) it follows

$$
x_{i}\left(t_{0}\right) \cdot\|f(x)\|=\left(f_{i}(x)\right)\left(t_{0}\right),
$$

therefore

$$
f_{i}(x)\left(t_{0}\right)>0 .
$$

By starting from the fixed point $x=\left(x_{i}\right)_{i \in \overline{1, n}}$ we build $\widetilde{x}: \Omega \rightarrow \mathbb{R}^{n}$ by setting

$$
\widetilde{x}(t)=\left(x_{1}(t), \ldots, x_{i-1}(t), 1, x_{i+1}(t), \ldots, x_{n}(t)\right) .
$$

Obviously,

$$
\widetilde{x} \in S_{i}^{+}
$$

and so, by hypotheses,

$$
\left(f_{i}(\widetilde{x})\right)(t) \leq 0, t \in \Omega .
$$

Since

$$
\widetilde{x}\left(t_{0}\right)=x\left(t_{0}\right)
$$

and (14) one obtains

$$
\left(f_{i}(x)\right)\left(t_{0}\right) \leq 0,
$$

which contradicts (13)

References

[1] Avramescu, C., Some remarks about Miranda's theorem, An. Univ. Craiova, Vol. XXVII (2000), p. 9-13.
[2] Avramescu, C., A generalization of Miranda's theorem, SFPT Cluj (2002), p. 121-129.
[3] Miranda, C., Un’osservazione su un teorema di Brouwer, Bul. U.M.I. 2, Vol. 3 (19401941), p. 82-87

Department of Mathematics, University of Craiova, 13 A.I. Cuza Street, 1100 Craiova, Romania
E-mail address: cezaravramescu@hotmail.com

