STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLVIII, Number 3, September 2003

GENERAL EXISTENCE RESULTS FOR THE ZEROS OF A COMPACT NONLINEAR OPERATOR DEFINED IN A FUNCTIONAL SPACE

CEZAR AVRAMESCU

Dedicated to Professor Gheorghe Micula at his 60th anniversary

Abstract. Let X be a Banach space whose the elements are functions defined on a non-empty set Ω with values in a prehilbertian space H. Let $B := \{x \in X, \|x\| \le 1\}, S := \{x \in X, \|x\| = 1\}$ and let $f : \overline{B} \to X$ be a compact operator. one shows that if f fulfills on S certain conditions, then the equation (*) f(x) = 0 admits solutions. The particular case when Ω is a topological compact space and $X = C(\Omega, \mathbb{R}^n)$ is also considered.

1. Many existence problems in analysis are reduced to an equation of type

$$f\left(x\right) = 0,\tag{1}$$

where f is an operator defined between two adequate functional spaces. Generally, the problem (1) is reduced many times to a fixed point problem for the mapping $x \to x + f(x)$, but not always this reducing is adequate.

Through the results concerning directly the equation (1) we mention the one of Miranda [3], which considers the particular case when f maps in a finite dimensional space. The case considered in what follows is much more general.

2. Let Ω be a non-empty arbitrary set, H be a real prehilbertian space and X be a subset of H^{Ω} ; suppose that X is a Banach space endowed with the norm $\|\cdot\|$. Denote by $\langle | \rangle$ the scalar product of H and define a mapping from $X \times X$ to

 \mathbb{R}^{Ω} ,

$$(x, y) \to [x \mid y](t) := \langle x(t) \mid y(t) \rangle, \text{ for all } t \in \Omega.$$
(2)

Let us consider

$$[x \mid y] > 0 \tag{3}$$

if

$$x \mid y](t) > 0, \text{ for all } t \in \Omega, \tag{4}$$

for the inequality "<" the convention being the same. Denote

 $\overline{B} := \{ x \in X, \ \|x\| \le 1 \}, \ S := \{ x \in X, \ \|x\| = 1 \}.$

Received by the editors: 18.06.2002.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 47H99.

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases.}\ \mathit{Fixed}\ \mathit{point}\ \mathit{theorems},\ \mathit{Zeros}\ \mathit{of}\ \mathit{nonlinear}\ \mathit{operator.}$

CEZAR AVRAMESCU

Let $f : \overline{B} \to X$ be a given operator; one can proof the following result. **Theorem 1.** Suppose that:

i) f is a compact operator; ii) $[x \mid f(x)] < 0$, for all $x \in S$; iii) $0 \notin \overline{f(B)} \setminus f(\overline{B})$. Then the equation (1) admits solutions. **Proof.** By means of contradiction suppose that

$$f(x) \neq 0, \ x \in \overline{B}.$$
 (5)

Then the operator

$$F(x) := \frac{1}{\|f(x)\|} \cdot f(x) \tag{6}$$

is defined on \overline{B} and is continuous; in addition,

$$F(\overline{B}) \subset S. \tag{7}$$

We shall proof that $F(\overline{B})$ is a relatively compact set. If $y_n \in F(\overline{B})$, then $y_n = F(x_n), x_n \in \overline{B}$, i.e.

$$y_n = \frac{1}{\left\| f\left(x_n\right) \right\|} \cdot f\left(x_n\right).$$

Since $f(\overline{B})$ is relatively compact, it results that $(f(x_n))_n$ contains a convergent subsequence; one can admit that

$$\lim_{n \to \infty} f(x_n) = z \in \overline{f(\overline{B})}.$$
(8)

It remains to show that $z \neq 0$ to conclude that $(y_n)_n$ given by (7) is convergent. But

$$0 \in f\left(\overline{B}\right) \tag{9}$$

implies by (5)

$$0\in\overline{f\left(\overline{B}\right)}\backslash f\left(\overline{B}\right),$$

which is not true.

Hence, F fulfills the hypotheses of Schauder's fixed point theorem and so it will admit a fixed point which, by (6) will belong to S. By

 $x = F(x), x \in S$

$$x \cdot \|f(x)\| = f(x), \ x \in S,$$
 (10)

therefore

it results

$$[x \mid x]^{2} \cdot ||f(x)|| = [x \mid f(x)].$$
(11)

But

$$\left[x \mid x\right]^2 \ge 0$$

which contradicts hypothesis ii).

The theorem is proved.

Remark 1. Hypothesis iii) can be replaced with a formulation of "aprioric estimate" type, i.e.

ii) if $0 \in f(\overline{B})$, then $0 \in f(\overline{B})$.

Remark 2. The importance of the result is the fact that one doesn't suppose any link between the topologies of H and X and the special properties for the applications $x: \Omega \to X$, too.

Remark 3. Hypothesis iii) is useless if f is a closed operator or if dim X < ∞ .

3. In this section we consider the case

 $X = C(\Omega, \mathbb{R}^n) := \{ x : \Omega \to \mathbb{R}^n, x \text{ continuous} \}.$

Suppose that Ω is a compact topological space and consider in X the norm

$$\|x\| := \sup_{t \in \Omega} |x(t)|,$$

where the norm in \mathbb{R}^n is given by

$$|x| = \max_{1 \le i \le n} \{|x_i|\}, \ x = (x_i)_{i \in \overline{1,n}} \in \mathbb{R}^n.$$

Obviously, the result contained in Theorem 1 yields, but in this case one can replace hypothesis ii) with another weaker one. To this aim, set

$$S_i^+ := \left\{ x \in \overline{B}, \ x(t) = (x_j(t))_{j \in \overline{1,n}}, \ x_j(t) \equiv 1 \right\}$$
$$S_i^- := \left\{ x \in \overline{B}, \ x(t) = (x_j(t))_{j \in \overline{1,n}}, \ x_j(t) \equiv -1 \right\}.$$

Clearly,

$$\cup_{i=1}^{n} \left(S_i^+ \cup S_i^- \right) \subset S_i$$

Theorem 2. Suppose that:

 $\begin{array}{l} i) \ f = (f_i)_{i \in \overline{1,n}} : \overline{B} \to X \ is \ a \ compact \ operator; \\ ii) \left\{ \begin{array}{l} (f_i \left(x \right)) \left(t \right) \leq 0, \ x \in S_i^+, \ t \in \Omega, \ i \in \overline{1,n} \\ (f_i \left(x \right)) \left(t \right) \geq 0, \ x \in S_i^-, \ t \in \Omega, \ i \in \overline{1,n} \end{array} \right.; \end{array}$

iii)
$$0 \notin f(\overline{B}) \setminus f(\overline{B})$$

Then the equation (1) admits solutions.

Proof. As in Theorem 1, if (5) holds, then by using again the operator F, one can deduce similarly the relation (10).

One gets

$$(x \in S) \Longleftrightarrow \left(\sup_{t \in \Omega} |x(t)| = 1\right) \Longleftrightarrow \left((\exists) \ t_0 \in \Omega, \ |x(t_0)| = 1\right).$$

Hence, since $x \in S$,

$$(\exists) \ t_0 \in \Omega, \ (\exists) \ i \in \overline{1, n}, \ |x_i(t_0)| = 1.$$
(12)
restly that $x_i(t_0) = 1$: by (5) it follows

Suppose firstly that $x_i(t_0) = 1$; by (5) it follows $x_i(t_0) = \|f(x)\| - (f_i(x))(t_0)$

$$x_{i}(t_{0}) \cdot ||f(x)|| = (f_{i}(x))(t_{0}),$$

therefore

$$f_i\left(x\right)\left(t_0\right) > 0.$$

CEZAR AVRAMESCU

By starting from the fixed point $x = (x_i)_{i \in \overline{1,n}}$ we build $\widetilde{x} : \Omega \to \mathbb{R}^n$ by setting

 $\widetilde{x}(t) = (x_1(t), ..., x_{i-1}(t), 1, x_{i+1}(t), ..., x_n(t)).$

 $\widetilde{x} \in S_i^+$

 $(f_i(\widetilde{x}))(t) \le 0, t \in \Omega.$

 $\widetilde{x}\left(t_{0}\right) = x\left(t_{0}\right)$

 $\left(f_{i}\left(x\right)\right)\left(t_{0}\right) \leq 0,$

Obviously,

and so, by hypotheses,

Since

and (14) one obtains

which contradicts (13).

References

- [1] Avramescu, C., Some remarks about Miranda's theorem, An. Univ. Craiova, Vol. XXVII (2000), p. 9-13.
- [2] Avramescu, C., A generalization of Miranda's theorem, SFPT Cluj (2002), p. 121-129.
 [3] Miranda, C., Un'osservazione su un teorema di Brouwer, Bul. U.M.I. 2, Vol. 3 (1940-1941), p. 82-87.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, 13 A.I. CUZA STREET, 1100 CRAIOVA, ROMANIA E-mail address: cezaravramescu@hotmail.com