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Abstract. Two systems of equations of motion describing two charged
particles in the framework of classical electrodynamics are compared.

1. Introduction

The main purpose of the present paper is to compare two systems equations
of motion describing the two-body problem of classical electrodynamics [1], [2] (cf.
also [3], [4]). One can see at the end of the paper that even a small difference in the
right-hand sides of the equations generates various solutions and completely different
physical conclusions for the two-body system.

In 1940 [5] J. L. Synge proposes equations of motion describing the behaviour
of two charged particles. His derivations are based on the relativistic form of the
pondermotive Lorentz force given by W. Pauli [6] by means of Lienard-Wiechert
retarded potentials. J. L. Synge formulates the problem in the Minkowski space, that
is, in the framework of the special theory of relativity. Consequently the finite velocity
of the propagation of interaction generates delays which are, although implicitly, in
the arguments of the unknown velocities of the moving particles in the equations
of motion [5]. This does not come as a surprise because the theory of differential
equations with retarded argument is formulated about twenty years later (cf. A. D.
Myshkis [7]).

In order to overcome this difficulty J. L. Synge [5] builds a sequence of suc-
cessive approximations such that on every step one has to solve a system of ordinary
differential equations. Although there is no a convergence theorem for the successive
approximations he proposes some idea for solving of the system. In a recent paper
[8], however, we have shown that not only a convergence theorem cannot be proved,
but even a sequence of successive approximations could not be constructed in such a
way. On the base of the same method [5] J. L. Synge calculates the energy on every
step (of successive approximations) and makes a conclusion that the two-body system
is not stable (cf. p.139, [5]).
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Later in 1963 R. D. Driver [9] recognizes the system obtained in [5] as a
functional differential system with delays depending on the unknown trajectories and
obtains a correct formulation of the Synge problem even in 1-dimensional case. Since
we have taken the same point of view for the type of the delays we are able to compare
the systems for 3-dimensional case considered in [1] and [2]-[4].

Prior to begin the main exposition we want to discuss one more difficulty
concerning Synge equations. They are 8 in number, while the unknown functions
are 6 in number. The problem mentioned is not considered in [1] and related known
papers. In [4] (cf. also [2]) we show that the system of equations of motion is equivalent
to the one consisting of 6 equations. More precisely, the 4-th and 8-th equation are a
consequence of the rest ones.

In the present paper we recall some formulation from [3] and [2] in order to
obtain 3-dimensional case of J. L. Synge equations. Here we succeed to simplify the
right-hand sides of the equations in more extent than [2]-[4]. We present the equations
of motion from [1] using our denotations which makes the comparison of both systems
easier. Thus we see that equations from [1] can be turned into our ones (we pretend

they are Synge’s equations) if the constant k (from [1]) is chosen to be k =
1
c3

( c the

speed of light). Then it is not surprise that the right-hand sides of equations from
[1] ( c3 times larger than ours) generates unstable solutions. At the same time it is
shown in [2] that Kepler problem for two charged particles has a circle solution.

2. J. L. Synge’s equations of motion

As in [2]-[5] we denote by x(p) = (x(p)
1 (t), x(p)

2 (t), x(p)
3 (t), x(p)

4 (t) = ict) (p =
1, 2) (i2 = −1) the space-time coordinates of the moving particles, by mp - their
proper masses, by ep - their charges, c - the speed of light. The coordinates of the
velocity vectors are u(p) = (u(p)

1 (t), u(p)
2 (t), u(p)

3 (t))(p = 1, 2). The coordinates of the
unit tangent vectors to the world-lines are (cf. [2], [3]):

λ(p)
α =

γpu
(p)
α (t)
c

=
u

(p)
α (t)
∆p

(α = 1, 2, 3), λ(p)
4 = iγp =

ic

∆p
(1)

where γp = (1− 1
c2

3∑
α=1

[u(p)
α (t)]2)−

1
2 ,∆p = (c2 −

3∑
α=1

[u(p)
α (t)]2)

1
2 . It follows γp = c/∆p.

By < ., . >4 we denote the scalar product in the Minkowski space, while by
< ., . > - the scalar product in 3-dimensional Euclidean subspace. The equations of
motion modeling the interaction of two moving charged particles are the following (cf.
[5]):

mp
dλ

(p)
r

dsp
=

ep

c2
F (p)

rn λ(p)
n (r = 1, 2, 3, 4) (2)

where the elements of proper time are dsp =
c

γp
dt = ∆pdt(p = 1, 2). Recall

that in (2) there is a summation in n (n = 1, 2, 3, 4). The elements F
(p)
rn of the
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electromagnetic tensors are derived by the retarded Lienard-Wiechert potentials

A(p)
r = − epλ

(p)
r

〈λ(p), ξ(pq)〉4
(r = 1, 2, 3, 4), that is, F (p)

rn =
∂A

(p)
n

∂x
(p)
r

− ∂A
(p)
r

∂x
(p)
n

. By ξ(pq) we

denote the isotropic vectors (cf. [2], [5])

ξ(pq) = (x(p)
1 (t)−x

(q)
1 (t−τpq(t)), x

(p)
2 (t)−x

(q)
2 (t−τpq(t)), x

(p)
3 (t)−x

(q)
3 (t−τpq(t)), icτpq(t)),

where 〈ξ(p,q), ξ(p,q)〉4 = 0 or

τpq(t) =
1
c

 3∑
β=1

[x(p)
β (t) − x

(q)
β (t − τpq(t))]2

 1
2

, ((pq) = (12), (21)). (3pq)

Calculating F
(p)
rn as in [5] we write equations from (2)in the form:

dλ
(p)
α

dsp
=

Qp

c2

{
ξ
(pq)
α 〈λ(p), λ(q)〉4 − λ

(q)
α 〈λ(p), ξ(pq)〉4

〈λ(q), ξ(pq)〉34

[
1 +

〈
ξ(pq),

dλ(q)

dsq

〉
4

]
+

+
1

〈λ(q), ξ(pq)〉24

[
〈λ(p), ξ(pq)〉4

dλ
(q)
α

dsq
−
〈

λ(p),
dλ(q)

dsq

〉
4

ξ(pq)
α

]}
(α = 1, 2, 3) (4.α)

dλ
(p)
4

dsp
=

Qp

c2

{
ξ
(pq)
4 〈λ(p), λ(q)〉4 − λ

(q)
4 〈λ(p), ξ(pq)〉4

〈λ(q), ξ(pq)〉34

[
1 +

〈
ξ(pq),

dλ(q)

dsq

〉
4

]
+

+
1

〈λ(q), ξ(pq)〉24

[
〈λ(p), ξ(pq)〉4

dλ
(q)
4

dsq
−
〈

λ(p),
dλ(q)

dsq

〉
4

ξ
(pq)
4

]}
(4.4)

where Qp = e1e2/mp(p = 1, 2). Further on, we have u(q) ≡ u(q)(tpq) (tpq = t − τpq),

λ(q) = (γpqu
(q)
1 /c, γpqu

(q)
2 /c, γpqu

(q)
3 /c, iγpq) = (u(q)

1 /∆pq, u
(q)
2 /∆pq, u

(q)
3 /∆pq, ic/∆pq)

where γpq =

(
1 − 1

c2

3∑
α=1

[u(q)
α (t − τpq(t)]2

)− 1
2

,∆pq =

(
c2 −

3∑
α=1

[u(q)
α (t − τpq(t))]2

) 1
2

and
dλ

(p)
α

dsp
=

d(γp

c u
(p)
α )

c
γp

dt
=

d(u(p)
α

∆p
)

∆pdt
=

1
∆2

p

u̇(p)
α +

u
(p)
α

∆4
p

〈u(p), u̇(p)〉(α = 1, 2, 3)

dλ
(p)
4

dsp
=

d(iγp)
c

γp
dt

=
icd( 1

∆p
)

∆pdt
=

ic

∆4
p

〈u(p), u̇(p)〉, where the dot means a differentiation in

t.

In order to calculate
dλ(q)

dsq
we need the derivative

dt

dtpq
≡ Dpq which should

be calculated from the relation

t − tpq =
1
c

(
3∑

α=1

[x(p)
α (t) − x(q)

α (tpq)]2
) 1

2

(tpq < t by assumption).
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So we have
dt

dtpq
− 1 =

3∑
α=1

[x(p)
α (t) − x(q)

α (tpq)][u(p)
α (t)

dt

dtpq
− u(q)

α (tpq)]

c

(
3∑

α=1

[x(p)
α (t) − x(q)

α (tpq)]2
) 1

2
.

Since (3pq) has a unique solution (cf. [3]) we obtain
c2τpq(Dpq − 1) = 〈ξ(pq), u(p)〉Dpq − 〈ξ(pq), u(q)〉 and we can solve the above equation

with respect to Dpq: Dpq =
c2τpq − 〈ξ(pq), u(q)〉
c2τpq − 〈ξ(pq), u(p)〉

. We have also
d

dsp
=

d

∆pdt
.

Then
d

dsq
=

1
∆pq

d

dtpq
=

1
∆pq

d

dt

dt

dtpq
=

Dpq

∆pq

d

dt
;

dλ
(q)
α

dsq
=

Dpq

∆pq

dλ
(q)
α

dt
=

Dpq

∆pq

d
(
u

(q)
α /∆pq

)
dt

= Dpq

[
u̇(q)

α

1
∆2

pq

+
u

(q)
α

∆4
pq

〈u(q), u̇(q)〉

]
(α = 1, 2, 3);
dλ

(q)
4

dsq
=

icDpq

∆4
pq

〈u(q), u̇(q)〉; 〈λ(p), λ(q)〉4 =
〈u(p), u(q)〉 − c2

∆p∆pq
;

〈λ(p), ξ(pq)〉4 =
〈u(p), ξ(pq)〉 − c2τpq

∆p
; 〈λ(q), ξ(pq)〉4 =

〈u(q), ξ(pq)〉 − c2τpq

∆pq
;

〈ξ(pq),
dλ(q)

dsq
〉4 = Dpq

[
1

∆2
pq

〈ξ(pq), u̇(q)〉 +
〈ξ(pq), u(q)〉 − c2τpq

∆4
pq

〈u(q), u̇(q)〉
]

;

〈λ(p),
dλ(q)

dsq
〉4 =

Dpq

∆p∆2
pq

[
〈u(p), u̇(q)〉 +

〈u(p), u(q)〉 − c2

∆2
pq

〈u(q), u̇(q)〉
]

.

We note that in the last expressions ξ(pq) is 4-dimensional vector in the left-
hand sides, while in the right-hand sides ξ(pq) is 3-dimensional part of the first three
coordinates.

Replacing the above expressions in (4.α) and (4.4) and performing some ob-
vious transformations we obtain for (pq) = (12), (21), α = 1, 2, 3 :

1
∆p

u̇(p)
α +

u
(p)
α

∆3
p

〈u(p), u̇(p)〉 =
Qp

c2

{
[c2 − 〈u(p), u(q)〉]ξ(pq)

α − [c2τpq − 〈u(p), ξ(pq)〉]u(q)
α

[c2τpq − 〈u(q), ξ(pq)〉]3
.

.
∆4

pq + Dpq

[
∆2

pq〈ξ(pq), u̇(q)〉 + (〈ξ(pq), u(q)〉 − c2τpq)〈u(q), u̇(q)〉
]

∆2
pq

+ (5pα)

+Dpq

[〈u(p), ξ(pq)〉 − c2τpq][u̇
(q)
α + u

(q)
α 〈u(q), u̇(q)〉/∆2

pq]
[c2τpq − 〈u(q), ξ(pq)〉]2

−

−Dpq

[〈u(p), u̇(q)〉 + (〈u(p), u(q)〉 − c2)〈u(q), u̇(q)〉/∆2
pq]ξ

(pq)
α

[c2τpq − 〈u(q), ξ
(pq)
α 〉]2

}
,

1
∆3

p

〈u(p), u̇(p)〉 =
Qp

c2

{
〈u(p), ξ(pq)〉 − τpq〈u(p), u(q)〉

[c2τpq − 〈u(q), ξ(pq)〉]3
.

14



A COMPARISON OF TWO SYSTEMS DESCRIBING ELECTROMAGNETIC TWO-BODY PROBLEM

.
[
∆2

pq + Dpq(〈ξ(pq), u̇(q)〉 + (〈ξ(pq), u(q)〉 − c2τpq)〈u(q), u̇(q)〉/∆2
pq)
]

+ (5p4)

+ Dpq

〈u(p), ξ(pq)〉〈u(q), u̇(q)〉/∆2
pq − τpq〈u(p), u̇(q)〉 − τpq〈u(p), u(q)〉〈u(q), u̇(q)〉/∆2

pq

[c2τpq − 〈u(q), ξ(pq)〉]2

}
.

One can prove (as in [4]) that (5p4) is a consequence of (5pα). Indeed, multi-
plying (5pα) by u

(p)

α , summing up in α and dividing into c2 we obtain (5p4). Therefore
we can consider a system consisting of the 1st, 2nd, 3rd, 5th, 6th and 7th equations. The
last equations form a nonlinear functional differential system of neutral type with re-
spect to the unknown velocities (cf. [10]-[13]). The delays τpq depend on the unknown
trajectories by the relations (3pq).

Now we are able to present (5pα) in a suitable form in order to make further
simplifications (Recall that we shall not consider (5p4) because it is a consequence of
(5pα)):

u̇p
α +

〈u(p), u̇(p)〉
∆2

p

u(p)
α =

Qp∆p

c2(c2τpq − 〈u(q), ξ(pq)〉)2

{[
c2 − 〈u(p), u(q)〉

c2τpq − 〈u(q), ξ(pq)〉
ξ(pq)
α −

− c2τpq − 〈u(p), ξ(pq)〉
c2τpq − 〈u(q), ξ(pq)〉

u(q)
α

] [
∆2

pq + Dpq〈ξ(pq), u̇(q)〉 + Dpq
〈u(q), ξ(pq)〉 − c2τpq

∆2
pq

〈u(q), u̇(q)〉
]

+

+Dpq(〈u(p), ξ(pq)〉−c2τpq)u̇(q)
α +Dpq(〈u(p), ξ(pq)〉−c2τpq)

〈u(q), u̇(q)〉
∆2

pq

u(q)
α − (6pα)

−Dpq〈u(p), u̇(q)〉ξ(pq)
α + Dpq

c2 − 〈u(p), u(q)〉
∆2

pq

〈u(q), u̇(q)〉ξ(pq)
α

}
.

Let us recall that if (pq) = (12) then u(1) = u(1)(t) and u(2) = u(2)(t − τ12),
while when (pq) = (21), then u(2) = u(2)(t) and u(1) = u(1)(t− τ21). Further on from
(6pα) we obtain

u̇p
α +

〈u(p), u̇(p)〉
∆2

p

u(p)
α =

=
Qp∆p

c2(c2τpq − 〈u(q), ξ(pq)〉)2

{[
c2 − 〈u(p), u(q)〉

] [
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
]

c2τpq − 〈u(q), ξ(pq)〉
ξ(pq)
α −

−Dpq
(c2 − 〈u(p), u(q)〉)〈u(q), u̇(q)〉

∆2
pq

ξ(pq)
α −

− c2τpq − 〈u(p), ξ(pq)〉
c2τpq − 〈u(q), ξ(pq)〉

[
∆2

pq + Dpq〈ξ(pq), u̇(q)〉 + Dpq
〈u(q), ξ(pq)〉 − c2τpq

∆2
pq

〈u(q), u̇(q)〉
]

u(q)
α +

+Dpq(〈u(p), ξ(pq)〉 − c2τpq)u̇(q)
α + Dpq

(〈u(p), ξ(pq)〉 − c2τpq)〈u(q), u̇(q)〉
∆2

pq

u(q)
α −

−Dpq〈u(p), u̇(q)〉ξ(pq)
α + Dpq

(c2 − 〈u(p), u(q)〉)〈u(q), u̇(q)〉
∆2

pq

ξ(pq)
α

}
.
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Obviously the second summand and the last one cancel each other and after
a re-arrangement of the rest summands we have:

u̇p
α +

〈u(p), u̇(p)〉
∆2

p

u(p)
α =

=
Qp∆p

c2(c2τpq − 〈u(q), ξ(pq)〉)2




(
c2 − 〈u(p), u(q)〉

) (
∆2

pq + Dpq〈ξ(pq), u̇(q)
)

c2τpq − 〈u(q), ξ(pq)〉
− Dpq〈u(p), u̇(q)〉

 ξ(pq)
α +

+
[
−c2τpq − 〈u(p), ξ(pq)〉

c2τpq − 〈u(q), ξ(pq)〉

(
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
)
−

−c2τpq − 〈u(p), ξ(pq)〉
c2τpq − 〈u(q), ξ(pq)〉

Dpq
〈u(q), ξ(pq)〉 − c2τpq

∆2
pq

〈u(q), u̇(q)〉+

+ Dpq
(〈u(p), ξ(pq)〉 − c2τpq)〈u(q), u̇(q)〉

∆2
pq

]
u(q)

α + Dpq(〈u(p), ξ(pq)〉 − c2τpq)u̇(q)
α

}
.

It is easy to see that the second and third summands before u
(q)
α cancel each

other so that we obtain the following simplified form of (6pα):

u̇p
α +

〈u(p), u̇(p)〉
∆2

p

u(p)
α =

Qp∆p

c2(c2τpq − 〈u(q), ξ(pq)〉)2
·

·

{[(
c2 − 〈u(p), u(q)〉

) (
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
)

c2τpq − 〈u(q), ξ(pq)〉
− Dpq〈u(p), u̇(q)〉

]
ξ(pq)
α − (7pα)

−
(
c2τpq − 〈u(p), ξ(pq)〉

) (
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
)

c2τpq − 〈u(q), ξ(pq)〉
u(q)

α + Dpq

(
〈u(p), ξ(pq)〉 − c2τpq

)
u̇(q)

α

}
.

In the same way we can obtain more suitable (in view of next section) form
of the equations (5p4) (although we proved that (5p4) is a consequence of (5pα)):
1

∆2
p

〈u(p), u̇(p)〉 =
Qp∆p

c2

{
〈u(p), ξ(pq)〉 − τpq〈u(p), u(q)〉(

c2τpq − 〈u(q), ξ(pq)〉
)3 (

∆2
pq + Dpq〈ξ(pq), u̇(q)〉

)
−

−Dpq〈u(q), u̇(q)〉
∆2

pq

· 〈u
(p), ξ(pq)〉 − τpq〈u(p), u(q)〉(
c2τpq − 〈u(q), ξ(pq)〉

)2 +

+
Dpq〈u(q), u̇(q)〉

∆2
pq

· 〈u
(p), ξ(pq)〉 − τpq〈u(p), u(q)〉(
c2τpq − 〈u(q), ξ(pq)〉

)2 − Dpqτpq〈u(p), u̇(q)〉(
c2τpq − 〈u(q), ξ(pq)〉

)2
}

, i.e.

1
∆2

p

〈u(p), u̇(p)〉 =
Qp∆p

c2
(
c2τpq − 〈u(q), ξ(pq)〉

)2 · (7p4)

·

[(
〈u(p), ξ(pq)〉 − τpq〈u(p), u(q)〉

) (
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
)

c2τpq − 〈u(q), ξ(pq)〉
− Dpqτpq〈u(p), u̇(q)〉

]
(p = 1, 2).
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3. Equations of motion from [1]

Now we consider the equations of motion, considered in [1], p.79-80, using
his denotations:

xk(s) - the position of the particle k in R3 at the instant s (k = 1, 2);
ek - the charge of the particle k (k = 1, 2);
mk - the mass of the particle k (k = 1, 2);
ri = ri(t) - the delays, which satisfy the equations:
(∗) cri(t) = |xi(t) − xj(t − ri)| (j 6= i);
vi - the normalized velocities, where x′i = cvi for i = 1, 2;

ui =
xi(t) − xj(t − ri)

cri
, γi = 1− vj(t− ri).ui (j 6= i), where ”.” indicates the

dot of scalar product in R3.
REMARK 1: xk(s) is the restriction of the space-time vector

(x(k)
1 (s), x(k)

2 (s), x(k)
3 (s), x(k)

4 (s) = ics), while ui corresponds to the restriction of the

isotropic vector
ξ(pq)

cτpq
in 3-dimensional Euclidean subspace of the Minkowski space.

The delays ri = ri(t) and the equations (∗) correspond to τpq = τpq(t) and
to the equations (3pq) respectively. Finally, we use the notation u(k) = u(k)(s) =

(u(k)
1 (s), u(k)

2 (s), u(k)
3 (s)) for the velocity vectors, where u(k)

α (s) =
dx

(k)
α (s)
ds

(α =

1, 2, 3), k = 1, 2 so the normalized vector vk(s) would be equaled to
u(k)(s)

c
, if we

should use the notation for it (k = 1, 2).
The equations of motion, given in [1], are the following:

v′i =
ei(1 − v2

i )1/2

mic
[Ej + (vi.Ej)(ui − vi) − (vi.ui)Ej ], (∗∗)

where v2
i = |vi|2(= vi.vi) and

Ej =
kcej

r2
i γ3

i

[ui − vj(t − ri)][1 − v2
j (t − ri)] +

kcej

riγ3
i

ui × ([ui − vj(t − ri)] × v′j(t − ri)),

where ” × ” stands for the cross product in R3, ”k > 0 is a constant depending on
the units used”, and the denotation v′j(t− ri) most probably means a derivative with
respect to the argument of vj(t − ri), (in [1] there is no explanation). Rewrite the
right-hand side of (∗∗) in the form:

ei(1 − v2
i )1/2

mic
{[1 − (vi.ui)]Ej + (vi.Ej)(ui − vi)}

and calculate the vector cross product from Ej :

Ej =
kcej

r2
i γ3

i

[1−v2
j (t−ri)][ui−vj(t−ri)]+

kcej

riγ3
i

(ui.v
′
j(t−ri)[ui−vj(t−ri)]−

kcej

riγ2
i

v′j(t−ri).

(since ui.[ui−vj(t−ri)] = |ui|2−vj(t−ri).ui = 1−vj(t−ri).ui = γi!). Consequently
the equations (∗∗) are equivalent to the following ones:

v′i =
ei(1 − v2

i )1/2

mic

{
[1 − (ui.vi)]

[
kcej

r2
i γ3

i

[1 − v2
j (t − ri)][ui − vj(t − ri)]+

17
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+
kcej

riγ3
i

(ui.v
′
j(t − ri))[ui − vj(t − ri)] −

kcej

riγ2
i

v′j(t − ri)
]

+

+
[

kcej

r2
i γ3

i

[1 − v2
j (t − ri)][(vi.ui) − (vi.vj(t − ri))]+ (8)

+
kcej

riγ3
i

(ui.v
′
j(t − ri))[(vi.ui) − (vi.vj(t − ri))]−

−kcej

riγ2
i

(vi.v
′
j(t − ri))

]
(ui − vi)

}
.

Then we can arrange the symbols, including the vectors ui, vi, vj(t − ri) and
v′j(t − ri) respectively and we obtain the equivalent equations:

v′i =
keiej(1 − v2

i )1/2

miriγ2
i

{
ui

[
[1 − (ui.vi)][1 − v2

j (t − ri) + ri(ui.v
′
j(t − ri))]

riγi
+

+
[1 − v2

j (t − ri) + ri(ui.v
′
j(t − ri))][(vi.ui) − (vi.vj(t − ri))]

riγi
− (vi.v

′
j(t − ri))

]
−

−vi

[
[1 − v2

j (t − ri) + ri(ui.v
′
j(t − ri))][(vi.ui) − (vi.vj(t − ri))]

riγi
− (vi.v

′
j(t − ri))

]
−

− vj(t − ri)
[1 − (ui.vi)][1 − v2

j (t − ri) + ri(ui.v
′
j(t − ri))]

riγi
− v′j(t − ri)[1 − (ui.vi)]

}
and finally one has

v′i =
keiej(1 − v2

i )1/2

miriγ2
i

{
ui

[
[1 − (vi.vj(t − ri))][1 − v2

j (t − ri) + ri(ui.v
′
j(t − ri))]

riγi
−

− (vi.v
′
j(t − ri))

]
− (9)

−vi

[
[1 − v2

j (t − ri) + ri(ui.v
′
j(t − ri))][(vi.ui) − (vi.vj(t − ri))]

riγi
− (vi.v

′
j(t − ri))

]
−

− vj(t − ri)
[1 − (ui.vi)][1 − v2

j (t − ri) + ri(ui.v
′
j(t − ri))]

riγi
− v′j(t − ri)[1 − (ui.vi)]

}
.

To compare both systems we present the equations (9), using the denotations
from our previous section II.

We have for i ≡ p, j ≡ q, ri ≡ τpq, and in view of Remark 1:

vi = vi(t) ≡
u(p)

c
; (1 − v2

i )1/2 =
(

1 −
〈

u(p)

c
,
u(p)

c

〉)1/2

=
∆p

c
;

v′i =
d(u(p)/c)

dt
= u̇(p)/c (u(p) = u(p)(t));

18
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ui ≡
x(p)(t) − x(q)(t − τpq)

cτpq
=

1
cτpq

(
ξ
(pq)
1 , ξ

(pq)
2 , ξ

(pq)
3

)
;

vj(t − ri) ≡ u(q)/c; v′j(t − ri) =
d(u(q)/c)

dtpq
=

1
c
· du(q)

dt
· dt

dtpq
=

Dpqu̇
(q)

c

(u(q) = u(q)(t − τpq) = u(q)(tpq));

γi ≡ 1 −
〈

u(q)

c
,
ξ(pq)

cτpq

〉
=

c2τpq − 〈u(q), ξ(pq)〉
c2τpq

;

1 − (vi.vj(t − ri)) = 1 −
〈

u(p)

c
,
u(q)

c

〉
=

c2 − 〈u(p), u(q)〉
c2

;

1 − v2
j (t − ri) + ri(ui.v

′
j(t − ri))

riγi
≡

1 −
〈

u(q)

c , u(q)

c

〉
+ τpq

〈
ξ(pq)

cτpq
,

Dpqu̇(q)

c

〉
τpq

(
1 −

〈
u(q)

c , ξ(pq)

cτpq

〉) =

=
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
c2τpq − 〈u(q), ξ(pq)〉

;

1 − (ui.vi) ≡ 1 −
〈

ξ(pq)

cτpq
,
u(p)

c

〉
=

c2τpq − 〈u(p), ξ(pq)〉
c2τpq

;

(vi.ui) − (vi.vj(t − ri)) ≡
〈u(p), ξ(pq)〉 − τpq〈u(p), u(q)〉

c2τpq

and replacing in (9) we obtain the following 6 scalar equations:

1
c
u̇p

α =
kepeq∆p(c2τpq)2

cmpτpq(c2τpq − 〈u(q), ξ(pq)〉)2
·

·

{
ξ
(pq)
α

cτpq

[
c2 − 〈u(p), u(q)〉

c2
·
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
c2τpq − 〈u(q), ξ(pq)〉

− Dpq

c2
〈u(p), u̇(q)〉

]
−

−u
(p)
α

c

[
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
c2τpq − 〈u(q), ξ(pq)〉

· 〈u
(p), ξ(pq)〉 − τpq〈u(p), u(q)〉

c2τpq
− Dpq

c2
〈u(p), u̇(q)〉

]
−

−u
(q)
α

c
· c2τpq − 〈u(p), ξ(pq)〉

c2τpq
·
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
c2τpq − 〈u(q), ξ(pq)〉

+

+
Dpqu̇

(q)
α

c
· 〈u

(p), ξ(pq)〉 − c2τpq

c2τpq

}
(α = 1, 2, 3; (pq) = (12), (21)),

The above system is obviously equivalent to the following one (with Qp =
epeq

mp
):

u̇p
α+

kcQp∆p(
c2τpq − 〈u(q), ξ(pq)〉

)2 ·[
(
〈u(p), ξ(pq)〉 − τpq〈u(p), u(q)〉

) (
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
)

c2τpq − 〈u(q), ξ(pq)〉
−
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−Dpqτpq〈u(p), u̇(q)〉
]
u(p)

α =

=
kcQp∆p

(c2τpq − 〈u(q), ξ(pq)〉)2
·
{

(
c2 − 〈u(p), u(q)〉

) (
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
)

c2τpq − 〈u(q), ξ(pq)〉
− Dpq〈u(p), u̇(q)〉

 ξ(pq)
α −

(
c2τpq − 〈u(p), ξ(pq)〉

) (
∆2

pq + Dpq〈ξ(pq), u̇(q)〉
)

c2τpq − 〈u(q), ξ(pq)〉
u(q)

α + (10pα)

+Dpq

(
〈u(p), ξ(pq)〉 − c2τpq

)
u̇(q)

α

}
(α = 1, 2, 3; (pq) = (12), (21)).

Conclusion remarks

Our goal is to point out the difference between the system of equations of
motion (9) (or equivalently (10pα)) from [1] and Synge’s equations (7pα), (7p4).

1) equations (9) are obtained under assumption that (7p4) should be identities
which is not discussed in [1]. On the other hand in [4] we have already proved that
(7p4) is a consequence of (7pα), α = 1, 2, 3. It is not obvious that (7p4) is an identity.

2) the right-hand sides of (10pα) and Synge’s equations (7pα) differ each

other by the multiplier c3 which is a consequence from kc =
1
c2

. But this means that

the right-hand sides of (10pα) are c3-times larger than the right-hand sides of Synge
equations (7pα), that is, they have another dimension. Therefore it is not surprised
that they possess only unstable solutions, while (7pα) have a circle solution [2].
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