A NEW SUBCLASS OF CONVEX FUNCTIONS

SZÁSZ RÓBERT

Abstract. In this paper we have studied a class of univalent functions defined in the unit disc $U = \{z \in C : |z| < 1\}$.

1. Introduction

Let **A** be the class of the analytic functions in the open disc $U = \{z \in \mathbb{C} : |z| < 1\}$, which satisfy the conditions f(0) = 0 and f'(0) = 1.

We denote by K the class of univalent functions for which we have: $K \subset A$ and for every function $f \in K$ the domain f(U) is a convex set in the complex plane. It is well known that

$$K = \{ f \in A : Re\left(1 + \frac{zf''(z)}{f'(z)} > 0 \right) \text{ for all } z \in U \}.$$

We introduce the notation

$$\mathcal{K}_{\lambda} = \left\{ f \in A : (\exists)\lambda \in U, \left|\lambda|z|^2 + \left(1 - |z|^2\right) \frac{zf''(z)}{f'(z)}\right| < 1, (\forall)z \in U \right\}.$$

The condition which defines the class \mathcal{K}_{λ} is a univalence criterion, whose proof and generalisation can be found in [4], [5].

2. Preliminaries

Definition 1. Let f and g be two analytic functions in U. The function f is subordinate to g if there exists an analytic function denoted by Φ with the properties: $|\Phi(z)| < 1$, $z \in U$, $\Phi(0) = 0$ and $f(z) = g(\Phi(z)), z \in U$. The fact that f is subordinate to g will be denoted by $f \prec g$.

Observation 1. If f and g are two analytic functions in U, g is univalent, f(0) = g(0) and $f(U) \subset g(U)$ then f is subordinate to g.

To prove our main result we will need the following lemmas.

Lemma A. If the function f is analytic in U and $z_0 \in U$, then $z_0 f'(z_0)$ is the outward normal to the boundary of the domain $f(U_{r_0})$, where $r_0 = |z_0|$ and $U_{r_0} = \{z \in \mathbb{C} : |z| < r_0\}$.

Lemma B. (Miller and Mocanu) [2] Let q be analytic and univalent in U. q(0) = a and let $p(z) = a + p_n z^n + \dots$ be analytic in U with $p(z) \neq a, n \geq 1$. If $p \not\prec q$ then there exists points $r_0 e^{i\Theta_0} = z_0 \in U$ and $\zeta_0 \in \partial U$ and $m \geq n$ for which (i) $p(U_n) \subset q(U)$

(*ii*)
$$p(c_{r_0}) \subset q(c)$$

(*ii*) $p(z_0) = q(\zeta_0)$

Received by the editors: 06.11.2002.

SZÁSZ RÓBERT

(*iii*) $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0).$

If $q(z) = \frac{a + \overline{a}z}{1 - z}$ with Re(a) > 0 then $q(U) = \{w \in \mathbb{C} : Re \ w > 0\}$ and Lemma B becomes:

Lemma B'. Let p be analytic in U, $p(z) = a + p_n z^n + \dots, p \neq a, Re a >$ 0, n > 1.If Re $p(z) \neq 0, z \in U$ then there exists $z_0 \in U, x, y \in \mathbb{R}$ for which (i) $p(z_0) = ix$

$$\begin{array}{l} p(z_0) = ix \\ ii) \ z_0 p'(z_0) = y \le -\frac{1}{2}[x^2 + 1] \end{array}$$

3. Main result

We observe that if $f_{\delta}(z) = \frac{e^{(1+\delta)z}-1}{1+\delta}$ then $1 + \frac{zf_{\delta}''(z)}{f_{\delta}'(z)} = 1 + (1+\delta)z$ and so f_{δ} is not a convex function in U if $\delta > 0$.

Theorem 1. If $\lambda \in U$ then $\mathcal{K}_{\lambda} \nsubseteq K$.

Proof. We will prove that for $\lambda \in U$ exists a $\delta > 0$ for which $f_{\delta} \in \mathcal{K}_{\lambda}$. If $\lambda \in U$ then $|\lambda| = 1 - \varepsilon, \epsilon \in (0, 1)$ and from the triangle inequality results that:

$$\left|\lambda|z|^{2} + \left(1 - |z|^{2}\right) \frac{zf_{\delta}''(z)}{f_{\delta}'(z)}\right| \le (1 - \varepsilon)|z|^{2} + \left(1 - |z|^{2}\right) (1 + \delta)|z|, \ z \in U.$$
(1)

Let r = |z| and $g(r) = (1 - \varepsilon)r^2 + (1 - r^2)(1 + \delta)r$. After calculations we get that $g(r) \leq (1+\delta)r(\delta)$ where $r(\delta)$ is the positive root of the equation g'(r) = 0. To show that there exists $\delta \in (0, +\infty)$ for which

$$\left|\lambda|z|^2 + (1-|z|^2)\frac{zf_{\delta}''(z)}{f_{\delta}'(z)}\right| < 1 \quad \text{for all } z \in U$$

$$\tag{2}$$

it is enough to show the existence of δ with the property $(1+\delta)r(\delta) < 1$. The last assertion holds because:

$$\lim_{\delta \to o} (1+\delta)r(\delta) = \frac{|\lambda| + \sqrt{|\lambda|^2 + 3}}{3} < 1.$$
(3)

This completes the proof of the theorem .

Theorem 2. $\mathcal{K}_{-1} \subset K$.

Proof. 1. We will use Lemma B' to prove our assertion. If we put $\lambda = -1$ and $p(z) = 1 + \frac{zf''(z)}{f'(z)}$ the inequality

$$\left|\lambda|z|^{2} + \left(1 - |z|^{2}\right)\frac{zf''(z)}{f'(z)}\right| < 1, z \in U$$

may be rewritten in the following form

$$\left|-1 + \left(1 - |z|^2\right) p(z)\right| < 1, z \in U.$$
 (4)

If $Re \ p(z) \neq 0, z \in U$ then according to Lemma B' there are $z_0 \in U$ and $x, y \in \mathbb{R}$ so that

$$(i) \ p(z_0) = ix$$

104

(*ii*) $z_0 p'(z_0) = y \le \frac{-1}{2} (x^2 + 1)$ and we get that $|-1 + (1 - |z_0|^2) p(z_0)| = |-1 + (1 - |z_0|^2) ix| \ge 1$ which inequality is in contradiction with (4).

Theorem 3. Let γ be a positive real number. The integral operation I defined by the equality

$$I(f)(z) = F(z) = \frac{\gamma + 1}{z^{\gamma}} \int_0^z f(t) t^{\gamma - 1} dt$$
(5)

satisfies the relation $I(\mathcal{K}_{-1}) \subset \mathcal{K}_{-1}$.

Proof. Let $f \in \mathcal{K}_{-1}$. We must show that the inequality

$$\left| -|z|^2 + \left(1 - |z|^2\right) \frac{zf''(z)}{f'(z)} \right| < 1, z \in U$$

implies that

$$\left| -|z|^2 + \left(1 - |z|^2\right) \frac{zF''(z)}{F'(z)} \right| < 1, z \in U.$$

Let $q(z) = \frac{zF''(z)}{F'(z)}$. We define the following set

$$B = \left\{ r \in [0, +\infty) : \left| -|z|^2 + \left(1 - |z|^2\right)q(z) \right| < 1, (\forall) z \in \overline{U}_r \right\}$$

where $\overline{U}_r = \{z \in \mathbb{C} : |z| \leq r\}$. The set B isn't empty because $0 \in B$. Let $r_0 = \sup B$. For a fixed z the equality $|-|z|^2 + (1-|z|^2)(x+iy)| = 1$ defines a circle in the x0y system of coordinates. Let's denote this circle by \mathcal{C}_z . Because for all $z \in U$ the center $O_1\left(\frac{|z|^2}{1-|z|^2},0\right)$ of the circle \mathcal{C}_z is on the real axis 0x and the point p(-1,0) is on the circle \mathcal{C}_z , we conclude that if $|z_1| < |z_2|$, then every point of the circle \mathcal{C}_{z_1} except p are inside the circle \mathcal{C}_{z_2} . The above assertion shows that if $r_0 < 1$, then there exists $z_0 \in U$, $|z_0| = r_0$ so that $|-|z_0|^2 + (1-|z_0|^2)q(z_0)| = 1$ and the domain $q(U_{r_0})$ is inside the circle \mathcal{C}_{z_0} . The border of the domain $q(U_r)$ is tangent to the circle \mathcal{C}_{z_0} in the point $q(z_0)$ which implies that the outward normal $z_0q'(z_0)$ to the border of $q(U_{r_0})$ is outward normal to the circle \mathcal{C}_{z_0} . From (5) we get that :

$$q(z) + \frac{zq'(z)}{1 + \gamma + q(z)} = \frac{zf''(z)}{f'(z)}, z \in U$$
(6)

We will prove that $Re \ \frac{1}{1 + \gamma + q(z)} > 0, z \in U.$

If $Re(1 + \gamma + q(z)) \ge 0$ for all $z \in U$ then we can apply Lemma B' and we get that there are $z_0 \in U$ and $x, y \in \mathbb{R}$ with the properties

(a)
$$Re(1 + \gamma + q(z_0)) = ix$$

(b) $z_0q'(z_0) = y \le -\frac{1}{2}(x^2 + 1).$

Replacing in (6) results that $Re\left(1+\gamma+q(z_0)+\frac{z_0q'(z_0)}{1+\gamma+q(z_0)}\right) = Re\left(ix+\frac{y}{ix}\right) = 0$ on the other hand from (6) we get that:

$$Re\left(1+\gamma+q(z_0)+\frac{z_0q'(z_0)}{1+\gamma+q(z_0)}\right) = Re\left(1+\gamma+\frac{z_0f''(z_0)}{f'(z_0)}\right) > 0$$
105

SZÁSZ RÓBERT

The contradiction shows that $Re(1 + \gamma + q(z)) > 0$ for all $z \in U$. Let's return now to the proof of the theorem. The inequality $Re \frac{1}{1 + \gamma + q(z_0)} > 0$ is equivalent to :

$$\left|\arg\frac{1}{1+\gamma+q(z_0)}\right| < \frac{\pi}{2} \tag{7}$$

Using (7) and the fact that $z_0q'(z_0)$ is the outward normal to the circle \mathcal{C}_{z_0} , we obtain that $q(z_0) + \frac{z_0q'(z_0)}{1+\gamma+q(z_0)} \notin Int \mathcal{C}_{z_0}$ or equivalently

$$\left|-|z_0|^2 + \left(1 - |z_0|^2\right) \left(q(z_0) + \frac{z_0 q'(z_0)}{1 + \gamma + q(z_0)}\right)\right| \ge 1$$

which implies that $\left|-|z_0|^2 + (1-|z_0|^2) \frac{z_0 f''(z_0)}{f'(z_0)}\right| \ge 1, z \in U$ in contradiction with the condition $f \in \mathcal{K}_{-1}$.

Conjecture. If $|\lambda| \leq 1$ and $\mathcal{K}_{\lambda} \subset K$ then $\lambda = -1$.

References

- D.J. Hallenbeck, T.H. MacGregor, Linear problems and convexity techniques in geometric function theory, Pitman Advanced Publishing Program, 1984.
- S.S.Miller, P.T. Mocanu, The theory and applications of second-order differential subordinations, Studia Univ.Babeş-Bolyai, Math.34, 4(1989) 3-33.
- [3] I. Şerb, The radius of convexity and starlikeness of a particular function, Mathematica Montisnigri vol.VII(1996) 65-69.
- [4] L.V. Ahlfors, Sufficient conditions for quasiconformal extension, Princeton Anuals of Math, Studies 79 (1974) 23-29.
- [5] V. Pescar, A new generalisation of Ahlfor's and Becker's criterion of univalence, Seminar on geometric function theory, Univ.Transilvania Braşov, Preprint No.2, 1991 (103-107).

Faculty of Mathematics and Computer Science, BABEŞ-BOLYAI UNIVERSITY, 3400 Cluj-Napoca, Romania *E-mail address*: lrobert@bolyai.ro