A NEW SUBCLASS OF CONVEX FUNCTIONS

SZÁSZ RÓBERT

Abstract

In this paper we have studied a class of univalent functions defined in the unit disc $U=\{z \in C:|z|<1\}$.

1. Introduction

Let \mathbf{A} be the class of the analytic functions in the open $\operatorname{disc} U=\{z \in \mathbb{C}$: $|z|<1\}$, which satisfy the conditions $f(0)=0$ and $f^{\prime}(0)=1$.
We denote by K the class of univalent functions for which we have: $K \subset A$ and for every function $f \in K$ the domain $f(U)$ is a convex set in the complex plane.
It is well known that

$$
K=\left\{f \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0\right) \text { for all } z \in U\right\}
$$

We introduce the notation

$$
\mathcal{K}_{\lambda}=\left\{f \in A:(\exists) \lambda \in U, \left.\left.|\lambda| z\right|^{2}+\left(1-|z|^{2}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \right\rvert\,<1,(\forall) z \in U\right\} .
$$

The condition which defines the class \mathcal{K}_{λ} is a univalence criterion, whose proof and generalisation can be found in [4], [5].

2. Preliminaries

Definition 1. Let f and g be two analytic functions in U. The function f is subordinate to g if there exists an analytic function denoted by Φ with the properties: $|\Phi(z)|<1$, $z \in U, \Phi(0)=0$ and $f(z)=g(\Phi(z)), z \in U$. The fact that f is subordinate to g will be denoted by $f \prec g$.
Observation 1. If f and g are two analytic functions in U, g is univalent, $f(0)=g(0)$ and $f(U) \subset g(U)$ then f is subordinate to g.

To prove our main result we will need the following lemmas.
Lemma A. If the function f is analytic in U and $z_{0} \in U$, then $z_{0} f^{\prime}\left(z_{0}\right)$ is the outward normal to the boundary of the domain $f\left(U_{r_{0}}\right)$, where $r_{0}=\left|z_{0}\right|$ and $U_{r_{0}}=\{z \in \mathbb{C}$: $\left.|z|<r_{0}\right\}$.

Lemma B. (Miller and Mocanu) [2] Let q be analytic and univalent in U. $q(0)=a$ and let $p(z)=a+p_{n} z^{n}+\ldots$ be analytic in U with $p(z) \neq a, n \geq 1$. If $p \nprec q$ then there exists points $r_{0} e^{i \Theta_{0}}=z_{0} \in U$ and $\zeta_{0} \in \partial U$ and $m \geq n$ for which
(i) $p\left(U_{r_{0}}\right) \subset q(U)$
(ii) $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$

Received by the editors: 06.11.2002.
(iii) $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$.

If $q(z)=\frac{a+\bar{a} z}{1-z}$ with $\operatorname{Re}(a)>0$ then $q(U)=\{w \in \mathbb{C}: \operatorname{Re} w>0\}$ and Lemma B becomes:

Lemma B'. Let p be analytic in $U, p(z)=a+p_{n} z^{n}+\ldots, p \not \equiv a$, Re $a>$ $0, n \geq 1$.
If Re $p(z) \ngtr 0, z \in U$ then there exists $z_{0} \in U, x, y \in \mathbb{R}$ for which
(i) $p\left(z_{0}\right)=i x$
(ii) $z_{0} p^{\prime}\left(z_{0}\right)=y \leq-\frac{1}{2}\left[x^{2}+1\right]$

3. Main result

We observe that if $f_{\delta}(z)=\frac{e^{(1+\delta) z}-1}{1+\delta}$ then $1+\frac{z f_{\delta}^{\prime \prime}(z)}{f_{\delta}^{\prime}(z)}=1+(1+\delta) z$ and so f_{δ} is not a convex function in U if $\delta>0$.
Theorem 1. If $\lambda \in U$ then $\mathcal{K}_{\lambda} \nsubseteq K$.
Proof. We will prove that for $\lambda \in U$ exists a $\delta>0$ for which $f_{\delta} \in \mathcal{K}_{\lambda}$. If $\lambda \in U$ then $|\lambda|=1-\varepsilon, \epsilon \in(0,1)$ and from the triangle inequality results that:

$$
\begin{equation*}
\left.|\lambda| z\right|^{2}+\left.\left(1-|z|^{2}\right) \frac{z f_{\delta}^{\prime \prime}(z)}{f_{\delta}^{\prime}(z)}|\leq(1-\varepsilon)| z\right|^{2}+\left(1-|z|^{2}\right)(1+\delta)|z|, z \in U \tag{1}
\end{equation*}
$$

Let $r=|z|$ and $g(r)=(1-\varepsilon) r^{2}+\left(1-r^{2}\right)(1+\delta) r$. After calculations we get that $g(r) \leq(1+\delta) r(\delta)$ where $r(\delta)$ is the positive root of the equation $g^{\prime}(r)=0$. .
To show that there exists $\delta \in(0,+\infty)$ for which

$$
\begin{equation*}
\left.\left.|\lambda| z\right|^{2}+\left(1-|z|^{2}\right) \frac{z f_{\delta}^{\prime \prime}(z)}{f_{\delta}^{\prime}(z)} \right\rvert\,<1 \text { for all } z \in U \tag{2}
\end{equation*}
$$

it is enough to show the existence of δ with the property $(1+\delta) r(\delta)<1$. The last assertion holds because:

$$
\begin{equation*}
\lim _{\delta \rightarrow o}(1+\delta) r(\delta)=\frac{|\lambda|+\sqrt{|\lambda|^{2}+3}}{3}<1 . \tag{3}
\end{equation*}
$$

This completes the proof of the theorem .
Theorem 2. $\mathcal{K}_{-1} \subset K$.
Proof. 1. We will use Lemma B' to prove our assertion.
If we put $\lambda=-1$ and $p(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ the inequality

$$
\left.\left.|\lambda| z\right|^{2}+\left(1-|z|^{2}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \right\rvert\,<1, z \in U
$$

may be rewritten in the following form

$$
\begin{equation*}
\left|-1+\left(1-|z|^{2}\right) p(z)\right|<1, z \in U \tag{4}
\end{equation*}
$$

If $\operatorname{Re} p(z) \ngtr 0, z \in U$ then according to Lemma B' there are $z_{0} \in U$ and $x, y \in \mathbb{R}$ so that
(i) $p\left(z_{0}\right)=i x$

$$
\text { (ii) } z_{0} p^{\prime}\left(z_{0}\right)=y \leq \frac{-1}{2}\left(x^{2}+1\right)
$$

and we get that $\left|-1+\left(1-\left|z_{0}\right|^{2}\right) p\left(z_{0}\right)\right|=\left|-1+\left(1-\left|z_{0}\right|^{2}\right) i x\right| \geq 1$ which inequality is in contradiction with (4).

Theorem 3. Let γ be a positive real number. The integral operation I defined by the equality

$$
\begin{equation*}
I(f)(z)=F(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} f(t) t^{\gamma-1} d t \tag{5}
\end{equation*}
$$

satisfies the relation $I\left(\mathcal{K}_{-1}\right) \subset \mathcal{K}_{-1}$.
Proof. Let $f \in \mathcal{K}_{-1}$. We must show that the inequality
implies that

Let $q(z)=\frac{z F^{\prime \prime}(z)}{F^{\prime}(z)}$. We define the following set

$$
B=\left\{r \in[0,+\infty):\left|-|z|^{2}+\left(1-|z|^{2}\right) q(z)\right|<1,(\forall) z \in \bar{U}_{r}\right\}
$$

where $\bar{U}_{r}=\{z \in \mathbb{C}:|z| \leq r\}$. The set B isn't empty because $0 \in B$. Let $r_{0}=\sup B$. For a fixed z the equality $\left|-|z|^{2}+\left(1-|z|^{2}\right)(x+i y)\right|=1$ defines a circle in the $x 0 y$ system of coordinates. Let's denote this circle by \mathcal{C}_{z}. Because for all $z \in U$ the center $O_{1}\left(\frac{|z|^{2}}{1-|z|^{2}}, 0\right)$ of the circle \mathcal{C}_{z} is on the real axis $0 x$ and the point $\mathrm{p}(-1,0)$ is on the circle \mathcal{C}_{z}, we conclude that if $\left|z_{1}\right|<\left|z_{2}\right|$,then every point of the circle $\mathcal{C}_{z_{1}}$ except p are inside the circle $\mathcal{C}_{z_{2}}$. The above assertion shows that if $r_{0}<1$, then there exists $z_{0} \in U,\left|z_{0}\right|=r_{0}$ so that $\left|-\left|z_{0}\right|^{2}+\left(1-\left|z_{0}\right|^{2}\right) q\left(z_{0}\right)\right|=1$ and the domain $q\left(U_{r_{0}}\right)$ is inside the circle $\mathcal{C}_{z_{0}}$. The border of the domain $q\left(U_{r}\right)$ is tangent to the circle $\mathcal{C}_{z_{0}}$ in the point $q\left(z_{0}\right)$ which implies that the outward normal $z_{0} q^{\prime}\left(z_{0}\right)$ to the border of $q\left(U_{r_{0}}\right)$ is outward normal to the circle $\mathcal{C}_{z_{0}}$. From (5) we get that:

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{1+\gamma+q(z)}=\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}, z \in U \tag{6}
\end{equation*}
$$

We will prove that $R e \frac{1}{1+\gamma+q(z)}>0, z \in U$.
If $\operatorname{Re}(1+\gamma+q(z)) \ngtr 0$ for all $z \in U$ then we can apply Lemma B’ and we get that there are $z_{0} \in U$ and $x, y \in \mathbb{R}$ with the properties
(a) $\operatorname{Re}\left(1+\gamma+q\left(z_{0}\right)\right)=i x$
(b) $z_{0} q^{\prime}\left(z_{0}\right)=y \leq-\frac{1}{2}\left(x^{2}+1\right)$.

Replacing in (6) results that $\operatorname{Re}\left(1+\gamma+q\left(z_{0}\right)+\frac{z_{0} q^{\prime}\left(z_{0}\right)}{1+\gamma+q\left(z_{0}\right)}\right)=\operatorname{Re}\left(i x+\frac{y}{i x}\right)=0$ on the other hand from (6) we get that:

$$
\operatorname{Re}\left(1+\gamma+q\left(z_{0}\right)+\frac{z_{0} q^{\prime}\left(z_{0}\right)}{1+\gamma+q\left(z_{0}\right)}\right)=\operatorname{Re}\left(1+\gamma+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)>0
$$

The contradiction shows that $\operatorname{Re}(1+\gamma+q(z))>0$ for all $z \in U$. Let's return now to the proof of the theorem. The inequality $\operatorname{Re} \frac{1}{1+\gamma+q\left(z_{0}\right)}>0$ is equivalent to :

$$
\begin{equation*}
\left|\arg \frac{1}{1+\gamma+q\left(z_{0}\right)}\right|<\frac{\pi}{2} \tag{7}
\end{equation*}
$$

Using (7) and the fact that $z_{0} q^{\prime}\left(z_{0}\right)$ is the outward normal to the circle $\mathcal{C}_{z_{0}}$, we obtain that $q\left(z_{0}\right)+\frac{z_{0} q^{\prime}\left(z_{0}\right)}{1+\gamma+q\left(z_{0}\right)} \notin \operatorname{Int} \mathcal{C}_{z_{0}}$ or equivalently
which implies that $\left|-\left|z_{0}\right|^{2}+\left(1-\left|z_{0}\right|^{2}\right) \frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right| \geq 1, z \in U$ in contradiction with the condition $f \in \mathcal{K}_{-1}$.

Conjecture. If $|\lambda| \leq 1$ and $\mathcal{K}_{\lambda} \subset K$ then $\lambda=-1$.

References

[1] D.J. Hallenbeck, T.H. MacGregor, Linear problems and convexity techniques in geometric function theory, Pitman Advanced Publishing Program, 1984.
[2] S.S.Miller, P.T. Mocanu, The theory and applications of second-order differential subordinations, Studia Univ.Babes-Bolyai, Math.34, 4(1989) 3-33.
[3] I. Şerb, The radius of convexity and starlikeness of a particular function, Mathematica Montisnigri vol.VII(1996) 65-69.
[4] L.V. Ahlfors, Sufficient conditions for quasiconformal extension, Princeton Anuals of Math, Studies 79 (1974) 23-29.
[5] V. Pescar, A new generalisation of Ahlfor's and Becker's criterion of univalence, Seminar on geometric function theory, Univ.Transilvania Braşov,Preprint No.2, 1991 (103107).

Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, 3400 Cluj-Napoca, Romania
E-mail address: lrobert@bolyai.ro

