A FUNCTIONAL CHARACTERIZATION OF THE SYMMETRIC-DIFFERENCE OPERATION

VASILE POP

Abstract. Let M be a set and $\mathcal{P}(M)$ the family of the subsets of M. On $\mathcal{P}(M)$ we consider the set of all binary operations $O(\mathcal{P}(M))$ and on $O(\mathcal{P}(M))$ we define a relation that we call the subordination relation. Then we show that the only group operation on $\mathcal{P}(M)$, subordinate to the union, is the symmetric difference.

1. Introduction

Let M be an arbitrary set and $\mathcal{P}(M) = \{A \mid A \subset M\}$, the family of the subsets of M. On the set of the binary operations on $\mathcal{P}(M)$ we define the following subordination relation:

If $f, g: \mathcal{P}(M) \times \mathcal{P}(M) \to \mathcal{P}(M)$ are binary operation on $\mathcal{P}(M)$, we say that f is subordinate to g or that g subordinates f, if $f(X, Y) \subset g(X, Y)$ for all $X, Y \in \mathcal{P}(M)$ and we denote $f \leq g$.

Our purpose is to determine those operations that confers to $\mathcal{P}(M)$ a group structure and which subordinate the intersection or are subordinated to the union.

2. Main results

For M and $\mathcal{P}(M)$ mentioned above, we denote $O(\mathcal{P}(M))$ the set of all binary operation on the set $\mathcal{P}(M)$:

$$O(\mathcal{P}(M)) = \{ f : \mathcal{P}(M) \times \mathcal{P}(M) \to \mathcal{P}(M) | f \text{ is a function } \}.$$

Remark 1. a) Among the usual operations, let us mention:

- the operation \emptyset : $f(X, Y) = \emptyset$, for all $X, Y \in \mathcal{P}(M)$;
- the operation M: f(X, Y) = M, for all $X, Y \in \mathcal{P}(M)$;
- the intersection (\cap): $f(X, Y) = X \cap Y$, for all $X, Y \in \mathcal{P}(M)$;
- the union (\cup): $f(X, Y) = X \cup Y$, for all $X, Y \in \mathcal{P}(M)$;
- the difference (\): $f(X, Y) = X \setminus Y$, for all $X, Y \in \mathcal{P}(M)$;
- the symmetric difference (Δ):

$$f(X,Y) = X\Delta Y = (X \cup Y) \setminus (X \cap Y) = (X \setminus Y) \cup (Y \setminus X)$$

b) The following subordination relations hold?

$$\emptyset \le \cap \le \cup \le M$$

Received by the editors: 08.10.2002.

VASILE POP

c) For $f, g \in O(\mathcal{P}(M))$ given operators, the operations \cap, \cup and Δ are defined

by:

$$\begin{aligned} (f \cap g)(X,Y) &= f(X,Y) \cap g(X,Y), \\ (f \cup g)(X,Y) &= f(X,Y) \cup g(X,Y), \\ (f\Delta g)(X,Y) &= f(X,Y)\Delta g(X,Y), \end{aligned}$$

for all $X, Y \in \mathcal{P}(M)$.

Proposition 1. The subordinate relation is an order relation, which determines on $O(\mathcal{P}(M))$ a lattice, where:

$$\inf\{f,g\} = f \cap g \text{ and } \sup\{f,g\} = f \cup g, \text{ for } f,g \in O(\mathcal{P}(M)).$$

Proof. Let $i, f, g, u \in O(\mathcal{P}(M))$.

If $i \leq f$ and $i \leq g$, then $i(X,Y) \subset f(X,Y)$ and $i(X,Y) \subset g(X,Y)$. So $i(X,Y) \subset (f \cap g)(X,Y)$. The maximal operation i, which verifies this inclusion is $i = f \cap g$.

If $f \leq u$ and $g \leq u$, then $f(X,Y) \subset u(X,Y)$ and $g(X,Y) \subset u(X,Y)$. So $(f \cup g)(X,Y) \subset u(X,Y)$. The minimal operation u, which verifies this inclusion is $u = f \cup g$. \Box

It is known that the operation Δ determines on $\mathcal{P}(M)$ a group structure and $\Delta \leq U$. We will show that, if M is a finite set, then this property characterizes the symmetric difference, that is Δ is the unique group operation on $\mathcal{P}(M)$, subordinated to the union.

Theorem 1. If M is a finite set, then the symmetric difference Δ is the unique binary operation on $\mathcal{P}(M)$ which is subordinated to the union and which determines on $\mathcal{P}(M)$ a group structure.

Proof. a) If we denote by "*" an operation which satisfies the requirements of the theorem, from $\emptyset * \emptyset \subset \emptyset$ we have $\emptyset * \emptyset = \emptyset$. So the only element that could be the unit element is \emptyset .

b) We show by induction after |X| that $X * X = \emptyset$ for all $X \in \mathcal{P}(M)$.

For |X| = 0 we have $x = \emptyset$ and $\emptyset * \emptyset = \emptyset$.

We suppose $X * X = \emptyset$ for all $X \in \mathcal{P}(M)$ with $|X| \le n$ and let $A \in \mathcal{P}(M)$ with |A| = n + 1.

If $X \subset A$, then $X * A \subset X \cup A = A$, so the translation restricted to $\mathcal{P}(M)$ has values in $\mathcal{P}(M)$. Being an injection, it is a surjection, since $\mathcal{P}(A)$ is finite. Thus, there exists the set $B \subset A$ such that $t_A(B) = A * B = \emptyset$. If we suppose that $B \neq A$, then $|B| \leq n$ and from the induction hypothesis we have $B * B = \emptyset$. From A * B = B * B we have A = B, which is a contradiction that shows that $A * A = \emptyset$.

c) Using an induction on |B| = k we show that if $A \cap B = \emptyset$, then $A * B = A \cup B$. For k = 0, $A * \emptyset = A \cup \emptyset = A$ is immediately verified since \emptyset is the unit element.

For $k = 1, B = \{x\}, x \notin A$. If $A * \{x\} = C \subset A \cup \{x\}$ then $C * \{x\} \subset C \cup \{x\}$, that is: $A * (\{x\} * \{x\}) \subset C \cup \{x\}$ or $A * \emptyset \subset C \cup \{x\}$ or $A \subset C \cup \{x\}$. Since $x \notin A$ it follows that $A \subset C$ and $C \subset A \cup \{x\}$. So, either C = A or $C = A \cup \{x\}$. But $C = A * \{x\} \neq A$, so we finally obtain $C = A \cup \{x\}$.

For k = n + 1, let $B = B_n \cup \{y\}$ with $|B_n| = n$. $B_n \cap A = \emptyset$ and $y \notin A$, $y \notin B_n$.

A FUNCTIONAL CHARACTERIZATION OF THE SYMMETRIC-DIFFERENCE OPERATION

We have

$$\begin{aligned} A*B &= A*(B_n \cup \{y\}) = A*(B_n*\{y\}) = (A*B_n)*\{y\} = \\ &= (A*B_n) \cup \{y\} = (A \cup B_n) \cup \{y\} = A \cup (B_n \cup \{y\}) = A \cup B \\ & \text{d}) \text{ We show that } X*Y = X\Delta Y = (X \setminus Y) \cup (Y \setminus X). \text{ Let } X \cap Y = Z, \\ X \setminus Z = U, Y \setminus Z = V \text{ where } U, V, Z \text{ are disjoint.} \\ & \text{We have} \end{aligned}$$

$$X * Y = (Z \cup U) * (Z \cup V) \stackrel{c)}{=} (U * Z) * (Z * V) =$$
$$= U * (Z * Z) * V \stackrel{b)}{=} U * \emptyset * V \stackrel{a)}{=} U * V \stackrel{c)}{=} U \cup V$$
$$= (X \setminus Z) \cup (Y \setminus Z) = (X \setminus Y) \cup (Y \setminus X) = X \Delta Y. \square$$

Theorem 2. If M is a finite set, then the unique operation on $\mathcal{P}(M)$ which subordinates the intersection and which determines on $\mathcal{P}(M)$ a group structure is the operation $\overline{\Delta}$ defined by:

$$f(X,Y) = X\overline{\Delta}Y = \overline{X\Delta Y} = M \setminus (X\Delta Y), \quad X,Y \in \mathcal{P}(M).$$

Proof. If we denote by " \top " such an operation, then $X \cap Y \subset X \top Y \Leftrightarrow \overline{X \top Y} \subset \overline{X} \cup \overline{Y} \Leftrightarrow \overline{\overline{X} \top \overline{Y}} \subset X \cup Y$.

Let us denote $\overline{\overline{X} \top \overline{Y}} = X * Y$ and show that $(\mathcal{P}(M), *)$ is a group.

The function $c: \mathcal{P}(M) \to \mathcal{P}(M), c(X) = \overline{X} = M \setminus X$ is a bijection and the structure induced from the group $(\mathcal{P}(M), \top)$ is $X * Y = c^{-1}(c(X) \top c(Y)) = \overline{X} \top \overline{Y}$.

Using now the previous theorem and the relation $X * Y \subset X \cup Y$ we deduce that $* = \Delta$, so $\overline{\overline{X} \top \overline{Y}} = X \Delta Y$ or, equivalent, $X \top Y = \overline{\overline{X} \Delta \overline{Y}} = \overline{X \Delta Y}$. \Box

Remark 2. The proofs of the theorems have essentially used the fact that the set M is finite. It is an open problem whether the results take place for infinite sets.

References

 D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, 1999.

[2] I. Purdea, Gh. Pic, Treatise of modern algebra, I, Ed. Acad., București, 1977.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, STR. C. DAICOVICIU 15, CLUJ-NAPOCA, ROMANIA *E-mail address:* vasile.pop@utcluj.ro