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A FUNCTIONAL CHARACTERIZATION OF THE
SYMMETRIC-DIFFERENCE OPERATION

VASILE POP

Abstract. Let M be a set and P(M) the family of the subsets of M .
On P(M) we consider the set of all binary operations O(P(M)) and on
O(P(M)) we define a relation that we call the subordination relation. Then
we show that the only group operation on P(M), subordinate to the union,
is the symmetric difference.

1. Introduction

Let M be an arbitrary set and P(M) = {A| A ⊂ M}, the family of the
subsets of M . On the set of the binary operations on P(M) we define the following
subordination relation:

If f, g : P(M)×P(M) → P(M) are binary operation on P(M), we say that f
is subordinate to g or that g subordinates f , if f(X, Y ) ⊂ g(X, Y ) for all X, Y ∈ P(M)
and we denote f ≤ g.

Our purpose is to determine those operations that confers to P(M) a group
structure and which subordinate the intersection or are subordinated to the union.

2. Main results

For M and P(M) mentioned above, we denote O(P(M)) the set of all binary
operation on the set P(M):

O(P(M)) = {f : P(M)× P(M) → P(M)| f is a function }.

Remark 1. a) Among the usual operations, let us mention:
– the operation ∅: f(X, Y ) = ∅, for all X, Y ∈ P(M);
– the operation M : f(X, Y ) = M , for all X, Y ∈ P(M);
– the intersection (∩): f(X, Y ) = X ∩ Y , for all X, Y ∈ P(M);
– the union (∪): f(X, Y ) = X ∪ Y , for all X, Y ∈ P(M);
– the difference (\): f(X, Y ) = X \ Y , for all X, Y ∈ P(M);
– the symmetric difference (∆):

f(X, Y ) = X∆Y = (X ∪ Y ) \ (X ∩ Y ) = (X \ Y ) ∪ (Y \X)

b) The following subordination relations hold?

∅ ≤ ∩ ≤ ∪ ≤ M.
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c) For f, g ∈ O(P(M)) given operators, the operations ∩,∪ and ∆ are defined
by:

(f ∩ g)(X, Y ) = f(X, Y ) ∩ g(X, Y ),
(f ∪ g)(X, Y ) = f(X, Y ) ∪ g(X, Y ),
(f∆g)(X, Y ) = f(X, Y )∆g(X, Y ),

for all X, Y ∈ P(M).
Proposition 1. The subordinate relation is an order relation, which deter-

mines on O(P(M)) a lattice, where:

inf{f, g} = f ∩ g and sup{f, g} = f ∪ g, for f, g ∈ O(P(M)).

Proof. Let i, f, g, u ∈ O(P(M)).
If i ≤ f and i ≤ g, then i(X, Y ) ⊂ f(X, Y ) and i(X, Y ) ⊂ g(X, Y ). So

i(X, Y ) ⊂ (f ∩ g)(X, Y ). The maximal operation i, which verifies this inclusion is
i = f ∩ g.

If f ≤ u and g ≤ u, then f(X, Y ) ⊂ u(X, Y ) and g(X, Y ) ⊂ u(X, Y ). So
(f ∪ g)(X, Y ) ⊂ u(X, Y ). The minimal operation u, which verifies this inclusion is
u = f ∪ g. �

It is known that the operation ∆ determines on P(M) a group structure and
∆ ≤ U . We will show that, if M is a finite set, then this property characterizes the
symmetric difference, that is ∆ is the unique group operation on P(M), subordinated
to the union.

Theorem 1. If M is a finite set, then the symmetric difference ∆ is the
unique binary operation on P(M) which is subordinated to the union and which de-
termines on P(M) a group structure.

Proof. a) If we denote by ”∗” an operation which satisfies the requirements
of the theorem, from ∅ ∗ ∅ ⊂ ∅ we have ∅ ∗ ∅ = ∅. So the only element that could be
the unit element is ∅.

b) We show by induction after |X| that X ∗X = ∅ for all X ∈ P(M).
For |X| = 0 we have x = ∅ and ∅ ∗ ∅ = ∅.
We suppose X ∗X = ∅ for all X ∈ P(M) with |X| ≤ n and let A ∈ P(M)

with |A| = n + 1.
If X ⊂ A, then X ∗A ⊂ X∪A = A, so the translation restricted to P(M) has

values in P(M). Being an injection, it is a surjection, since P(A) is finite. Thus, there
exists the set B ⊂ A such that tA(B) = A ∗ B = ∅. If we suppose that B 6= A, then
|B| ≤ n and from the induction hypothesis we have B ∗B = ∅. From A ∗B = B ∗B
we have A = B, which is a contradiction that shows that A ∗A = ∅.

c) Using an induction on |B| = k we show that if A∩B = ∅, then A∗B = A∪B.
For k = 0, A ∗ ∅ = A ∪ ∅ = A is immediately verified since ∅ is the unit

element.
For k = 1, B = {x}, x 6∈ A. If A∗{x} = C ⊂ A∪{x} then C ∗{x} ⊂ C∪{x},

that is: A ∗ ({x} ∗ {x}) ⊂ C ∪ {x} or A ∗ ∅ ⊂ C ∪ {x} or A ⊂ C ∪ {x}. Since x 6∈ A
it follows that A ⊂ C and C ⊂ A ∪ {x}. So, either C = A or C = A ∪ {x}. But
C = A ∗ {x} 6= A, so we finally obtain C = A ∪ {x}.

For k = n + 1, let B = Bn ∪ {y} with |Bn| = n. Bn ∩ A = ∅ and y 6∈ A,
y 6∈ Bn.
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We have

A ∗B = A ∗ (Bn ∪ {y}) = A ∗ (Bn ∗ {y}) = (A ∗Bn) ∗ {y} =

= (A ∗Bn) ∪ {y} = (A ∪Bn) ∪ {y} = A ∪ (Bn ∪ {y}) = A ∪B

d) We show that X ∗ Y = X∆Y = (X \ Y ) ∪ (Y \ X). Let X ∩ Y = Z,
X \ Z = U , Y \ Z = V where U, V, Z are disjoint.

We have

X ∗ Y = (Z ∪ U) ∗ (Z ∪ V )
c)
= (U ∗ Z) ∗ (Z ∗ V ) =

= U ∗ (Z ∗ Z) ∗ V
b)
= U ∗ ∅ ∗ V

a)
= U ∗ V

c)
= U ∪ V

= (X \ Z) ∪ (Y \ Z) = (X \ Y ) ∪ (Y \X) = X∆Y. �

Theorem 2. If M is a finite set, then the unique operation on P(M) which
subordinates the intersection and which determines on P(M) a group structure is the
operation ∆ defined by:

f(X, Y ) = X∆Y = X∆Y = M \ (X∆Y ), X, Y ∈ P(M).

Proof. If we denote by ”>” such an operation, then X ∩ Y ⊂ X>Y ⇔
X>Y ⊂ X ∪ Y ⇔ X>Y ⊂ X ∪ Y .

Let us denote X>Y = X ∗ Y and show that (P(M), ∗) is a group.
The function c : P(M) → P(M), c(X) = X = M \X is a bijection and the

structure induced from the group (P(M),>) is X ∗ Y = c−1(c(X)>c(Y )) = X>Y .
Using now the previous theorem and the relation X ∗ Y ⊂ X ∪ Y we deduce

that ∗ = ∆, so X>Y = X∆Y or, equivalent, X>Y = X∆Y = X∆Y . �
Remark 2. The proofs of the theorems have essentially used the fact that

the set M is finite. It is an open problem whether the results take place for infinite
sets.
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