
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVIII, Number 2, June 2003

SPLINE APPROXIMATION FOR SOLVING SYSTEM OF FIRST
ORDER DELAY DIFFERENTIAL EQUATIONS

MOKHTAR A. ABDEL NABY, MOHAMED A. RAMADAN, AND SAMIR T. MOHAMED

Abstract. In a previous work, [9], the authors introduced a new technique
using a spline function to find an approximate solution for first order delay
differential equations. In this presented paper, we develop and modify the
lemmas in [9] so that the technique can be extended to work for the case of
numerical approximation for solving system of first order delay differential
equations. Error estimation and convergence are also considered and tested
using numerical examples. The stability of the technique is investigated.

1. Introduction

Consider the system of first order delay differential equations of the form:

y
′
(x) = f1(x, y(x), z(x), y(g(x))), a ≤ x ≤ b

z
′
(x) = f2(x, y(x), z(x), z(g(x))), y(x0) = y0, z(x0) = z0 (1)

y(x) = φ(x), z(x) = φ(x), x ∈ [a∗, a]

In recent years many studies were devoted to the problems of approximate
solutions of system ordinary as well as delay differential equations by spline functions
[2-6] and [8-10]. While in [1] A. Ayad investigated the spline approximation for
Fredholm integro differential equations. Also G. Micula and H. Akca [7] have studied
the numerical solutions of system of differential equations with deviating argument by
spline functions. Our introduced method is a one step method o(hm+α) in y(i) (x) and
z(i) (x) where i = 0, 1 . The modulus of continuity of y′(x) and z′ (x) is o(hα), 0 < α ≤
1 and m is an arbitrary positive integer which is equal to the number of iterations used
in computing the spline function. Assuming f1, f2 ∈ C([a, b]×R3) we shall investigate
the error estimation and convergence as well as the stability of the method.

2. Description of the spline method

Rewriting the system (1) in the following form:

y
′
(x) = f1(x, u1, v1, u

∗
1), a ≤ x ≤ b

z
′
(x) = f2(x, u1, v1, v

∗
1) (2)

y(x0) = y0, z(x0) = z0, y(x) = φ(x), z(x) = φ(x), x ∈ [a∗, a]
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The function g is called the delay function and it is assumed to be continuous
on the interval [a, b] and satisfies the inequality a∗ ≤ g(x) ≤ x, x ∈ [a, b] and φ, φ ∈
C[a∗, a].

Suppose that f1 : [a, b] × R3 → R is continuous and satisfies the Lipschitz
conditions

|f1(x, u1, v1, u
∗
1)− f1(x, u2, v2, u

∗
2)| ≤ L1{|u1 − u2|+ |v1 − v2|+ |u∗1 − u∗2 |} (3)

and there exist a constant B1 so that

|u∗1 − u∗2 | ≤ B1 |f1(x, u1, v1, u
∗
1)− f1(x, u2, v2, u

∗
2)| (4)

Also Suppose that f2 : [a, b]×R3 → R is continuous and satisfies the Lipschitz
conditions

|f2(x, u1, v1, v
∗
1)− f2(x, u2, v2, v

∗
2)| ≤ L2{|u1 − u2|+ |v1 − v2|+ |v∗1 − v∗2 |} (5)

and there exist a constant B2 so that

|v∗1 − v∗2 | ≤ B2 |f2(x, u1, v1, v
∗
1)− f2(x, u2, v2, v

∗
2)| (6)

∀(x, u1, v1, u
∗
1), (x, u2, v2, u

∗
2), (x, u1, v1, v

∗
1), (x, u2, v2, v

∗
2) ∈ ([a, b]×R3)

These conditions assure the existence of a unique solutions of y and z of system (1).
Let 4be a uniform partition of the interval [a, b] defined by the nodes
4 : a = x0 < x1... < xk < xk+1... < xn = b, xk = x0 + kh, h = b−a

n <
1 and k = 0(1)n− 1
we define the spline function approximating the solutions y and z by S(x) and
S(x) where

S(x) =
{

S4(x), a ≤ x ≤ b
φ(x), a∗ ≤ x ≤ a

S(x) =
{

S4(x), a ≤ x ≤ b

φ(x), a∗ ≤ x ≤ a

Choosing the required positive integer m, we define S4(x) and S4(x) by:

S4(x) = S
[m]
k (x) = S

[m]
k−1(xk) + (7)∫ x

xk

f1(x, S
[m−1]
k (x), S

[m−1]

k (x), S[m−1]
k (g(x)))dx

S4(x) = S
[m]

k (x) = S
[m]

k−1(xk) + (8)∫ x

xk

f2(x, S
[m−1]
k (x), S

[m−1]

k (x), S
[m−1]

k (g(x)))dx

where S
[m]
−1 (x0) = y0, S

[m]

−1 (x0) = z0, S
[m]
−1 (g(x0)) = φ(g(x0)), S

[m]

−1 (g(x0)) = φ(g(x0))

with S
[m]
k−1(xk) and S

[m]

k−1(xk) are the left hand limit of S
[m]
k−1(x) and S

[m]

k−1(x) as x → xk

of the segment S4(x) and S4 (x) defined on [xk−1, xk]. In equation (7), (8) we use
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the following m iterations for x ∈[xk ,xk+1], k = 0(1)n− 1 and j = 1(1)m

S
[j]
k (x) = S

[m]
k−1(xk) +

∫ x

xk

f1(x, S
[j−1]
k (x), S

[j−1]

k (x), S[j−1]
k (g(x)))dx (9)

S
[j]

k (x) = S
[m]

k−1(xk) +
∫ x

xk

f2(x, S
[j−1]
k (x), S

[j−1]

k (x), S
[j−1]

k (g(x)))dx

S
[0]
k (x) = S

[m]
k−1(xk) + Mk (x− xk)

S
[0]

k (x) = S
[m]

k−1(xk) + Mk (x− xk)

where Mk = f1(xk, S
[m]
k−1(xk), S

[m]

k−1(xk), S[m]
k−1(g(xk))) and

Mk = f2(xk, S
[m]
k−1(xk), S

[m]

k−1(xk), S
[m]

k−1(g(xk)))

Such S4(x), S4 (x) ∈ C[a, b]×R3 are exist and unique.

3. Error estimation and convergence

To estimate the error, we represent the exact solution as described by the
following scheme.

y[0](x) = y(x) = yk + y
′
(ζk)(x− xk) (10)

z[0](x) = z(x) = zk + z
′
(ηk)(x− xk)

where ζk, ηk ∈(xk,xk+1), y(xk) = yk, z(xk) = zk. For 1 ≤ j ≤ m we write

y[j](x) = y(x) = yk +
∫ x

xk

f1(x, y[j−1](x), z[j−1](x), y[j−1](g(x)))dx (11)

z[j](x) = z(x) = zk +
∫ x

xk

f2(x, y[j−1](x), z[j−1](x), z[j−1](g(x)))dx

Set ω(h) = max{ω(y
′
, h), ω(z

′
, h)} where ω(y

′
, h) and ω(z

′
, h) are the mod-

ului of continuity for the functions y
′
(x) and z′(x).

Moreover, we denote to the estimated error of y(x) and z(x) at any pointx ∈
[a, b] by:

e(x) = |y(x)− S4(x)| , ek = |yk − S4(xk) | (12)

e(x) =
∣∣z(x)− S4(x)

∣∣ , ek =
∣∣zk − S4(xk)

∣∣
Lemma 3.1. [1]. Let α and β be non negative real numbers and {Ai}m

i=1be
a sequence satisfying A1 ≥ 0, Ai ≤ α + βAi+1 for i = 1(1)m− 1 then:

A1 ≤ βm−1Am + α

m−2∑
i=0

βi

Lemma 3.2. [1]. Let α and β be non negative real numbers, β 6= 1and
{Ai}k

i=0 be a sequence satisfying
A0 ≥ 0, Ai+1 ≤ α + βAi for i = 0(1)k then:

Ak+1 ≤ βk+1A0 + α
[βk+1 − 1]

[β − 1]
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Definition 3.1. [4] for any x ∈[xk ,xk+1], k = 0(1)n − 1and j = 1(1)m we
define the operator Tkj(x) by:

Tkj(x) =
∣∣∣y[m−j](x)− S

[m−j]
k (x)

∣∣∣ +
∣∣∣z[m−j](x)− S

[m−j]

k (x)
∣∣∣ (13)

whose norm is defined by: ‖Tkj‖ = max
x∈[xk,xk+1]

{Tkj(x)}

Lemma 3.3. For any x ∈[ xk ,xk+1], k = 0(1)n− 1and j = 1(1)m, then

‖Tkm‖ ≤ [1 + h(c0 + c0)] (ek + ek) + 2hω(h) (14)
‖Tk1‖ ≤ c1(ek + ek) + c2h

mω(h) (15)

where c0 = L1
1−L1B1

, c0 = L2
1−L2B2

, c1 =
∑m

i=0 (c0 + c0)
i and c2 = 2 (c0 + c0)

m−1 are
constants independent of h.

Proof. Using (3), (4), (5), (6), (9), (10), (11) and (12), it is easy to proof
the lemma.

Lemma 3.4. Let e(x), e(x) be defined as in (12), then there exist constants
c3, c4, c3, c4 independent of h such that the following inequalities hold:

e(x) ≤ (1 + hc3) ek + hc3ek + c4h
m+1ω(h) (16)

e(x) ≤ hc3ek + (1 + hc3) ek + c4h
m+1ω(h) (17)

where c3 = c0c1, c4 = c0c2, c3 = c0c1 and c4 = c0c2

Proof. Using (3), (4), (7), (11), (12) and (15) we get:

e(x) ≤
∣∣∣y(x)− S

[m]
k (x)

∣∣∣ ≤ ek + c0 ‖Tk1‖
∫ x

xk

dx

≤ (1 + hc3) ek + hc3ek + c4h
m+1ω(h)

Similarly using (5), (6), (8), (11), (12) and (15), we can proof the other
part of the lemma where c3 = c0c1, c4 = c0c2, c3 = c0c1 and c4 = c0c2 are constants
independent of h.

Definition 3.2. Let A = [aij ] and B = [bij ] be two matrices of the same
order then we say that A ≤ B
iff:

(i) both aijand bij are non negative
(ii) aij ≤ bij ∀ i, j.
Using matrix notation we let

E(x) = [e(x) e(x)]T , Ek = [ek ek]T and C = [c4 c4]
T

where T stands for the transpose, then from lemma 3.4, we write

E(x) ≤ (I + hA) Ek + Chm+1ω(h) (18)

where I is the unit matrix of order 2 and A =
(

c3 c3

c3 c3

)
.

Definition 3.3. Let T = [Ti,j ] be an m× n matrix, then we define

‖T‖ = max
i

n∑
j=0

|ti,j | .

Using this definition the inequality (18) yields:

‖E(x)‖ ≤ (1 + h ‖A‖) ‖Ek‖+ ‖C‖hm+1ω(h).
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This inequality holds for x ∈ [a, b] . Setting x = xk+1, we obtain:

‖Ek+1‖ ≤ (1 + h ‖A‖) ‖Ek‖+ ‖C‖hm+1ω(h).

Using lemma 3.2 and noting that ‖E0‖ = 0,we get:

‖E(x)‖ ≤ ‖C‖hm+1ω(h)

[
(1 + h ‖A‖)k+1 − 1

]
1 + h ‖A‖ − 1

≤ ‖C‖
‖A‖

[(
1 +

‖A‖ (b− a)
n

)n

− 1
]

hmω(h)

≤ ‖C‖
‖A‖

[
e(‖A‖(b−a)) − 1

]
hmω(h)

≤ c5h
mω(h) = o(hm+α)

where c5 = ‖C‖
‖A‖

[
e(‖A‖(b−a)) − 1

]
is a constant independent of h. Using definition 3.3,

we get:

e(x) ≤ c5h
mω(h) (19)

e(x) ≤ c5h
mω(h)

now we are going to estimate
∣∣∣y′

(x)− S
′

∆(x)
∣∣∣ . Using (3), (4), (7), (11), (12), (15) and

(19), we get: ∣∣∣y′
(x)− S

′

∆(x)
∣∣∣ ≤ c6h

mω(h)

where c6 = c0 [2c1c5 + c2] is a constant independent of h. Similarly using (5), (6),
(8), (11), (12), (15) and (19), we get:

∣∣∣z′
(x)− S

′

∆(x)
∣∣∣ ≤ c7h

mω(h)

where c7 = c0 [2c1c5 + c2] is a constant independent of h.
Thus from above lemma we have arrived to the following theorem:
Theorem 3.1. Let y(x), z(x) be the exact solutions of the system (1). If

S∆(x), S∆(x) given by (7), (8) are the approximate solutions for the problem, f1, f2 ∈
C

(
[a, b]×R3

)
, then the inequalities

∣∣∣y(q)(x)− S
(q)
∆ (x)

∣∣∣ ≤ c8h
mω(h)∣∣∣∣z(q)(x)− S

(q)

∆ (x)
∣∣∣∣ ≤ c9h

mω(h)

hold for all x ∈ [a, b] and q = 0, 1 where c8 and c9 are constants independent of h.
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4. Stability of the method

To study the stability of the method given by (7), (8) we change S∆(x) to
W∆(x) and S∆(x) to W∆(x) where

W4(x) = W
[m]
k (x) = W

[m]
k−1(xk) + (20)∫ x

xk

f1(x, W
[m−1]
k (x),W

[m−1]

k (x),W [m−1]
k (g(x)))dx

W4(x) = W
[m]

k (x) = W
[m]

k−1(xk) + (21)∫ x

xk

f2(x,W
[m−1]
k (x),W

[m−1]

k (x),W
[m−1]

k (g(x)))dx

W
[m]
−1 (x0) = y∗0 ,W

[m]

−1 (x0) = z∗0 ,W
[m]
−1 (g(x0)) = φ(g(x0)),W

[m]

−1 (g(x0)) = φ(g(x0)),

with W
[m]
k−1(xk) andW

[m]

k−1(xk) are the left hand limit of W
[m]
k−1(x) andW

[m]

k−1(x) as x →
xk of the segment of W4(x) and W4 (x) defined on [xk−1 ,xk]. In equations (20) and
(21), we use the following m iterations. For x ∈[xk ,xk+1], k = 0(1)n−1 and j = 1(1)m

W
[j]
k (x) = W

[m]
k−1(xk) +

∫ x

xk

f1(x,W
[j−1]
k (x),W

[j−1]

k (x),W [j−1]
k (g(x)))dx (22)

W
[j]

k (x) = W
[m]

k−1(xk) +
∫ x

xk

f2(x, W
[j−1]
k (x),W

[j−1]

k (x),W
[j−1]

k (g(x)))dx

W
[0]
k (x) = W

[m]
k−1(xk) + Nk (x− xk)

W
[0]

k (x) = W
[m]

k−1(xk) + Nk (x− xk)

Nk = f1(xk,W
[m]
k−1(xk),W

[m]

k−1(xk),W [m]
k−1(g(xk)))

Nk = f2(xk,W
[m]
k−1(xk),W

[m]

k−1(xk),W
[m]

k−1(g(xk)))

Moreover, we use the following notation.

e∗(x) = |S4(x)−W4(x)| , e∗k = |S4(xk)−W4(xk)| (23)

e∗(x) =
∣∣S4(x)−W4(x)

∣∣ , e∗k =
∣∣S4(xk)−W4(xk)

∣∣
Definition 4.1. For any x ∈[ xk ,xk+1], k = 0(1)n − 1 and j = 1(1)m we

define the operator T ∗
kj(x) by:

T ∗
kj(x) =

∣∣∣S[m−j]
k (x)−W

[m−j]
k (x)

∣∣∣ +
∣∣∣S[m−j]

k (x)−W
[m−j]

k (x)
∣∣∣ (24)

whose norm is defined by
∥∥∥T ∗

kj

∥∥∥ = max
x∈[xk,xk+1]

{T ∗
kj(x)}.

Lemma 4.1. For any x ∈[ xk ,xk+1], k = 0(1)n− 1 and j = 1(1)m, then

‖T ∗
km‖ ≤ [1 + h(c0 + c0)] (e∗k + e∗k) (25)

‖T ∗
k1‖ ≤ c1(e∗k + e∗k) (26)

where c0, c0 and c1are constants defined as in lemma 3.3 Proof. Using (3), (4), (5),
(6), (9), (22) and (23) it is easy to prove the above lemma
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Lemma 4.2. Let e∗(x), e∗(x) be defined as in (23), then there exist constants
c3, c3 independent of h such that the following inequalities hold:

e∗(x) ≤ (1 + hc3) e∗k + hc3e
∗
k (27)

e∗(x) ≤ hc3e
∗
k + (1 + hc3) e∗k (28)

Proof. Using (3), (4), (5), (6), (7), (8), (20),(21), (23) and (26) the proof
is similar to the proof in lemma 3.4. On the light of definition 3.2 and matrix notation

E∗(x) = [e∗(x) e∗(x)]T and E∗
k = [e∗k e∗k]T then from lemma 4.2, we write

E∗(x) ≤ (I + hA)E∗
k (29)

where I and A are matrices defined as in (18) using definition 3.3. The inequality
(29) yields:
‖E∗(x)‖ ≤ (1 + h ‖A‖) ‖E∗

k‖ .
This inequality holds for any x ∈ [a, b] . Setting x = xk+1,we get:∥∥E∗

k+1

∥∥ ≤ (1 + h ‖A‖) ‖E∗
k‖

Using lemma 3.2, we obtain:

‖E∗(x)‖ ≤ (1 + h ‖A‖)k+1 ‖E∗
0‖

≤
(

1 +
‖A‖ (b− a)

n

)n

‖E∗
0‖

≤ e‖A‖(b−a) ‖E∗
0‖

≤ c10 ‖E∗
0‖

where c10 = e‖A‖(b−a) is a constant independent of h. Now using definition 3.3, we
obtain:

e∗(x) ≤ c10 ‖E∗
0‖ (30)

e∗(x) ≤ c10 ‖E∗
0‖

To estimate
∣∣∣S′

∆(x)−W
′

∆(x)
∣∣∣ we use (3), (4), (7), (20), (23), (26) and (30),

we obtain: ∣∣∣S′

∆(x)−W
′

∆(x)
∣∣∣ ≤ c11 ‖E∗

0‖

where c11 = 2c0c1c10 is a constant independent of h. Similarly using (5), (6), (8),
(21), (23), (26) and (30) we get∣∣∣S′

∆(x)−W
′

∆(x)
∣∣∣ ≤ c12 ‖E∗

0‖

where c12 = 2c0c1c10 is a constant independent of h. Thus from above lemma
we have arrived to the following theorem

Theorem 4.1. Let S∆(x), S∆(x) given by (7), (8) be the approximate
solutions of the problem (1) with the initial conditions y(x0) = y0, z(x0) = z0 and
let W∆(x),W∆(x) given by (20), (21) are the approximate solutions for the same prob-
lem with the initial conditions y∗(x0) = y∗0 , z∗(x0) = z∗0 and f1, f2 ∈ C

(
[a, b]×R3

)
then the inequalities ∣∣∣S(q)

∆ (x)−W
(q)
∆ (x)

∣∣∣ ≤ c13 ‖E∗
0‖∣∣∣S(q)

∆ (x)−W
(q)

∆ (x)
∣∣∣ ≤ c14 ‖E∗

0‖
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hold for all x ∈ [a, b] and q = 0, 1 ‖E∗
0‖ = max{|y0 − y∗0 | , |z0 − z∗0 |} where c13,

c14 are constants independent of h.

5. Numerical example

The method is tested using the following example in the interval [0, 1] with
step size h=0.1 where m = 4 and m = 5. To test the stability of the method we do
change in the initial condition by adding 0.00001.

Example 5.1. Consider the system of delay differential equation

y
′
(x) = y(x)− z(x) + y (x/2)− ex/2 + e−x, 0 ≤ x ≤ 1

z
′
(x) = −y(x)− z(x)− z (x/2) + e−x/2 + ex

y(x) = ex, z(x) = e−x, x ≤ 0, y(0) = 1, z(0) = 1.

The exact solution is y = ex, z = e−x.

Table I
x m First Apr. Absolute error Second Apr. Abs diff. bet.

the num. sol.
0.1 4 y = 1.105170911 7.6× 10−9 1.105182139 1.1× 10−5

0.1 5 y = 1.105170918 2.9× 10−11 1.105182147 1.1× 10−5

0.2 4 y = 1.221402377 3.8× 10−7 1.221415306 1.3× 10−5

0.2 5 y = 1.221402778 2× 10−8 1.221415714 1.3× 10−5

0.3 4 y = 1.349851046 7.8× 10−6 1.349866173 1.5× 10−5

0.3 5 y = 1.349859939 1.1× 10−6 1.349875098 1.5× 10−5

0.4 4 y = 1.491771687 5.3× 10−5 1.491789545 1.8× 10−5

0.4 5 y = 1.491836988 1.2× 10−5 1.491854936 1.8× 10−5

0.5 4 y = 1.648505578 2.2× 10−4 1.648526745 2.1× 10−5

0.5 5 y = 1.64878964 6.8× 10−5 1.648811008 2.1× 10−5

0.6 4 y = 1.821472326 6.5× 10−4 1.821497444 2.5× 10−5

0.6 5 y = 1.822380782 2.6× 10−4 1.822406275 2.5× 10−5

0.7 4 y = 2.012179165 1.6× 10−3 2.012208952 3× 10−5

0.7 5 y = 2.014537772 7.9× 10−4 2.014568184 3× 10−5
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Table II
x m First Abr. Absolute error Second Apr. Sol. Abs. diff. bet.

the num. sol.
0.1 4 z = 0.9048374116 6.4× 10−9 0.9048445718 7.2× 10−6

0.1 5 z = 0.9048374182 1.8× 10−10 0.9048445788 7.2× 10−6

0.2 4 z = 0.8187301857 5.7× 10−7 0.8187347665 4.6× 10−6

0.2 5 z = 0.8187307828 3× 10−8 0.8187353697 4.6× 10−6

0.3 4 z = 0.7408112275 7× 10−6 0.740813402 2.2× 10−6

0.3 5 z = 0.7408189118 6.9× 10−7 0.740821138 2.2× 10−6

0.4 4 z = 0.6702800604 4× 10−5 0.6702799171 1.4× 10−7

0.4 5 z = 0.6703255091 5.5× 10−6 0.6703254446 6.6× 10−8

0.5 4 z = 0.6063734706 1.6× 10−4 0.6063710188 2.5× 10−6

0.5 5 z = 0.606555279 2.5× 10−5 0.6065530007 2.3× 10−6

0.6 4 z = 0.5483243125 4.9× 10−4 0.5483194985 4.8× 10−6

0.6 5 z = 0.5488891836 7.8× 10−5 0.548884684 4.5× 10−6

0.7 4 z = 0.4953086589 1.3× 10−3 0.4953013317 7.3× 10−6

0.7 5 z = 0.4967716293 1.9× 10−4 0.4967648351 6.8× 10−6

6. Conclusions

A new technique using spline function approximation to numerically solve the
system of first order delay differential equation is presented. The convergence and
stability are discussed. Also, error analysis and stability are investigated showed in
table I where m the number of iterations. Tables I and II show improvements of error
analysis and stability. Also, from the sixth column of the tables one can see that the
algorithm is stable.
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