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METHOD ON PARTIAL AVERAGING FOR
FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH HUKUHARA’S

DERIVATIVE

TERESA JANIAK AND ELŻBIETA  LUCZAK-KUMOREK

1. Introduction

In classical system of functional-differential equations it is possible to mid-
dle both complete and partial equations. Complete averaging was presented by
Bogolubov ([1]).

In this paper, we use a partial middling method in the case of functional-
differential inclusions with Hukuhara’s derivative, i.e. for inclusions of the form

DhX(t) ∈ F (t, Xt, ) (1)

where DhX denotes a Hukuhara’s derivative ([2]) of a multivalued mapping X,
Xt : Θ → Xt(Θ) = X(t + Θ) for Θ ∈ [−r, 0], r > 0, F is a map from [0, T ]× C0 into
CC(Rn), and C0 is a metric space of all continuous mapping Φ : [−r, 0] → Conv(Rn).

The application of this method leads to a reduced form of the initial equations
system and is useful in the case when the means of certain functions do not exist.

The results of this paper generalize the results of V. A. P lotnikov ([5]), where
the generalized system ẋ(t) ∈ F (t, x) was investigated.

2. Notations and definitions

By Conv(Rn) we will denote the family of all nonempty compact and convex
subsets of the real n-dimensional Euclidean space Rn with the Hausdorff metric H
defined by:

H(A,B) = max
{

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|
}

for A,B ∈ Conv(Rn), where | · | denotes the Euclidean norm.
It is know that (Conv(Rn),H) is a complete metric space ([3]). Let CC(Rn)

denote the space of all nonempty compact but necessarily convex subsets of Conv(Rn).
By d we will denote the distance between two collections A,B ∈ CC(Rn) i.e.

d(A,B) = max
{

max
a∈A

min
b∈B

H(a, b), max
b∈B

min
a∈A

H(a, b)
}

for a, b ∈ Conv(Rn).
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TERESA JANIAK AND ELŻBIETA  LUCZAK-KUMOREK

Let us denote by ρ a distance between A ∈ CC(Rn) and B ∈ Conv(Rn)
defined by:

ρ(A,B) = max
{

sup
a∈A

inf
b∈B

H(a, b), sup
b∈B

inf
a∈A

H(a, b)
}

Let X : [0, T ] → Conv(Rn) be a given mapping. Using the definition of the
difference in Conv(Rn) the Hukuhara derivative DhX ([2]) of X may be introduced
in the following way:

DhX(t) = lim
h→0+

1/h(X(t + h)−X(t)) = lim
h→0+

1/h(X(t)−X(t− h)) (2)

where X is assumed to belong to the class D of all functions such that both differences
in (2) are possible.

The mapping X : [0, T ] → Conv(Rn) will be called Hukuhara differentiable
in [0, T ] if DhX exists for every t ∈ [0, T ].

A function X : [0, T ] → Conv(Rn) is called absolutely continuous if for every
positive number ε there is a positive number δ such that

k∑
i=1

H(X(βi), X(αi)) < ε whenever α1 < β1 ≤ α2 < β2 ≤ . . . ≤ αk < βk

and
k∑

i=1

(βi − αi) < δ.

The Aumann-Hukuhara’s integral for multifunction F : [0, T ] → CC(Rn) is
a collection G ∈ CC(Rn) defined by:

G =
{

g ∈ Conv(Rn) : g =
∫ t

0

f(t)dt for f(t) ∈ F (t)
}

where f : [0, T ] → Conv(Rn) and integral of f on a set [0, T ] is the Hukuhara integral
defined in the paper ([2]).

Finally, denote by Cα a metric space of all continuous mapping V : [−r, α] →
Conv(Rn) where α ≥ 0, r > 0, with metric ρα defined by:

ρα(V1, V2) = sup
−r≤t≤α

H(V1(t), V2(t)) for V1, V2 ∈ Cα.

We say that X is a solution of (1) with the initial absolutely continuous
multifunctions Φ : [−r, 0] → Conv(Rn) if X is an absolutely continuous function from
[−r, T ] into Conv(Rn) with the properties:

X(t) = Φ(t) for t ∈ [−r, 0]
and X satisfies the inclusions (1) for a.e. t ∈ [0, T ] .

3. The theorem on partial middling

Let F i : [0,∞)× C0 → CC(Rn) (i = 1, 2) satisfy the following conditions:
1◦ F i(·, U) : [0,∞) → CC(Rn) is measurable for fixed U ∈ C0

2◦ there exists a M > 0 such that d(F i(t, U), {0}) ≤ M for (t, U) ∈ [0,∞)× C0

3◦ F i(t, ·) : C0 → CC(Rn) satisfies for fixed t ∈ [0,∞) the Lipschitz condition of
the form:

d
(
F i(t, U), F i(t, V )

)
≤ Kρ0(U, V )
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where K > 0, U, V ∈ C0

4◦ there exists a limit

lim
T→∞

1
T

d

(∫ T

0

F 1(t, U)dt,

∫ T

0

F 2(t, U)dt

)
= 0

uniformly with respect to U ∈ C0.
In this part we shall study differential inclusions of the form

DhX1(t) ∈ εF 1(t,X1
t ) for a.e. t ≥ 0 (3)

and
DhX2(t) ∈ εF 2(t,X1

t ) for a.e. t ≥ 0 (4)

where ε > 0 is a small parameter.
We shall consider (3) and (4) together with the initial conditions

X1(t) = X2(t) = Φ(t) for t ∈ [−r, 0] (5)

where Φ : [−r, 0] → ConvRn is a given absolutely continuous multifunction.
In paper ([4]) the following theorem has been proved.
Theorem 1. Let δ : [0, T ] → R be a non-negative Lebesgue integreable

function and let Φ ∈ C0 be an absolutely continuous. Suppose that F : [0, T ]× C0 →
CC(Rn) satisfy the following conditions:

1) F (·, U) : [0, T ] → CC(Rn) is measurable for fixed U ∈ C0

2) there exists a M > 0 such that d(F (t, U), {0}) ≤ M for (t, U) ∈ [0, T ]× C0

3) F (t, ·) : C0 → CC(Rn) satisfies for fixed t ∈ [0, T ] the Lipschitz conditions of
the form

d (F (t, U), F (t, V )) ≤ K(t)ρ0(U, V )

where K : [0, T ] → R+ is a Lebesgue integrable function, U, V ∈ C0.
Furthermore let Y : [−r, T ] → Conv(Rn) be an absolutely continuous

mapping such that

4) Y (t) = Φ(t) for t ∈ [−r, 0],

5) ρ(DhY (t), F (t, Yt) ≤ δ(t) for a.e. t ∈ [0, T ].
Then there is a solution X of an initial-value problem:{

DhX(t) ∈ F (t, Xt) for a.e. t ∈ [−r, 0],
X(t) = Φ(t) for t ∈ [−r, 0]

such that H(X(t), Y (t)) ≤ ξ(t) for t ∈ [0, T ]
and H(DhX(t), DhY (t)) ≤ δ(t) + K(t)ξ(t) for a.e. t ∈ [0, T ]
where ξ(t) =

∫ t

0
δ(s) exp[m(t)−m(s)]ds and m(t) =

∫ t

0
K(r)dr.

Now we can prove the main result of this paper, where in Theorem 2 by
CC(Rn) we will denote the spaces of all nonempty compact and convex subsets of
Conv(Rn).

Theorem 2. Suppose F i : [0,∞) × C0 → CC(Rn), (i = 1, 2, ) satisfy the
conditions 1◦ – 4◦. Then, for each η > 0 and T > 0 there exists a ε0(η, T ) such that
for every ε ∈ (0, ε0] the following conditions are satisfied:

(i) for each solution X1(·) of (3) there exists a solution X2(·) of (4) such that:
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H
(
X1(t), X2(t)

)
≤ η for t ∈

[
−r,

T

ε

]
(6)

(ii) for each solution X2(·) of (4) there exists a solution X1(·) of (3) such that (6)
holds.

Proof. Let X1(·) be a solution of (3) on [−r, 0]. In order to prove the
theorem we shall consider the solution X2(·) of the inclusion (4) in such a way that
for t ∈ [−r, 0], X1(t) = X2(t) = Φ(t), hence H(X1(t), X2(t)) = 0 < η. We will
prove inequality (6) on the interval

[
0, T

ε

]
. To do this divide the interval

[
0, T

ε

]
on

m-subintervals [ti, ti+1], where ti = iT
εm , i = 0, 1, . . . ,m− 1 and write a solution X1(·)

in the form: 
X1(t) = Φ(t) for t ∈ [−r, 0]

X1(t) = X1(ti) + ε

∫ t

ti

V 1(τ)dτ for t ∈ [ti, ti+1]
(7)

where V 1(t) ∈ F 1(t, X1
t ).

Let us consider a function Y 1(·) defined by
Y 1(t) = Φ(t) for t ∈ [−r, 0]

Y 1(t) = Y 1(ti) + ε

∫ t

ti

U1
i+1(τ)dτ for t ∈ [ti, ti+1]

(8)

where U1
i+1(·), i = 0, 1, . . . ,m − 1 are measurable functions such that U1

i+1(t) ∈
F 1(t, Y 1

ti
) and

H
(
V 1(t), U1

i+1(t)
)

= ρ
(
V 1(t), F 1(t, Y 1

ti
)
)

= min
U(t)∈F 1(t,Y 1

ti
)
H
(
V 1(t), U(t)

)
.

By virtue of (7) for every t ∈ [ti, ti+1] we have

H
(
X1(t), Y 1(ti)

)
= H

(
X1(ti) + ε

∫ t

ti

V 1(τ)dτ, Y 1(ti)
)
≤

≤ H
(
X1(ti), Y 1(ti)

)
+ εM(t− ti) ≤ δi + εM(t− ti)

where δi = H(X1(ti), Y 1(ti)), i = 0, 1, . . . ,m− 1.
Furthermore, for t ∈ [ti, ti+1], we have

H
(
V 1(t), U1

i+1(t)
)
≤ d

(
F 1(t, X1

t ), F 1(t, Y 1(ti)
)
≤

≤ Kρ0(X1
t , Y 1

ti
) (9)

But

ρ0(X1
t , Y 1

ti
) ≤ ρ0(X1

t , X1
ti

) + ρ0(X1
ti

, Y 1
ti

) =
= sup−r≤s≤0 H

(
X1(t + s), X1(ti + s)

)
+ sup−r≤s≤0 H

(
X1(ti + s), Y 1(ti + s)

)
By the definition of X1(·) and the properties of multifunction F 1(t, X1

t ) we
have:

sup
−r≤s≤0

H
(
X1(t + s), X1(ti + s)

)
≤ MT

m
for t ∈ [ti, ti+1]
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Furthermore by the definition X1(·) and Y 1(·) and using of (7) and (8), we
have

sup
−r≤s≤0

H

(
X1(ti + s), Y 1(ti + s)) = sup

ti−r≤τ≤ti

(H(X1(τ), (Y 1(τ)
)

=

= sup
ti−r≤τ≤ti

{
H

(
X1(ti) + ε

∫ τ

ti

V 1(s)ds, Y 1(ti) + ε

∫ τ

ti

U1
i+1(s)ds

)}
≤

≤ sup
ti−r≤τ≤ti

{
H
(
X1(ti), Y 1(ti)

)
+ εH

(∫ τ

ti

V 1(s)ds,

∫ τ

ti

U1
i+1(s)ds

)}
≤

≤ δi + sup
ti−r≤τ≤ti

ε

∫ τ

ti

d
(
F 1(s,X1

s ), F 1(s, Y 1
ti

)
)
ds ≤

≤ δi + sup
ti−r≤τ≤ti

ε

{∫ τ

ti

[
d
(
F 1(s,X1

s ), {0}
)

+ d
(
F 1(s, Y 1

ti
), {0}

)]
ds

}
≤ δi + 2εMr.

Therefore, inequality (9) for t ∈ [ti, tii+1] can be written as follows

H
(
V 1(t), U1

i+1(t)
)
≤ K

(
MT

m
+ δi + 2εMr

)
. (10)

By virtue of (7), (8) and (10), it follows

δi = H(X1(ti), Y 1(ti)) =

= H

(
X1(ti−1) + ε

∫ ti

ti−1

V 1(τ)dτ, Y 1(ti−1) + ε

∫ ti

ti−1

U1
i (τ)dτ

)
≤

≤ H(X1(ti−1), Y 1(ti−1)) + εH

(∫ ti

ti−1

V 1(τ)dτ,

∫ ti

ti−1

U1
i (τ)dτ

)
≤

≤ δi−1 + ε

∫ ti

ti−1

H
(
V 1(τ), U1

i (τ)
)
dτ ≤ δi−1 + εK(ti − ti−1)

(
MT

m
+ δi−1 + 2εMr

)
= δi−1 +

K · T
m

(
MT

m
+ δi−1 + 2εMr

)
= δi−1

(
1 +

KT

m

)
+

KT

m

(
MT

m
+ 2εMr

)
= δi−1

(
1 +

a

m

)
+

b

m
,

where a = KT and b = KT
(

MT
m + 2εMr

)
.
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Hence,

δi ≤ δi−1

(
1 +

a

m

)
+

b

m
≤
(

1 +
a

m

)[
δi−2

(
1 +

a

m

)
+

b

m

]
+

b

m
≤

≤
(

1 +
a

m

)i

δ0 +
(

1 +
a

m

)i−1 b

m
+ . . .

b

m
=

=
b

m

(
1 +

(
1 +

a

m

)
+ . . . +

(
1 +

a

m

)i−1
)

=
b

a

((
1 +

a

m

)i

− 1
)
≤

≤ b

a
(ea − 1) =

M

m
(2εmr + T )(eKT − 1),

where i = 0, 1, . . . ,m− 1.
For t ∈ [ti, ti+1] we have

H(X1(t), X1(ti)) = H

(
X1(ti) + ε

∫ t

ti

V 1(τ)dτ, X1(ti)
)
≤

≤ εH

(∫ t

ti

V 1(τ)dτ, {0}
)
≤ εM · T

εm
=

MT

m

and H(Y 1(t), Y 1(ti)) ≤ MT
m .

Hence, we obtain

H(X1(t), Y 1(t)) ≤ H(X1(t), X1(ti)) + H(X1(ti), Y 1(ti))

+H(Y 1(ti), Y 1(t)) ≤ 2MT

m
+

M

m
(2εmr + T )(eKT − 1)

(11)

Now we shall consider the function
Y 2(t) = Φ(t) for t ∈ [−r, 0]

Y 2(t) = Y 2(ti) + ε

∫ t

ti

U2
i+1(τ)dτ for t ∈ [ti, ti+1]

(12)

where U2
i+1(·), i = 0, 1, 2, . . . ,m − 1, are measurable functions such that U2

i+1(t) ∈
F 2(t, Y 1

ti
).
Let us notice that by virtue of condition 40 for each η1 > 0 and T > 0 there

exists a ε0(η1, T ) > 0 such that for every ε ≤ ε0 we have the following inequalities:

d

(
εm

iT

∫ iT
εm

0

F 1(t, Y 1
ti

)dt,
εm

iT

∫ iT
εm

0

F 2(t, Y 1
ti

)dt

)
≤ η1

2i
(13)

and

d

(
εm

(i + 1)T

∫ (i+1)T
εm

0

F 1(t, Y 1
ti

)dt,
εm

(i + 1)T

∫ (i+1)T
εm

0

F 2(t, Y 1
ti

)dt

)
≤ η1

2(i + 1)
(14)

where i = 1, 2, . . . ,m− 1. Let us observe that (i+1)T
εm = ti+1 and iT

εm = ti.
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By virtue of (13), (14) and the Hausdorff metric condition we have

d

(∫ ti+1

ti

F 1
(
t, Y 1

ti

)
dt,

∫ ti+1

ti

F 2
(
t, Y 1

ti

)
dt

)
≤

≤ d

(∫ ti+1

0

F 1
(
t, Y 1

ti

)
dt,

∫ ti+1

0

F 2
(
t, Y 1

ti

)
dt

)
+

+d

(∫ ti

0

F 1
(
t, Y 1

ti

)
dt,

∫ ti

0

F 2
(
t, Y 1

ti

)
dt

)
≤

≤ η1

2i
· iT

εm
+

η1

2(i + 1)
· T (i + 1)

εm
=

η1T

εm
.

Then

H

(∫ ti+1

ti

U1
i+1(τ)dτ,

∫ ti+1

ti

U2
i+1(τ)dt

)
≤ η1T

εm

and
H(Y 1(ti+1), Y 2(ti+1)) ≤ H(Y 1(ti), Y 2(ti))+

+ εH

(∫ ti+1

ti

U1
i+1(τ)dτ,

∫ ti+1

ti

U2
i+1(τ)dt

)
≤

≤ H(Y 1(ti), Y 2(ti)) +
η1T

m
≤ . . . ≤ m · η1T

m
= η1T,

(15)

where i = 0, 1, . . . ,m− 1.
Using the inequality (15) and the fact that for t ∈ [ti, ti+1]

H(Y 1(t), Y 1(ti)) ≤
MT

m
and H(Y 2(t), Y 2(ti)) ≤

MT

m

we have
H(Y 1(t), Y 2(t)) ≤ H(Y 1(t), Y 1(ti)) + H(Y 1(ti), Y 2(ti))

+H(Y 2(ti), Y 2(t)) ≤ 2MT

m
+ η1T

(16)

By assumption 30 it follows that

d(F 2(t, Y 2
t , )F 2(t, Y 1

ti
)) ≤ Kρ0(Y 2

t , Y 1
ti

)

Similarly, as in the proof of the inequality (9) and making use of the inequality
(16) we obtain

ρ0(Y 2
t , Y 1

ti
) ≤ ρ0(Y 2

t , Y 2
ti

) + ρ0(Y 2
ti

, Y 1
ti

)

≤ MT

m
+

2MT

m
+ η1T =

3MT

m
+ η1T

Hence d(F 2(t, Y 2
t , )F 2(t, Y 1

ti
)) ≤ K

(
3MT

m + η1T
)
.

By virtue of (12) we have:

ρ
(
DhY 2(t), εF 2(t, Y 2

t )
)

= ρ
(
DhY 2(t), εF 2

(
t, Y 1

ti

))
+d
(
εF 2

(
t, Y 1

ti

)
, εF 2

(
t, Y 2

t

))
≤ Kε

(
3MT

m
+ η1T

)
.
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Now, using existence theorem (see Theorem 1) there exists at least a solution
X2(·) of (4) such that for t ∈ [0, T/ε]

H(Y 2(t), X2(t)) ≤
∫ t

0

Kε

(
3MT

m
+ η1T

)
exp[εK(t− s)]ds ≤

≤
(

3MT

m
+ η1T )(eKT − 1

)
.

Using the inequalities (11) and (16) it follows

H
(
X1(t), X2(t)

)
≤ H

(
X1(t), Y 1(t)

)
+ H

(
Y 1(t), Y 2(t)

)
+ H

(
Y 2(t), X2(t)

)
≤ 4MT

m
eKT + 2εMreKT + η1TeKT .

Therefore, choosing m > 12MTeKT

η , η1 = η
3TeKT and ε < η

6MreKT we get the
inequality

H(X1(t), X2(t)) ≤ η for t ∈ [0, T/ε].
Adopting now the procedure presented above we get the condition (ii). In

this way the proof is completed for t ∈
[
−r, T

ε

]
.
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