ON THE NECESSARY AND SUFFICIENT CONDITION FOR THE REGULARITY OF A MULTIDIMENSIONAL INTERPOLATION SCHEME

NICOLAE CRAINIC

Abstract

In this article we will present the necessary and sufficient condition for the regularity of a multidimensional interpolation scheme, in the case when the interpolation indexes are taken from an arbitrary set S from \mathbb{N}^{d}. In particular, if the index set S (of the interpolation space \mathcal{P}_{S}) is inferior with respect to \mathbb{N}^{d}, we obtain the theorem 3.4.2. from [1]. The set Δ_{k}^{d} from \mathbb{N}^{d}, given by the relation (1), together with the proposition 1 , are the key elements that allow us to approach the theorem in a general context and to give another proof for it, compared of course with the one given in [1].

Let $\mathbb{N}^{d}=\left\{\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{d}\right) / i_{k} \geq 0, i_{k} \in \mathbb{N}, k=\overline{1, d}\right\},|\mathbf{i}|=i_{1}+i_{2}+\ldots+i_{d}$, and the definitions:

1. We say that $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{d}\right) \in \mathbb{N}^{d}$ is in the relation" \leq " with $\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{d}\right) \in$ \mathbb{N}^{d} and we write $\mathbf{i} \leq \mathbf{j}$ when $0 \leq i_{k} \leq j_{k}$ for any $k=\overline{1, d}$.
2. We say that $I \subset \mathbb{N}^{d}$ is a lower set with respect to \mathbb{N}^{d} if for any $\mathbf{i} \in I$ and $\mathbf{j} \in \mathbb{N}^{d}$ so that $\mathbf{j} \leq \mathbf{i}$, we have $\mathbf{j} \in I$. In the same manner we can define the inferior set with respect to any set $S \subset \mathbb{N}^{d}$

If $\Delta_{k}^{d} \subset \mathbb{N}^{d}$,

$$
\begin{equation*}
\Delta_{k}^{d}=\bigcup_{i_{1}=0}^{k} \bigcup_{i_{2}=0}^{k-i_{1}} \ldots \bigcup_{i_{d-1}=0}^{k-\left(i_{1}+\ldots+i_{d-2}\right)}\left\{i_{1}, \ldots, i_{d-1}, k-\left(i_{1}+\ldots+i_{d-1}\right)\right\} \tag{1}
\end{equation*}
$$

we have $T_{n}^{d}=\bigcup_{k=0}^{n} \Delta_{k}^{d}$, that is

$$
T_{n}^{d}=\bigcup_{k=0}^{n} \Delta_{k}^{d}=\bigcup_{k=0}^{n} \bigcup_{i_{1}=0}^{k} \bigcup_{i_{2}=0}^{k-i_{1}} \ldots \bigcup_{i_{d-1}=0}^{k-\left(i_{1}+\ldots+i_{d-2}\right)}\left\{i_{1}, \ldots, i_{d-1}, k-\left(i_{1}+\ldots+i_{d-1}\right)\right\}
$$

is a lower set with respect to \mathbb{N}^{d}.
Proposition 1. Any set S from \mathbb{N}^{d} can be written in the form

$$
\begin{equation*}
S=\bigcup_{t=1}^{n} \Delta_{k_{t}}^{\prime d} \tag{2}
\end{equation*}
$$

where $k_{n}=\max _{i \in S}|\mathbf{i}|, 0 \leq k_{1} \leq \ldots \leq k_{n}, \Delta_{k_{t}}^{\prime d} \subset \Delta_{k_{t}}^{d}$ and $\Delta_{k_{t}}^{d}, t=\overline{1, n}$, are given by (1).

Received by the editors: 07.01.2003.

Proposition 2. If $P \in \mathcal{P}_{S}$ and $S \subset \mathbb{N}^{d}$ given by (2), then for any $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{d}\right) \in S \subset \mathbb{N}^{d}$, we have

$$
P(\mathbf{x})=\sum_{\mathbf{i} \in S} a_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}=\sum_{t=1}^{n} P_{k_{t}}(\mathbf{x}), P_{k_{t}}(\mathbf{x})=\sum_{\mathbf{i} \in \Delta_{k_{t}^{\prime}}^{d}} a_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}, t=\overline{1, n}
$$

The $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in S \subset \mathbb{N}^{d}$ order derivatives of P are:

$$
\begin{aligned}
& \frac{\partial^{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d}^{\alpha_{d}}} P(\mathbf{x})= \\
& \quad=\sum_{\mathbf{i} \in S, \boldsymbol{\alpha} \leq \mathbf{i}} a_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \frac{i_{2}!}{\left(i_{2}-\alpha_{2}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{1}^{i_{1}-\alpha_{1}} x_{2}^{i_{2}-\alpha_{2}} \ldots x_{d}^{i_{d}-\alpha_{d}},
\end{aligned}
$$

and those of those of $P_{k_{t}}$ are:

$$
\begin{aligned}
& \frac{\partial^{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d}^{\alpha_{d}}} P_{k_{t}}(\mathbf{x})=\frac{\partial^{k_{t}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d-1}^{\alpha_{d-1}} \partial x_{d}^{k_{t}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}} P_{k_{t}}(\mathbf{x})= \\
& =\alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{t}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{t}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}
\end{aligned}
$$

for any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$.
In what follows, whenever we write S we will denote an arbitrary set from \mathbb{N}^{d}. By extending from a set I inferior with respect to \mathbb{N}^{d} (see also $[1]$) to an arbitrary set S from \mathbb{N}^{d}, we define the following notions.
Definition 1. A polinomial multidimensional interpolation scheme (E, \mathcal{P}_{S}) consists of:
(a) A set of nodes $Z=\left\{\mathbf{x}_{q}\right\}_{q=1}^{m}=\left\{\left(x_{q, 1}, x_{q, 2}, \ldots, x_{q, d}\right)\right\}_{q=1}^{m}$ from \mathbb{R}^{d}
(b) An interpolation space
$\mathcal{P}_{S}=\left\{P / P(\mathbf{x})=\sum_{\mathbf{i} \in S} a_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}, a_{\mathbf{i}} \in \mathbb{R}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}\right\}$,
which is the space of the d variables polinomes with real coefficients where S is an arbitrary subset of \mathbb{N}^{d}, and
(c) An incidence matrix $E=\left(e_{q, \boldsymbol{\alpha}}\right), 1 \leq q \leq m, \boldsymbol{\alpha} \in S$, where $e_{q, \boldsymbol{\alpha}}=0$ or 1 . The interpolation problem associated with $\left(E, \mathcal{P}_{S}\right)$ consists of finding the polinomes $P \in \mathcal{P}_{S}$, that would satisfy the equations

$$
\begin{equation*}
\frac{\partial^{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d}}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d}^{\alpha_{d}}} P\left(\mathbf{x}_{q}\right)=\mathbf{c}_{q, \boldsymbol{\alpha}} \tag{3}
\end{equation*}
$$

for any $q=\overline{1, m}$ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in S$ with $e_{q, \boldsymbol{\alpha}}=1$ where $c_{q, \boldsymbol{\alpha}}$ are arbitrary real constants
The (3) equations make up a system of linear equations whose unknowns are the real coefficients of the polinome P. The matrix $\mathcal{M}(E, Z)$ of this system is at the same time the matrix of the interpolation scheme $\left(E, \mathcal{P}_{S}\right)$, and it is called Vandermonde matrix. If $\mathcal{M}(E, Z)$ is a square matrix, then its determinant, $\operatorname{det} \mathcal{M}(E, Z)=\mathcal{D}(E, Z)$, is the determinant of the system (3), and of the interpolation scheme $\left(E, \mathcal{P}_{S}\right)$, and it is called Vandermonde determinant.

If in definition 1 we consider that S is a set I inferior with respect to \mathbb{N}^{d}, then, according to [1], $\left(E, \mathcal{P}_{I}\right)$ is a Birkhoff interpolation scheme, the E matrix is the Birkhoff incidence matrix, and the interpolation polynom P is a Birkhoff polinome. Also, according to [1], by various particularisations of the Birkhoff interpolation scheme, we obtain the Lagrange, Hermite, Taylor and Abel interpolation schemes, with their corresponding incidence matrices and interpolation polinomes.
Definition 2. Let S be a set from \mathbb{N}^{d} and $\left(E, \mathcal{P}_{S}\right)$ the corresponding multidimensional interpolation scheme. We say that $E=\left(e_{q, \boldsymbol{\alpha}}\right)$ is an Abel incidence matrix, if for any $\boldsymbol{\alpha} \in S, e_{q, \boldsymbol{\alpha}}=1$ for exactly one $q \in \overline{1, m}$. The scheme, the polinome and the interpolation problem corresponding to the Abel incidence matrix, are called Abel interpolation scheme, Abel interpolation polinome, respectively Abel interpolation problem.
Definition 3. The multidimensional interpolation scheme $\left(E, \mathcal{P}_{S}\right)$ is called normal if $|E|=\operatorname{dim} \mathcal{P}_{S}$.

Because in the present article we will work only with normal interpolation schemes, from now on, whenever we discuss an interpolation scheme, we will consider it normal.
Definition 4. We say that an interpolation scheme $\left(E, \mathcal{P}_{S}\right)$ is
(a) singular, if $\mathcal{D}(E, Z)=0$ for any choice of the set of nodes Z,
(b) regular, if $\mathcal{D}(E, Z) \neq 0$ for any choice of the set of nodes Z and
(c) almost regular, if $\mathcal{D}(E, Z) \neq 0$ for almost all choices of the set of nodes Z.

Definition 5. Two interpolation schemes are equivalent when the systems of their interpolation problems are equivalent.
Theorem 1. The interpolation scheme $\left(E, \mathcal{P}_{S}\right)$ is regular if and only if it is equivalent with an Abel interpolation scheme.

Proof. If E is a Abel matrix and if the order of the coefficients of the interpolation polinome and the order of the derivatives from the interpolation system are those which correspond to the order of the elements of the set S, then the matrix of the interpolation system is superior triangular. If not, by switching lines or (and) columns in $\mathcal{M}(E, Z)$, we can obtain what we have previously shown, and thus it follows that the new determinant is different from the previous one only through its sign. It follows that the determinant of this matrix is:

$$
d_{S}= \pm \prod_{\alpha \in S} \boldsymbol{\alpha}!
$$

where $\boldsymbol{\alpha}!=\alpha_{1}!\alpha_{2}!\ldots \alpha_{d}!$. It follows that $d_{S} \neq 0$, and as a result $\left(E, \mathcal{P}_{S}\right)$ is regular.
Conversely, we assume that $\left(E, \mathcal{P}_{S}\right)$ is regular and let P be the solution of the interpolation problem of this interpolation scheme, where:

$$
P(\mathbf{x})=P\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\mathbf{i} \in S} a_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}
$$

for any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $a_{\mathbf{i}} \in \mathbb{R}^{d}$ (real constants, since the given scheme is regular).

With the same E and \mathcal{P}_{S} we show that we have $Q \in \mathcal{P}_{S}$ (by construction) for which $\left(E, \mathcal{P}_{S}\right)$ is Abel, and the two interpolation systems (of the regular scheme and of the Abel scheme) are equivalent having the same solutions: the $a_{\mathbf{i}} \in \mathbb{R}$. For this we
consider the next regrouping $S=\bigcup_{t=1}^{n} \Delta_{k_{t}}^{d}$ of all indexes of the polinome coefficients P, with $0 \leq k_{1} \leq k_{2} \leq \ldots \leq k_{n}, k_{n}=\max _{i \in S}|\mathbf{i}|, \Delta_{k_{t}}^{\prime d} \subset \Delta_{k_{t}}^{d}$ and $\Delta_{k_{t}}^{d}, t=\overline{1, n}$, given by (1) (their existence is ensured by proposition 1). Let be:

$$
\begin{gathered}
Q(\mathbf{x})=Q\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\mathbf{i} \in S} b_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}= \\
=\sum_{t=1}^{n} Q_{k_{t}}(\mathbf{x}), Q_{k_{t}}(\mathbf{x})=\sum_{\mathbf{i} \in S} b_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}
\end{gathered}
$$

We will determine $b_{\mathbf{i}}$ so that $\left(E, \mathcal{P}_{S}\right)$ is Abel and $b_{\mathbf{i}}=a_{\mathbf{i}}$, for any $\mathbf{i} \in S$. For the beginning let be the system:

$$
\begin{equation*}
\sum_{\mathbf{i} \in S, \boldsymbol{\alpha} \leq \mathbf{i}} b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}=\mathbf{c}_{q, \boldsymbol{\alpha}} \tag{4}
\end{equation*}
$$

with $q \in \overline{1, m}$ and $e_{q, \alpha}=1$ for any $\boldsymbol{\alpha} \in S$ and

$$
Z=\left\{\mathbf{x}_{q}\right\}_{q=1}^{m}=\left\{\left(x_{q, 1}, x_{q, 2} \ldots x_{q, d}\right)\right\}_{q=1}^{m} \subset \mathbb{R}^{d}
$$

For $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right) \in{\Delta^{\prime}}_{k_{n}}^{d}$ and $\boldsymbol{\alpha} \leq \mathbf{i}$, $\mathbf{i} \in \Delta_{k_{n}}^{\prime}$. In this case the system (4) is equivalent with

$$
\sum_{\mathbf{i} \in \Delta^{\prime}{ }_{k}, \boldsymbol{\alpha}, \mathbf{\alpha} \leq} b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}=\mathbf{c}_{q, \boldsymbol{\alpha}}
$$

that is, according to proposition 2, equivalent with the system $\alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!b_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}=\mathbf{c}_{q, \boldsymbol{\alpha}}$.

We consider in what follows

$$
\begin{aligned}
& \quad \mathbf{c}_{q, \boldsymbol{\alpha}}=c_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)} \stackrel{\text { def }}{=} \\
& =\alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)} .
\end{aligned}
$$

It follows that

$$
b_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}=a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)},
$$

for any $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right) \in{\Delta^{\prime}}_{k_{n}}^{d}$, from where we have

$$
\begin{aligned}
& \operatorname{dim} P_{\Delta_{\Delta^{\prime d}}^{k_{n}}}= \\
& \quad=\left|\left\{\boldsymbol{\alpha} \in\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right) \in{\Delta^{\prime}}_{k_{n}}^{d}\right\}\right|=\left|{\Delta^{\prime}}_{k_{n}}^{d}\right|
\end{aligned}
$$

(each derivative $\boldsymbol{\alpha} \in \Delta^{\prime}{ }_{k_{n}}^{d}$ of Q is interpolated only once), and

$$
Q_{k_{n}}(\mathbf{x})=\sum_{\mathbf{i} \in \Delta^{\prime d} k_{n}} b_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}=\sum_{\mathbf{i} \in \Delta^{\prime d} k_{n}} a_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}=P_{k_{n}}(\mathbf{x})
$$

If $\boldsymbol{\alpha} \in{\Delta^{\prime}}_{k_{n-1}}^{d}$, and $\boldsymbol{\alpha} \leq \mathbf{i}$, then $\mathbf{i} \in{\Delta^{\prime}}_{k_{n-1}}^{d} \cup \Delta_{k_{n}}^{\prime}{ }_{k}$, and the system (4) becomes successively

$$
\begin{gathered}
\sum_{\mathbf{i} \in \Delta^{\prime}{ }_{k_{n-1}} \cup \Delta^{\prime}{ }_{k_{n}}, \boldsymbol{\alpha} \leq \mathbf{i}} b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \ldots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}=\mathbf{c}_{q, \boldsymbol{\alpha}} \\
\sum_{\mathbf{i} \in \Delta^{\prime}{ }_{k_{n-1}}, \boldsymbol{\alpha} \leq \mathbf{i}} b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}+ \\
+\sum_{\mathbf{i} \in \Delta^{\prime}{ }_{k_{n}}, \boldsymbol{\alpha} \leq \mathbf{i}} b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}=\mathbf{c}_{q, \boldsymbol{\alpha}}
\end{gathered}
$$

We take now

$$
\begin{aligned}
& \quad \mathbf{c}_{q, \boldsymbol{\alpha}} \stackrel{\text { def }}{=} \sum_{\mathbf{i} \in \Delta_{k_{n}^{\prime}}^{\prime}, \boldsymbol{\alpha} \leq \mathbf{i}} a_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}+ \\
& + \\
& \alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right) .} .
\end{aligned}
$$

(for $\mathbf{i} \in \Delta_{k_{n}}^{\prime d}, b_{\mathbf{i}}=a_{\mathbf{i}}$) and considering the proposition 2, we obtain the system

$$
\begin{aligned}
& \alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!b_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}= \\
= & \alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)},
\end{aligned}
$$

that is

$$
b_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}=a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}
$$

for any $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right) \in{\Delta^{\prime}}_{k_{n-1}}^{d}$.
It follows that

$$
\begin{aligned}
& \operatorname{dim} P_{\substack{\Delta_{k}^{\prime} \\
k_{n-1}}}= \\
& =\left|\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{n-1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right) \in \Delta_{k_{n-1}}^{\prime d}\right\}\right|=\left|\Delta_{k_{n-1}}^{d}\right|
\end{aligned}
$$

(each derivative $\boldsymbol{\alpha} \in \Delta^{\prime}{ }_{k_{n-1}}^{d}$ of Q is interpolated only once), respectively

$$
Q_{k_{n-1}}(\mathbf{x})=\sum_{\mathbf{i} \in \Delta^{\prime}{ }_{k_{n-1}}} b_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}=\sum_{\mathbf{i} \in \Delta^{\prime}{ }_{k_{n-1}}^{d}} a_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}=P_{k_{n-1}}(\mathbf{x})
$$

Continuing in the same manner, we obtain that for $\boldsymbol{\alpha} \in \Delta^{\prime}{ }_{k_{1}}^{d}$, the system (4) is successively equivalent with

$$
\sum_{\mathbf{i} \in \Delta^{\prime d} k_{1} \cup \ldots \cup \Delta^{\prime d} k_{n}, \boldsymbol{\alpha} \leq \mathbf{i}} b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}=\mathbf{c}_{q, \boldsymbol{\alpha}}
$$

$$
\begin{aligned}
\sum_{\mathbf{i} \in \Delta^{\prime} k_{k_{1}}, \boldsymbol{\alpha} \leq \mathbf{i}} & b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}+ \\
& +\sum_{\mathbf{i} \in \Delta_{k_{2}}^{\prime d} \cup \ldots \cup \Delta^{\prime}{ }_{k}, \boldsymbol{\alpha} \leq \mathbf{i}} b_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}=\mathbf{c}_{q, \boldsymbol{\alpha}}
\end{aligned}
$$

In this final system we take

$$
\begin{aligned}
& \mathbf{c}_{q, \boldsymbol{\alpha}} \stackrel{\text { def }}{=} \sum_{u=2}^{n} \sum_{\mathbf{i} \in \Delta^{\prime}{ }_{k_{u}}^{\prime}, \boldsymbol{\alpha} \leq \mathbf{i}} a_{\mathbf{i}} \frac{i_{1}!}{\left(i_{1}-\alpha_{1}\right)!} \cdots \frac{i_{d}!}{\left(i_{d}-\alpha_{d}\right)!} x_{q, 1}^{i_{1}-\alpha_{1}} \ldots x_{q, d}^{i_{d}-\alpha_{d}}+ \\
& +\alpha_{1}!\alpha_{2}!\ldots \alpha_{d-1}!\left[k_{1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right]!a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)} . \\
& \text { (for } \mathbf{i} \in \Delta^{\prime}{ }_{k_{2}}^{d} \cup \ldots \cup \Delta^{\prime}{ }_{k_{n}}^{d}, b_{\mathbf{i}}=a_{\mathbf{i}} \text {). } \\
& \text { It follows that in this case we have also } \\
& b_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)}=a_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)} \\
& \text { for any } \boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right) \in \Delta_{k_{1}}^{\prime d} \text {, and thus } \\
& \operatorname{dim} P_{\Delta^{\prime}{ }_{k_{1}}}= \\
& =\left|\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d-1}, k_{1}-\left(\alpha_{1}+\alpha_{2}+\ldots+\alpha_{d-1}\right)\right) \in{\Delta^{\prime}}_{k_{1}}^{d}\right\}\right|=\left|{\Delta^{\prime}}_{k_{1}}^{d}\right|,
\end{aligned}
$$

(each derivative $\boldsymbol{\alpha} \in \Delta^{\prime}{ }_{k_{1}}^{d}$ of Q is interpolated only once), respectively

$$
Q_{k_{1}}(\mathbf{x})=\sum_{\mathbf{i} \in \Delta^{\prime d} k_{1}} b_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}=\sum_{\mathbf{i} \in \Delta^{\prime d} k_{1}} a_{\mathbf{i}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{d}^{i_{d}}=P_{k_{1}}(\mathbf{x})
$$

In the end, it follows that

$$
\sum_{t=1}^{n} \operatorname{dim} P_{\Delta_{k_{t}^{\prime}}^{d}}=|S|=\operatorname{dim} \mathcal{P}_{S}
$$

and

$$
Q(\mathbf{x})=\sum_{t=1}^{n} Q_{k_{t}}(\mathbf{x})=\sum_{t=1}^{n} P_{k_{t}}(\mathbf{x})=P(\mathbf{x})
$$

is the solution of the interpolation problem of the Abel scheme $\left(E, \mathcal{P}_{S}\right)$ (each derivative $\boldsymbol{\alpha} \in S$ of Q is interpolated only once). It follows, according to definition 5 , that $\left(E, \mathcal{P}_{S}\right)$ is equivalent to an Abel interpolation scheme q.e.d.

References

[1] Lorenz, A. Rudolf, Multivariate Birkhoff Interpolation, Springer-Verlag Berlin Heidelberg, 1992.
[2] Crainic, N., Inferior and superior sets with respect to an arbitrary set IndexSet from \mathbb{N}^{d} used in the multidimensional interpolation theory, Acta Universitatis Apulensis, "1 Decembrie 1918" University of Alba-Iulia, No. 4/2002, 77-84.
[3] Crainic, N., Ordering of some subsets from \mathbb{N}^{d} used in the multidimensional interpolation theory, Acta Universitatis Apulensis, "1 Decembrie 1918" University of Alba-Iulia, No. 4/2002, 85-96.

