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UNITARY PRODUCTS AGAIN

R. G. BUSCHMAN

Abstract. Inverses with respect to unitary products are obtained for some
functions. These provide further Möbius type of inversion formulas. Lists
of powers, products, and summation identities are included.

1. Introduction

The Dirichlet product which is restricted to relatively prime divisors is called
the unitary product. It was introduced by Vaidyanathaswamy [14], and it has been
further considered by Cohen [1], [2], Davison [3], Gessley [4], Gioia [5], Gioia and
Goldsmith [6], Goldsmith [7], Rearick [9], Scheid [10], Sivaramakrishnan [11], Sub-
barao [12], Subbarao and Gioia [13], and others. We use the notation

(α t β)(n) =
∑

km=n
(k,m)=1

α(k)β(m),

αt2 = α t α, αt−1 = unitary inverse, etc.

(1.1)

This product is commutative, associative, and the identity for the Dirichlet
product serves as the identity. There are non-trivial divisors of 0 as can be seen by
setting α = β = δ2. The unitary product of multiplicative functions is multiplicative.
A function α has a t-inverse provided that α(1) 6= 0.

In Section 2 we set forth the definitions of the operations and the number-
theoretic functions which are to be used. Inverses of a number of functions with
respect to the unitary product are given in Section 3. These are used in order to
write out some Möbius type of inversion formulas, one of which involves the Möbius
function µ. Lists of unitary powers, unitary products, and alternative factorizations
are included in the final section. The alternative factorizations provide us with sum-
mation identities which involve various number-theoretic functions.
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2. Definitions

The domain of definition of number-theoretic functions is, as usual, taken to
be the positive integers. We use the following notations for operations.

(α · β)(n) = α(n)β(n) (pointwise product)

(α ∗ β)(n) =
∑

km=n

α(k)β(m) (Dirichlet product)

(α�β)(n) =
∑

[k,m]=n

α(k)β(n) (lcm-product)

α2 = α · α, α∗2 = α ∗ α, α�2 = α�α, etc.

α∗−1 = Dirichlet inverse of α, etc.

(2.1)

All of these product are associative, commutative, and there are identity
elements

(ν0 · α) = α, ε ∗ α = α, ε�α = α, for all α. (2.2)

No non-trivial divisors of zero exist for the ∗-product, but they do exist for
the other products. The set of number theoretic functions which satisfy the condition
α(1) 6= 0 forms a group under Dirichlet multiplication. In this group α ∗ β is a
multiplicative function if both α and β are multiplicative; that is, the multiplicative
functions form a subgroup; see Niven and Zuckerman [8]. Some properties of all of
these multiplications can be found in Scheid [10].

We use ε for the identity, ε(n) = 1 if n = 1, and = 0 otherwise. We choose
the symbols ν0 for the multiplicative identity for the pointwise product, ν0 = 1 for
all n; νk(n) = nk; κ(n) for the number of square-free divisors of n, κ(n) = 2ω(n);
λ for Liouville’s function, λ(n) = (−1)Ω(n); µ for the Möbius function, µ(n) = 0 if
p2|n, and = (−1)ω(n) otherwise. Let τk(n) = the number of ways of writing n as a
product of k factors, τ2 = τ , σk(n) = the sum of the kth powers of the divisors of
n, σ1 = σ; ω(n) = the number of prime divisors of n; and Ω(n) = the total number
of divisors of n. In addition we let δk(n) = 1 if n = k, = 0 otherwise; generalized
Möbius functions µC

k = (µ · νk) = ν∗−1
k , µC

0 = µ; µD
k = τ∗−1

k , µD
1 = µ; µM

k = P ∗−1
k ,

µM
1 = µ, Jk = νk ∗ µ Jordan’s totient, J1 = φ; Pk(n) = 1 if n = mk, = 0 otherwise,

P2 = P , the characteristic function for squares; Qk(n) = 1 if n is kth-power-free, = 0
otherwise, Q2 = Q = µ2; and S(n) = the number of divisors of n2.

In our work the superscript symbol † is used to denote the unitary analogs
of our previously defined number-theoretic functions, instead of the more customary
symbol ∗. This is done in order to avoid possible confusion with ∗-multiplication.
We define some of the more important analogous functions which occur naturally in
connection with the t-product.

µ† = (−1)ω = νt−1
0 . (2.3)

µ†k = Pt−1
k , µ†1 = µ†. (2.4)
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σ†k(n) = sum of the kth powers of the
unitary divisors of n,

σ†0 = τ †, σ†1 = σ†.

(2.5)

τ †k(n) = νtk
0 (n) = (µ†)t−k

τ †−1 = µ†, τ †0 = ε, τ †1 = ν0, τ †2 = τ † = κ.

(2.6)

The function (µ†)tk is the unitary analog of µD
k ; µ†k, of µM

k . For k > 0, the
function τ †k counts the number of ways of expressing n as a product of k factors which
are relatively prime in pairs.

3. Inverses and inversion formulas

The Möbius inversion formula (for sums over divisors) is given by

α = ν0 ∗ β ⇔ β = µ ∗ α. (3.1)

Since the t-inverse of ν0 is µ†, an analog of the Möbius inversion formula is

α = ν0 t β ⇔ β = µ† t α. (3.2)

A generalization follows from the definitions.

α = τ †k t β ⇔ β = (µ†)tk t α. (3.3)

Some of the t-inverses have been derived.

κt−1 = (µ†)t2 = τ †−2. (3.4)

Pt−1
k = µ†k. (3.5)

Qt−1 = µ. (3.6)
(κ · µ)t−1 = (κ ·Q). (3.7)
(µ · S)t−1 = (Q · S). (3.8)

(νk ·Q)t−1 = µC
k . (3.9)

These lead to a number of further inversion formulas. As one example, an
alternative analog for the Möbius inversion which retains µ, instead of ν0, in the
formulas reads

α = Q t β ⇔ β = µ t α. (3.10)
Some other examples follow.

α = Pk t β ⇔ β = µ†k t α. (3.11)

α = (κ · µ) t β ⇔ β = (κ ·Q) t α. (3.12)
α = (µ · S) t β ⇔ β = (Q · S) t α. (3.13)

α = (νk ·Q) t β ⇔ β = µC
k t α. (3.14)

The completely t-multiplicative functions are simply the ∗-multiplicative
functions. Hence, if ξ is ∗-multiplicative, we have the three important properties
of completely multiplicative functions, see Scheid [10].

ξ · (α t β) = (ξ · α) t (ξ · β). (3.15)

ξt−1 = (ξ · µ†). (3.16)
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ξtr = (ξ · τ †k). (3.17)
Further, if η is multiplicative and ξ has a t-inverse, then

(η · ξ)t−1 = (η · ξt−1). (3.18)

Hence for any ∗-multiplicative function η we have the general inversion for-
mula

α = η t β ⇔ β = (η · µ†) t α. (3.19)
We note that (α ∗β)(n) and (αtβ)(n) are equal at squarefree n. Since Q(n)

is ∗-multiplicative and equals 0 except at squarefree n, we have

(α ∗ β) ·Q = (α ·Q) t (β ·Q). (3.20)

The operation of pointwise multiplication of functions by Q can be seen to
map the ∗-products into the t-products which are evaluated at squarefree numbers.
This may seem to be of limited value, but it does give us a way to build up another list
from any list of Dirichlet products. From the known result λ ∗ ν0 = P and evaluation
of the pointwise products, we can thus show that µ t Q = ε, which leads to the
Möbius inversion formula (3.10). Formulas (3.16) and (3.20) are a source for various
t-inverses.

For completely ∗-multiplicative functions Vaidyanathaswamy [14] had ob-
tained a relation which connects four different products.

(α t β) ∗ (α · β) = (α�β). (3.21)

Two additional identities of Scheid [10] are of interest, since they also provide
connections among various products. The first of these is a corollary of his formula
for a product of n-factors; compare with (2.8). For ∗-multiplicative functions

ξ ∗ (α t β) = (ξ ∗ α) t (ξ ∗ β) t (µ† · ξ). (3.22)

(α · (β ∗ ν0)) t (β · (α ∗ ν0)) = (α · β) ∗ (α�β). (3.23)

4. Lists of Products

Since not many explicit unitary products appear in the literature, a number
of examples have been obtained. First, a few t-powers are known.

κtr = τ †2r. (4.1)

µtr = µD
r . (4.2)

Qtr = (τr ·Q). (4.3)
Many special cases of (3.21)-(3.23) are themselves of interest. Several of the

special cases resulting from (3.20) have been included in the list.

α t ε = α. (4.4)

κ t ν0 = τ †3 . (4.5)

κ t µ† = ν0. (4.6)

κ t τ †k = τ †k+2. (4.7)

κ t φ† = σ†. (4.8)
λt2 = (κ · λ). (4.9)
µ tQ2k = ε. (4.10)
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µ t (µ · τ) = (µ · S). (4.11)
µ t (τ ·Q) = Q. (4.12)

µC
k t (σk ·Q) = Q. (4.13)

µC
k t (Jk ·Q) = µ. (4.14)

νt2
0 = κ. (4.15)

νtk
0 = τ †k . (4.16)

ν0 t νk = σ†k. (4.17)

ν0 t µ† = ε. (4.18)
ν0 t φ† = ν1. (4.19)

ν0 t J†k = νk. (4.20)

ν0 t τ †k = τ †k+1. (4.21)

ν1 t µ† = φ†. (4.22)

νk t µ† = J†k . (4.23)
Q t (νk ·Q) = (σk ·Q). (4.24)

Q t (κ · µ) = µ. (4.25)
Q t (κ ·Q) = (S ·Q). (4.26)
Q t (µ · S) = (µ · τ). (4.27)

Q t (Jk ·Q) = (νk ·Q). (4.28)
(κ ·Q) t (µ · S) = µ. (4.29)

(µ · σk) t (νk ·Q) = µ. (4.30)
(µ · Jk) t (νk ·Q) = Q. (4.31)

µ† t σ†k = νk. (4.32)

µ† t τ †k = τ †k−1. (4.33)

σ†k t φ† = (ν1 · σ†k−1) = (νk · σ†1−k). (4.34)

τ † t φ† = σ†. (4.35)
A few examples are presented of mixed products which involve both the

Dirichlet and the unitary results. Since σ†k has a known Dirichlet series generating
function, some Dirichlet products which involve it can be obtained.

λ ∗ (µ t (τ ·Q)) = ε. (4.36)

ν1 t (ν1�µ†) = φ†. (4.37)
(νk t νm) ∗ σk+m = (σk · σm). (4.38)

νk ∗ νm ∗ σ†k+m = (σk · σm). (4.39)
Alternative factorizations can be interpreted as summation identities. Many

examples exist; we list a few of them.

λ�2 = λt2 ∗ ν0. (4.40)

ν0�νk = νk ∗ σ†k. (4.41)

νk t σ†m = νm t σ†k. (4.42)

P ∗ Pt2 = P�2. (4.43)
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In the spirit of Liouville’s summation identities, (4.42) and (4.43) can be
rewritten, respectively, ∑

rs=n
(r,s)=1

νk(r)σ†m(s) =
∑
rs=n

(r,s)=1

νm(r)σ†k(s), (4.44)

∑
hj=n

∑
km=h

(k,m)=1

P (j)P (k)P (m) =
∑

[k,m]=n

P (k)P (m). (4.45)
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