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FITTING OF SOME LINEARISABLE REGRESSION MODELS

NICOLETA BREAZ AND DANIEL BREAZ

Abstract. In this paper, we obtain fitting conditions for some linearisables
regressional models. These conditions are refering to the matrix of sample
data.

1. Introduction

The fitting condition for those models, which, by substitution, can be reduced
to a linear model, is refering to the matrix of new sample data/variables that results
by substitution. In this paper, we consider models such as the polynomial, spline and
piecewise linear model and we give for these, fitting conditions in the matrix of initial
sample data/variables.

Let be the multiple linear model

Y = α1X1 + ... + αpXp + ε (1)

and a sample data
yT = (y1, y2,..., yn) ∈ <n,

x =
(

x1 ,x2, ..., xp

)
=


x11 x12 ... x1p

x21 x22 ... x2p

... ... ... ...
xn1 xn2 ... xnp

 ∈ Mn,p, n > p.

Denoting αT =
(

α1, α2, ..., αp

)
∈ <p, εT = (ε1, ε2, ..., εn) ∈ <n from

(1) we obtain the matriceal form y = xα + ε.
The principle of least squares leads to the fitting model:

y = xa + e,

with

aT = (a1, a2, ..., ap) ∈ <p, eT = (e1, e2, ..., en) ∈ <nand
n∑

i=1

e2
i = min .

In case of a linear model which contains a constant term we have

y = xα + ε = x0α0 + uαp + ε (2)

with x0 = (x1,x2, ...,xp−1) ,αT
0 = (α1, α2, ..., αp−1) ,uT = (1, 1, ..., 1) ∈ <n, x =

(x0,u) ,α =
(
αT

0 , αp

)
.

The following result is well known in the literature:
Theorem 1.

Received by the editors: 21.10.2002.

21



NICOLETA BREAZ AND DANIEL BREAZ

i)For model (1) if x has full column rank (the xj are linearly independent)
the least squares estimators ai for αi, i = 1, p are uniquely defined by

a =
(
xT x

)−1
xT y,aT = (a1, a2, ..., ap) ∈ <p.

ii)For model (2) if x has full column rank (the xj are linearly independent)
the least squares estimators ai for αi, i = 1, p are uniquely defined by

a0 = (a1, a2, ..., ap−1)
T =

(
x̂T

0 x̂0

)−1
x̂T

0 ŷ, ap = y −
p−1∑
k=1

akxk

where

y =
1
n

n∑
i=1

yi, xk =
1
n

n∑
i=1

xik, x̂0 = Px0, ŷ = Py, P = I − 1
n
uuT .

Remark 2. The Theorem 1 ii) holds for any of the conditions

rank (x) = p, or rank (x0) = p− 1

because P is a linear transformation and we have

rank (x) = p ⇒ rank (x0) = p− 1 ⇒ rank (Px0) = rank (x̂0) = p− 1.

2. Main results

We consider the polynomial model

Y = α0 + α1X + ... + αrX
r + ε (3)

with a sample data (xi, yi) , i = 1, n.
By replacing Xj = Zj , j = 1, r the model becomes

Y = α0 + α1Z1 + ... + αrZr + ε.

According to Theorem 1, if rank(z) = r + 1, then the fitting solution for (3)
is given by

a =
(
ẑT
0 ẑ0

)−1
ẑT
0 ŷ, a0 = y −

r∑
k=1

akzk

where

z0 =


z11 z12 ... z1r

z21 z22 ... z2r

... ... ... ...
zn1 zn2 ... znr

 , z =


1 z11 z12 ... z1r

1 z21 z22 ... z2r

... ... ... ... ...
1 zn1 zn2 ... znr

 .

In order to give for model (3) a theorem similar to Theorem 1 we search for
a relation between the sample data matrix

x =


x1

x2

...
xn


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and ”the substitution matrix”

z =


1 x1 x2

1 ... xr
1

1 x2 x2
2 ... xr

2

... ... ... ... ...
1 xn x2

n ... xr
n

 .

Theorem 3. If there are at least r + 1 distinct values of the variable X in
the sample data matrix, then the least squares fitting solutions of (3) can be written
uniquely as

a =
(
ẑT
0 ẑ0

)−1
ẑT
0 ŷ,aT = (a1, a2, ..., ar) ∈ <r, a0 = y −

r∑
k=1

akzk,

where

ẑ0 = Pz0, ŷ = Py, P = I − 1
n
uuT

and z0 is the Vandermonde type matrix with n lines, each containing the first r
integer powers of the n sample values, without the column which contains the vector
uT = (1, 1, ..., 1) ∈ <n.

Proof. We assume that the r + 1 distinct values of X, are the first r + 1
values, without limiting the generality. Obviously it is necessary that r + 1 ≤ n. If
rank(z) = r + 1, where z is the Vandermonde matrix attached to the n values data
for X then the theorem holds. Thus it is enough to prove that rank(z) = r + 1.

We consider in z the r + 1 order minor formed with the rows which contain
the r + 1 distinct values:

d =

∣∣∣∣∣∣∣∣
1 x1 x2

1 ... xr
1

1 x2 x2
2 ... xr

2

... ... ... ... ...
1 xr+1 x2

r+1 ... xr
r+1

∣∣∣∣∣∣∣∣ .
Since the r + 1 values of the Vandermonde discriminant d are distinct, it

follows that d 6= 0,and rank(z) = r + 1.�
We next consider the model

Y = f(X1, X2, ..., Xp) + ε (4)

where

f(X1, X2, ..., Xp) =
{

a1X1 + a2X2 + ... + apXp , (X1, X2, ..., Xp) ∈ I
b1X1 + b2X2 + ... + bpXp , (X1, X2, ..., Xp) ∈ J

with I and J, two subsets of <p such as I ∪ J = <p and I ∩ J = ∅.
We use the notations:
-xI the matrix containing those rows from the sample data matrix which

belong to I ,as vectors in <p

-xJ the matrix containing those rows from the sample data matrix which
belong to J , as vectors in <p

-yI the vector containing those components yi for which
xi = (X1, X2, ..., Xp)i ∈ I

-yJ the vector containing those components yj for which
xj = (X1, X2, ..., Xp)j ∈ J.
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Theorem 4. If rank(xI) = p, rank(xJ) = p and 2p ≤ n then the least
squares fitting solution of model (4) is uniquely given by

a =
(
xT

I xI

)−1
xT

I yI and b =
(
xT

J xJ

)−1
xT

J yJ , with aT ,bT ∈ <p.
Proof. Using the least squares criteria we have

S =
n∑

i=1

[yi − f (xi1, xi2, ..., xip)]
2 = min,

∂S

∂aj
= 0,

∂S

∂bj
= 0, j = 1, p,

∂S

∂aj
=

∂

∂aj

(
n∑

i=1

[yi − f (xi1, xi2, ..., xip)]
2

)
.

Denoting A = {i | (xi1, xi2, ..., xip) ∈ I} and B = {i | (xi1, xi2, ..., xip) ∈ J}
we obtain

∂S

∂aj
=

∂

∂aj

(∑
i∈A

[yi − f (xi1, xi2, ..., xip)]
2

)
+

∂

∂aj

(∑
i∈B

[yi − f (xi1, xi2, ..., xip)]
2

)
=

= 2
∑
i∈A

[yi − f (xi1, xi2, ..., xip)] ·
(
− ∂f

∂aj

)
+ 2
∑
i∈B

[yi − f (xi1, xi2, ..., xip)] ·
(
− ∂f

∂aj

)
From

∂S

∂aj
= 0

we obtain∑
i∈A

[yi − (a1xi1 + ... + apxip)] · xij +
∑
i∈B

[yi − (b1xi1 + ... + bpxip)] · 0 = 0.

Finally, we have∑
i∈A

[yi − (a1xi1 + ... + apxip)] · xij = 0.

Similarly, from
∂S

∂bj
= 0

we obtain ∑
i∈B

[yi − (b1xi1 + ... + bpxip)] · xij = 0.

Then the following holds xT
I xIa = xT

I yI , xT
J xJb = xT

J yJ . From hypothesis
we have rank(xI) =rank(xJ) = p, so follows that

a =
(
xT

I xI

)−1
xT

I yI and b =
(
xT

J xJ

)−1
xT

J yJ .

We observe that xI ∈ Mn1,p, xJ ∈ Mn2,p, n1 + n2 = n where
n1 =card{(xi1, xi2, ..., xip) | (xi1, xi2, ..., xip) ∈ I}
n2 =card{(xi1, xi2, ..., xip) | (xi1, xi2, ..., xip) ∈ J}

where ”card” denotes the number of elements of a given set.
Moreover, it is necessary that p ≤ n1, p ≤ n2 so the condition 2p ≤ n is

required.�
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Theorem 5. If in model (4) the function f is given on k subdomains
I1, I2, ..., Ik, then the principle of the least squares leads to

aS =
(
xT

IS
xIS

)−1
xT

IS
yIS

,

where (
aS
)T =

(
aS
1 , aS

2 , ..., aS
p

)
∈ <p, ∀s ∈ 1, k and xIS

,yIS
are defined as above.

Finally we consider

Y = f (X) + ε (5)

with f a spline function of order r, r ≥ 1 and with m nodes, m ≥ 1.
The spline function f has the form

f (X) = α0 + α1X + ... + αrX
r +

m∑
k=1

βk (X − vk)r
+

where v1 < v2 < ... < vm are its nodes.
We denote that after substituting Xj = Zj , j = 1, r, (X − vk)r

+ = tk, k =
1,m, the model becomes a linear model with m + r variables and a constant term.

Remark 6.
i) We assume that the nodes vk, k = 1,m are given. These can be taken such

that in any open interval generated there is at least one value from the n values given
for X. In this case m + 1 ≤ n.

ii) Also we can define a spline function whose nodes are among the sample
data of X. If m < n we consider m values of X increasingly ordered as nodes of f such
that in any interval (−∞, v1) , (v1, v2) , ..., (vm,∞) at least one values of X exists. In
this case 2m + 1 ≤ n.

In the next theorem we use the notations:

V r (q1, q2,..., qs) =


q1 q2

1 ... qr
1

q2 q2
2 ... qr

2

... ... ... ...
qs q2

s ... qr
s

 ,

V r
1 (q1, q2,..., qs) =


1 q1 q2

1 ... qr
1

1 q2 q2
2 ... qr

2

... ... ... ... ...
1 qs q2

s ... qr
s



V ′ (q1, q2,..., qs) =


(q1 − v1)

r
+ (q1 − v2)

r
+ ... (q1 − vm)r

+

(q2 − v1)
r
+ (q2 − v2)

r
+ ... (q2 − vm)r

+

... ... ... ...
(qs − v1)

r
+ (qs − v2)

r
+ ... (qs − vm)r

+

 .

Theorem 7. If m + r + 1 ≤ n and among the n values of X there is at least
one value situated in each of the m+1 open intervals delimited by nodes and there are
another r distinct values situated in (−∞, v1) then the model is uniquelly fitted by
aj = cj , j = 1, r , bk = cr+k, k = 1,m, cT = (c1, ..., cm+r) ∈ <m+r, c =

(
ẑT
0 ẑ0

)−1
ẑT
0 ŷ

where

ẑ0 = Pz0, ŷ = Py, P = I − 1
n
uuT ,u = (1, 1, ..., 1) ∈ <n,

z0 = (V r (x1, x2,..., xn) : V ′ (x1, x2,...xs)) .
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Proof. We note that model (5) is a linear model with m + r variables and
a constant term. In order for the theorem to remain valid one of the conditions
rank(z) = m + r + 1 or rank(z0) = m + r is required. Taking into account that
the rank of a matrix is not affected by swaping some rows we consider the values of
variable to be ordered as x1 ≤ x2 ≤ ... ≤ xn. From hypothesis, there are r+1 distinct
values in (−∞, v1) and in the other intervals there is at least one value. Without loss
of generality we take the first m + r + 1 values such that

x1, x2, ..., xr+1 ∈ (−∞, v1) , xr+2 ∈ (v1, v2) , xr+3 ∈ (v2, v3) , ..., xr+n+1 ∈ (vm,∞)
(6)

We denote with d the minor formed with the first m + r + 1 rows of z, so we
have d =detM with

M = (V r
1 (x1, x2,..., xm+r+1) : V ′ (x1, x2,..., xm+r+1)) .

Since:

(xi − vk)r
+ =

{
(xi − vk)r

, xi ≥ vk

0, xi < vk

we obtain d =detM ′ where

M ′ =
(

V r
1 (x1, x2,..., xr+1) Or+1,m

V r
1 (xr+2, xr+3,..., xm+r+1) V

)
and

V =


(xr+2 − v1)

r
... 0 0

... ... ... ...
(xm+r − v1)

r
... (xm+r − vm−1)

r 0
(xm+r+1 − v1)

r
... (xm+r+1 − vm−1)

r (xm+r+1 − vm)r


Further we obtain

d = [(xm+r+1 − vm)r (xm+r − vm−1)
r · ... · (xr+2 − v1)

r] ·
· [(xr+1 − xr) (xr+1 − xr−1) · ... · (x2 − x1)] .

Since the first r + 1 values are distinct it follows from (6) that d 6= 0 and
rank(z) = m + r + 1.

Remark 8. If those m nodes are among the values of X then 2m+r+1 ≤ n.
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