
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVIII, Number 2, June 2003

SOLUTIONS TO THE DIOPHANTINE EQUATION
(x + y + z + t)2 = xyzt

TITU ANDREESCU

Abstract. The main purpose of this paper is to study the Diophantine
equation (2). We will indicate nine different infinite families of positive
integral solutions to this equation.

1. Introduction

Generally, integral solutions to equations in three or more variables are given
in various parametric forms (see [2] or [6]). In the paper [5] it is proved that the
Diophantine equation x+ y + z = xyz has solutions in the units of the quadratic field
Q(
√

d) if and only if d = −1, 2 or 5 and in these cases all solutions are also given. The
problem of finding all integral solutions to this equation remains open. In our paper
[1] we constructed different families of infinite integral solutions to the equation

(x + y + z)2 = xyz. (1)

We have indicated a general method of generating such families of solutions by
using the theory of Pell’s equations. The problem of finding all solutions to equation
(1) is still open.

In this paper we use the theory of general Pell’s equations to generate nine
infinite families of positive integral solutions to the equation

(x + y + z + t)2 = xyzt. (2)

2. The General Pell’s Equation Ax2 −By2 = C

Recall that the equation

u2 −Dv2 = 1, (3)

where D is a positive integer that is not a perfect square is called Pell’s equation.
Denoting by (u0, v0) = (1, 0) its trivial solution, the main result concerning

equation (3) is the following (see [1], pp. 107-110 or [7]): There are infinitely many
solutions in positive integers to (3) and all solutions to equation (3) are given by
(un, vn)n≥0, where {

un+1 = u1un + Dv1vn

vn+1 = v1un + u1vn
(4)
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Here (u1, v1) represents the fundamental solution to (3), that is the minimal
solution different from (u0, v0).

It is not difficult to see that (4) is equivalent to

un + vn

√
D = (u1 + v1

√
D)n, n ≥ 0. (5)

Also, relations (5) could be written in the following useful matrix form:(
un+1

vn+1

)
=

(
u1 Dv1

v1 u1

) (
un

vn

)
, n ≥ 0

from where (
un

vn

)
=

(
u1 Dv1

v1 u1

)n (
1
0

)
, n ≥ 0 (6)

From (5) or (6) it follows immediately that
un =

1
2
[(u1 + v1

√
D)n + (u1 − v1

√
D)n]

vn =
1

2
√

D
[(u1 + v1

√
D)n − (u1 − v1

√
D)n], n ≥ 0

(7)

The main method of determining the fundamental solution (u1, v1) involves
continued fractions. Sometimes this solution is very large, for example if D = 991,
then {

u1 = 379516400906811930638014896080
v1 = 12055735790331359447442538767

In what follows we consider the general Pell’s equation

Ax2 −By2 = C, (8)

where A,B,C are positive integers with gcd(A,B) = 1 and A and B are not perfect
squares.

The solvability and unsolvability of equation (8) is discussed in our paper [3].
Concerning this equation we need the following result (see also [4]):

Theorem. If equation (8) is solvable in positive integers, then it has infinitely
many positive integral solutions.

Proof. We will use the Pell’s resolvent associated to equation (8):

u2 −ABv2 = 1. (9)

From the given conditions it follows that AB is not a perfect square so the
Pell’s equation (9) has infinitely many positive integral solutions. All such solutions
are given by (4) or (7), where D = AB.

If (x0, y0) is a solution to (8) and (u, v) is a solution to (9), then we can
construct a new solution to (8) by using the so-called multiplication principle:{

x = x0u + By0v
y = y0u + Ax0v

(10)

Indeed,

Ax2 −By2 = A(x0u + By0v)2 −B(y0u + Ax0v)2 =

= (Ax2
0 −By2

0)(u2 −ABv2) = C · 1 = C.
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Taking into account that the Pell’s resolvent has infinitely many solutions,
the conclusion follows. �

In the case when equation (8) is solvable, all of its solutions can be expressed
in terms of the solutions to the associated general Pell’s equation

u2 −ABv2 = AC. (11)

For more details we refer to [3, Theorem 1] or [8].

3. Infinite Families of Solutions to Equation (2)

The transformations

x =
u + v

2
+ a, y =

u− v

2
+ a, z = b, t = c (12)

where a, b, c are positive integers, bring the equation (2) to the form

(u + 2a + b + c)2 =
bc

4
(u2 − v2) + abcu + a2bc.

Setting the conditions 2(2a+ b+ c) = abc and bc > 4, we obtain the following
general Pell’s equation

(bc− 4)u2 − bcv2 = 4[(2a + b + c)2 − a2bc]. (13)

There are nine triples (a, b, c) up to permutations satisfying the above condi-
tions: (1,6,4), (1,10,3), (2,2,6), (3,4,2), (3,14,1), (5,2,3), (4,1,9), (7,1,6), (12,1,5).

The following table contains the general Pell’s equations (13) corresponding to
the above triples (a, b, c), their Pell’s resolvent, both equations with their fundamental
solutions.

(a, b, c) General Pell’s equation (13) Pell’s resolvent and its
and its fundamental solution fundamental solution

(1,6,4) 5u2 − 6v2 = 120, (12, 10) r2 − 30s2 = 1, (11, 2)
(1,10,3) 13u2 − 15v2 = 390, (15, 13) r2 − 195s2 = 1, (14, 1)
(2,2,6) 2u2 − 3v2 = 96, (12, 8) r2 − 6s2 = 1, (5, 2)
(3,4,2) u2 − 2v2 = 72, (12, 6) r2 − 2s2 = 1, (3, 2)
(3,14,1) 5u2 − 7v2 = 630, (21, 15) r2 − 35s2 = 1, (6, 1)
(4,1,9) 5u2 − 9v2 = 720, (42, 30) r2 − 45s2 = 1, (161, 24)
(5,2,3) u2 − 3v2 = 150, (15, 5) r2 − 3s2 = 1, (2, 1)
(7,1,6) u2 − 3v2 = 294, (21, 7) r2 − 3s2 = 1, (2, 1)
(12,1,5) u2 − 5v2 = 720, (30, 6) r2 − 5s2 = 1, (9, 4)

By using the formula (10) we obtain the following sequences of solutions to
equations (13):

u(1)
m = 12r(1)

m + 60s(1)
m , v(1)

m = 10r(1)
m + 60s(1)

m ,

where r
(1)
m + s

(1)
m

√
30 = (11 + 2

√
30)m, m ≥ 1;

u(2)
m = 15r(2)

m + 195s(2)
m , v(2)

m = 13r(2)
m + 195s(2)

m ,

where r
(2)
m + s

(2)
m

√
195 = (14 +

√
195)m, m ≥ 1;

u(3)
m = 12r(3)

m + 24s(3)
m , v(3)

m = 8r(3)
m + 24s(3)

m ,
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where r
(3)
m + s

(3)
m

√
6 = (5 + 2

√
6)m, m ≥ 1;

u(4)
m = 12r(4)

m + 12s(4)
m , v(4)

m = 6r(4)
m + 12s(4)

m ,

where r
(4)
m + s

(4)
m

√
2 = (3 + 2

√
2)m, m ≥ 1;

u(5)
m = 21r(5)

m + 105s(5)
m , v(5)

m = 15r(5)
m + 105s(5)

m ,

where r
(5)
m + s

(5)
m

√
35 = (6 +

√
35)m, m ≥ 1;

u(6)
m = 42r(6)

m + 270s(6)
m , v(6)

m = 30r(6)
m + 210s(6)

m ,

where r
(6)
m + s

(6)
m

√
45 = (161 + 24

√
45)m, m ≥ 1;

u(7)
m = 15r(7)

m + 15s(7)
m , v(7)

m = 5r(7)
m + 15s(7)

m ,

where r
(7)
m + s

(7)
m

√
3 = (2 +

√
3)m, m ≥ 1;

u(8)
m = 21r(8)

m + 21s(8)
m , v(8)

m = 7r(8)
m + 21s(8)

m ,

where r
(8)
m + s

(8)
m

√
3 = (2 +

√
3)m, m ≥ 1;

u(9)
m = 30r(9)

m + 30s(9)
m , v(9)

m = 6r(9)
m + 30s(9)

m ,

where r
(9)
m + s

(9)
m

√
5 = (9 + 4

√
5)m, m ≥ 1.

Formulas (12) yield the following nine families of positive integers solutions
to the equation (2):

x(1)
m = 11r(1)

m + 60s(1)
m + 1, y(1)

m = r(1)
m + 1, z(1)

m = 6, t(1)m = 4

x(2)
m = 14r(2)

m + 195s(2)
m + 1, y(2)

m = r(2)
m + 1, z(2)

m = 10, t(2)m = 3

x(3)
m = 10r(3)

m + 24s(3)
m + 2, y(3)

m = 2r(3)
m + 2, z(3)

m = 2, t(3)m = 6

x(4)
m = 12r(4)

m + 12s(4)
m + 3, y(4)

m = 3r(4)
m + 3, z(4)

m = 4, t(4)m = 2

x(5)
m = 18r(5)

m + 105s(5)
m + 3, y(5)

m = r(5)
m + 3, z(5)

m = 14, t(5)m = 1

x(6)
m = 36r(6)

m + 240s(6)
m + 4, y(6)

m = 6r(6)
m + 30s(6)

m + 4, z(6)
m = 1, t(6)m = 9

x(7)
m = 10r(7)

m + 15s(7)
m + 5, y(7)

m = 5r(7)
m + 5, z(7)

m = 2, t(7)m = 3

x(8)
m = 14r(8)

m + 21s(8)
m + 7, y(8)

m = 7r(8)
m + 7, z(8)

m = 1, t(8)m = 6

x(9)
m = 18r(9)

m + 30s(9)
m + 12, y(9)

m = 12r(9)
m + 12, z(9)

m = 1, t(9)m = 5.

Remarks. 1) In [9] only solution (x(7)
m , y

(7)
m , z

(7)
m , t

(7)
m ) is found.

2) Note the atypical form of solution (x(6)
m , y

(6)
m , z

(6)
m , t

(6)
m ).
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