ASYMPTOTICAL VARIANTS OF SOME FIXED POINT THEOREMS IN ORDERED SETS

T. BARANYAI

Abstract

In this paper we will present some fixed point theorems in ordered sets with condition for operator and its iterates too.

1. Introduction

Let (X, \leq) be an ordered set $(X \neq \emptyset)$ and $f: X \rightarrow X$ an operator. We denote by

$$
F_{f}=\{x \in X: f(x)=x\}
$$

the fixed point set of f.
In this note we need the following results [1-7].
Theorem of Tarski. Let (X, \leq) be a complete lattice, $f: X \rightarrow X$ an increasing operator. Then $F_{f} \neq \emptyset$ and $\left(F_{f}, \leq\right)$ is a complete lattice.

Theorem of Birkhoff-Bourbaki. Let (X, \leq) be right inductive ordered set and let $f: X \rightarrow X$ be an expansive operator. Then $F_{f} \neq \emptyset$.

Lemma. Let X be nonempty set and $f, g: X \rightarrow X$ two commuting operators. Then:
(i) $F_{g}=\emptyset$ or $F_{g} \in I(f)$;
(ii) $F_{f}=\emptyset$ or $F_{f} \in I(g)$;

2. The main results

Theorem 1. Let (X, \leq) be a an ordered set and $f: X \rightarrow X$ an increasing operator. We suppose that there exist $k \in \mathbb{N}^{*}$ and $Y \subset X$ such that:
(a) $f^{k}(X) \subset Y$;
(b) (Y, \leq) is a complete lattice.

Then $F_{f} \neq \emptyset$.
Proof. From (a) and (b) we have that the restriction of iterate f^{k} has the following properties $\left.f^{k}\right|_{Y}: Y \rightarrow Y$ and f^{k} is an increasing operator.
f is an increasing operator, i.e. for any $x, y \in X$ we have

$$
x \leq y \Longrightarrow f(x) \leq f(y)
$$

[^0]\[

$$
\begin{gathered}
f(x) \leq f(y) \Longrightarrow f(f(x)) \leq f(f(y)) \\
\ldots \\
f^{k-1}(x) \leq f^{k-1}(y) \Longrightarrow f^{k}(x) \leq f^{k}(y) .
\end{gathered}
$$
\]

Since (Y, \leq) is a complete lattice, from Theorem of Tarski it follows that $F_{f^{k}} \neq \emptyset$ and $\left(F_{f^{k}}, \leq\right)$ is a complete lattice. Because f and f^{k} are commuting operators, from Lemma we have that $f\left(F_{f^{k}}\right) \subset F_{f^{k}}$.

We apply the Tarski Theorem to $f: F_{f^{k}} \rightarrow F_{f^{k}}$ and we conclude that there exists at least a fixed point $\left(\in F_{f^{k}}\right)$ which means that $F_{f} \neq \emptyset$.
Theorem 2. Let (X, \leq) be a an ordered set and $f: X \rightarrow X$ be an expansive operator. We suppose that there exist $k \in \mathbb{N}^{*}$ and $Y \subset X$ such that:
(a) $f^{k}(X) \subset Y$;
(b) (Y, \leq) is a right inductive ordered set.

Then $F_{f} \neq \emptyset$.
Proof. From (a) we have $\left.f^{k}\right|_{Y}: Y \rightarrow Y$. Since f is an expansive operator, i.e.

$$
x \leq f(x), \quad \forall x \in X
$$

we obtain

$$
x \leq f(x) \leq f(f(x))=f^{2}(x) \leq \ldots \leq f^{k-1}(x) \leq f^{k}(x)
$$

which means that f^{k} is an expansive operator. From Theorem of Birkhoff-Bourbaki we have that $F_{f^{k}} \neq \emptyset$. Let $x^{*} \in F_{f^{k}}$, we want to prove that $x^{*} \in F_{f}$.

Suppose that x^{*} is not a fixed point of $f: f\left(x^{*}\right) \neq x^{*}$. We have two cases: $x^{*}<f\left(x^{*}\right)$ and $x^{*}>f\left(x^{*}\right)$.

Case I: $x^{*}<f\left(x^{*}\right)$
Since f is an expansive operator we deduce

$$
x^{*}<f\left(x^{*}\right) \leq f^{2}\left(x^{*}\right) \leq \ldots \leq f^{k-1}\left(x^{*}\right) \leq f^{k}\left(x^{*}\right)=x^{*}
$$

which is a contradiction.
Case II: $x^{*}>f\left(x^{*}\right)$

$$
x^{*}>f\left(x^{*}\right) \geq f^{2}\left(x^{*}\right) \geq \ldots \geq f^{k-1}\left(x^{*}\right) \geq f^{k}\left(x^{*}\right)=x^{*}
$$

which is also a contradiction.
Thus we have that $x^{*} \in F_{f}$.

References

[1] A. Bege, Teoria discretă a punctului fix şi aplicatiii, Presa Univ. Clujană, 2002.
[2] A. Bege, Fixed point theorems in ordered sets and applications, SFPT, 3(2002), 129-136.
[3] J. Dugundji, A. Granas, Fixed point theory, Polish Sc. Publ., Warsaw, 1982.
[4] I. A. Rus, Teoria punctului fix în structuri algebrice, Univ. Babeş-Bolyai, Cluj-Napoca, 1971.
[5] I. A. Rus, Principii şi aplicaţii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
[6] A. Tarski, A lattice theoretical fixed point theorem and its applications, Pacific J. Math., 5(1955), 285-309.
[7] M. Turinici, Fixed point resuts and abstract ordered sets, Le Matematiche, 49(1994), no. 1, 25-34.

Department of Mathematics, Babeş-Bolyai University, Training College, Satu Mare
E-mail address: baratun@yahoo.com

[^0]: Received by the editors: 17.09 .2002 .
 2000 Mathematics Subject Classification. 06A10.
 Key words and phrases. ordered sets, fixed point.

