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ON CERTAIN CLASSES OF GENERALIZED CONVEX FUNCTIONS
WITH APPLICATIONS, II

J. SÁNDOR

Dedicated to Professor Wolfgang W. Breckner at his 60th anniversary

In the first part [8] we have studied the η-invex functions first introduced by

the author in 1988. We have also introduced and studied η-invexity, η-pseudo-invexity,

Jensen-invexity (and the underlying invex and Jensen-invex sets), almost-invexity, as

well as almost-cvazi-invexity.

In this second part we shall introduce and study the notions of A-convexity;

resp. Λ-invexity (Λ ⊂ [0, 1], dense).

1. A-convex functions

Definition 1.1. ([5]) Let X be a real linear space, and B : X×X → R a given

application. We say that a function f : X → R is B-subadditive (superadditive) if

one has

f(x + y) ≤ (≥)f(x) + f(y) + B(x, y) for all x, y ∈ X. (1)

An immediate property related to this definition is:

Proposition 1.1. If B is an antisymmetric application and f is B-

subadditive (superadditive), then f is subadditive (superadditive).

Proof. One can write

f(x + y) ≤ f(x) + f(y) + B(x, y) and f(x + y) ≤ f(y) + f(x) + B(y, x)

By addition, it follows

f(x + y) ≤ f(x) + f(y) +
1
2
[B(x, y) + B(y, x)] = f(x) + f(y),

since B(x, y) = −B(y, x), B being antisymmetric. Therefore, f is subadditive.
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Definition 1.2. Let B : X × X → R+, with X again a real linear space.

We say that f : X → R is absolutely-B-subadditive, if the following relation holds

true:

|f(x + y)− f(x)− f(y)| ≤ B(x, y) (2)

Theorem 1.1. [5] If B : X × X → R is homogeneous of order zero, and

if f : X → R is absolutely-B-subadditive, then there exists a single additive function

g : X → R, which ”quadratically approximates” f , i.e.

|f(x)− g(x)| ≤ B(x, x), x ∈ X (3)

Proof. Put x := 2n−1x, y := 2n−1x in relation (2). We get∣∣∣∣f(2nx)
2n

− f(2n−1x)
2n−1

∣∣∣∣ ≤ B(x, x)
2n

.

By the modulus inequality, one has, on the other hand∣∣∣∣f(2nx)
2n

− f(2mx)
2m

∣∣∣∣ ≤ ∣∣∣∣f(2nx)
2n

− f(2n−1x)
2n−1

∣∣∣∣ +
∣∣∣∣f(2n−1x)

2n−1
− f(2n−2x)

2n−2

∣∣∣∣ +

+ · · ·+
∣∣∣∣f(2m+1x)

2m+1
− f(2mx)

2m

∣∣∣∣ for n > m.

Thus ∣∣∣∣f(2nx)
2n

− f(2mx)
2m

∣∣∣∣ ≤ B(x, x)
(

1
2n

+
1

2n−1
+ · · ·+ 1

2m

)
This inequality easily implies that the sequence of general term xn =

f(2nx)
2n

is fundamental. R being a complete metric space, (xn) has a limit; let

g(x) := lim
n→∞

f(2nx)
2n

(4)

We now prove that g is additive. Indeed, one has

|g(x + y)− g(x)− g(y)| = lim
n→∞

∣∣∣∣f(2nx + 2ny)
2n

− f(2nx)
2n

− f(2ny)
2n

∣∣∣∣ ≤
≤ lim

n→∞

B(x, y)
2n

= 0.

This gives g(x + y) = g(x) + g(y). We now show that g is unique. Let us

assume that there exists another additive application h such that

|f(x)− h(x)| ≤ B(x, x).
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Then

|g(x)− h(x)| = |g(x)− f(x) + f(x)− h(x)| ≤ 2B(x, x),

by assumption. Thus

|g(2nx)− h(2nx)| ≤ 2B(2nx, 2nx),

implying

|g(x)− h(x)| ≤ B(x, x)
2n−1

→ 0

as n →∞. (Indeed, g(2nx) = 2ng(x) and h(2nx) = 2nh(x); g and h being additive).

Now, an inductive argument shows that |f(2nx) − 2nf(x)| ≤ 2nB(x, x). By

dividing with 2n and letting n →∞, one has |f(x)− g(x)| ≤ B(x, x), i.e. g approxi-

mates f in the above defined manner.

Proposition 1.2. Let f : (0,+∞) → R be such that the application x →
f(x)

x
is B-decreasing on (0,+∞). Then f is B1-subadditive, where

B1(x, y) = xB(x + y, x) + yB(x + y, y); x, y ∈ (0,+∞).

Proof. Since x, y > 0; x + y > x implies

f(x + y)
x + y

≤ f(x)
x

+ B(x + y, x)

and
f(x + y)

x + y
≤ f(y)

y
+ B(x + y, x)

(here x + y > y). Therefore,

f(x + y) =
f(x + y)

x + y
(x + y) ≤ f(x)

x
· x + xB(x + y, x) +

f(y)
y

· y + yB(x + y, y) =

= f(x) + f(y) + B1(x, y),

by the above written two inequalities, and by the definition of B1.

Definition 1.3. Let Y be a convex subset of the real linear space X. Let

A : Y × Y × Y → R be an application of three variables. We say that the function

f : Y → R is A-convex (concave) if the following inequality holds true:

f(λu + (1− λ)v) ≤ (≥)λf(u) + (1− λ)f(v)+

+λ(u− v)A(λu + (1− λ)v, u, v) (5)
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for all u, v ∈ Y , all λ ∈ [0, 1].

Definition 1.4. Let Y be an η-invex set of X (see [8] for definition and

related examples or results). We say that f : Y → R is an η − A-invex (incave)

function, if

f(v + λη(u, v)) ≤ (≥)λf(u) + (1− λ)f(v) + λ(u− v)A(η(u, v), u, v) (6)

for all u, v ∈ Y , all λ ∈ [0, 1].

Proposition 1.3. Let A : R3
+ → R and f : R+ → R be an A(·, ·, 0)-

concave function. Put A1(·, ·) = A(·, ·, 0) and assume that f(0) = 0. Then f is a

B1-subadditive function, where

B1(x, y) = −xA1(x, x + y)− yA1(y, x + y). (7)

Proof. First remark that the A-convexity (concavity) of f is equivalent to

the inequality

f(x)− f(z)
x− z

≤ (≥)
f(y)− f(z)

y − z
+ A(x, y, z), x < z < y (8)

where the application Fz(x) =
f(x)− f(z)

x− z
is an Az-increasing application for all

fixed z, with Az(x, y) = A(x, y, z). Indeed, let z < x < y. Then inequality (8) with

≥ can be written also as

(y − z)f(x)− (y − z)f(z) ≥ (x− z)f(y)− (x− z)f(z) + (x− z)(y − z)A(x, y, z),

i.e.

(y − z)f(x) ≥ (x− z)f(y) + (y − x)f(z) + (x− z)(y − z)A(x, y, z)

or

f(x) ≥ λf(y) + (1− λ)f(z) + (x− z)A(x, y, z),

with λ :=
x− z

y − z
∈ (0, 1) and 1−λ = 1− x− z

y − z
=

y − x

y − z
and x = λy +(1−λ)z. Since,

by assumption one has f(0) = 0 and
f(x)− f(0)

x− 0
=

f(x)
x

, from the above remark,

the function
f(·)
(·)

is A1-increasing. Thus, one can write

f(x)
x

≥ f(x + y)
x + y

+ A1(x, x + y), resp.
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f(y)
y

≥ f(x + y)
x + y

+ A1(y, x + y),

giving

f(x) + f(y) ≥ f(x + y)
(

x

x + y
+

y

x + y

)
+ xA1(x, x + y) + yA1(y, x + y) =

= f(x + y)−B1(x, y).

This implies f(x + y) ≤ f(x) + f(y) + B1(x, y), i.e. f is B1-subadditive, where B1 is

given by (7).

Proposition 1.4. Let f : (0,∞) → R be a convex function (in the classical

sense) and B-subadditive. Then the function g given by g(x) =
f(x)

x
is a C-increasing

function for some C : (0,∞)× (0,∞) → R.

Proof. Let λ =
x

x + h
∈ (0, 1) with h > 0 and x + h = λx + (1− λ)(2x + h).

From the B-subadditivity of f one has

f(2x + h) ≤ f(x) + f(x + h) + B(x, x + h).

The convexity of f implies

f(x + h) ≤ λf(x) + (1− λ)f(2x + h).

Therefore,

f(x + h) ≤ λf(x) + (1− λ)f(x) + (1− λ)f(x + h) + (1− λ)B(x, x + h).

This gives

λf(x + h) ≤ f(x) + (1− λ)B(x, x + h).

Here λ =
x

x + h
and 1− λ =

h

x + h
, so

x

x + h
f(x + h) ≤ f(x) +

h

x + h
B(x, x + h),

or
f(x + h)

x + h
≤ f(x)

x
+ C(x, h),

where C(x, h) =
h

x
· B(x, x + h)

x + h
, which concludes of the proof of the C-monotonicity

of g.
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2. Λ-invex functions (Λ ⊆ [0, 1], dense)

Let Λ ⊆ [0, 1] be a fixed, dense subset of [0, 1]. As a generalization of the

notion of η-cvazi-invexity (see [8]), we shall introduce the notion of η − Λ-invexity

as follows:

Definition 2.1. ([7]) Let X be a real linear space, S ⊂ X an η-invex subset

of X, where η : X ×X → X (see [8]), and let f : S → R∞ = R∪ {+∞}. We say that

f is an η − Λ-invex function, if the following inequality holds true:

f(x + λη(y, x)) ≤ max{f(x), f(y)} for all x, y ∈ S, all λ ∈ Λ. (9)

Remark 2.1. When Λ ≡ [0, 1], the notion of η − Λ-invexity of f coincides

with that of η-cvazi-invexity of f .

Definition 2.2. The set D(f) = {x ∈ S : f(x) < +∞} will be called the

effective domain of f : S → R+.

Definition 2.3. A point x ∈ S with the property f(x) = +∞ will be called

as a singular point of f . The set of all singular points of f will be denoted by

S(f).

In what follows we shall assume that S = X, which is a real normed space.

Let us use the following (standard) notations

f(x) = lim inf
y→x

f(y); f(x) = lim sup
y→x

f(y).

The following result extends theorems due to F. Bernstein and G. Doetsch

[1], E. Mohr [4], A. Császár [2].

Theorem 2.1. ([7]) Let f : X → R∞ be an η−Λ-invex set and let K ⊂ D(f)

be an open, η-invex set. Let us assume that the application η : X × X → X is

continuous in the strong topology and that f(x) > −∞ for all x ∈ X. Then the

function f : K → R is η-cvazi-invex.

Proof. Let x, y ∈ K. There exists b ∈ (0, 1) with z = x + bη(y, x) ∈ K.

Since we are in the case of normed spaces, we can select sequences (xk), (yk) such

that xk → x, yk → y (k →∞) imply f(xk) → f(x) and f(yk) → f(y) (k →∞).

Let then (ak) ⊂ Λ be a sequence such that ak → b, and put zk = xk +

akη(yk, xk).
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The function η being continuous in the norm topology, one can write zk →

x + bη(y, x) = z and f(x) ≤ lim infk→∞ f(zk). But from f(zk) ≤ max{f(xk), f(yk)},

by taking k →∞ one obtains immediately

f(z) ≤ lim inf
k→∞

f(zk) ≤ max
{

lim inf
k→∞

f(xk), lim inf
k→∞

f(yk)
}

=

= max{f(x), f(y)},

proving the η-cvazi-invexity of the function f .

Proposition 2.1. If f : X → R∞ is η-invex (or η-cvazi-invex), then the set

D(f) is η-invex set (or η-cvazi-invex set).

Proof. Let x, y ∈ D(f). Then f(x) < +∞, f(y) < +∞, so

f(x + λη(y, x)) ≤ λf(y) + (1− λ)f(y) < +∞

(in the η-invex case); or

f(x + λη(y, x)) ≤ max{f(x), f(y)} < +∞

(in the η-cvazi-invex case). In any case, one has x+λη(y, x) ∈ D(f) for all x, y ∈ D(f),

all λ ∈ [0, 1], proving the η-invexity of the set D(f).

Theorem 2.2. Let us assume that the real Banach space X and the appli-

cation η have the following property:

For M ⊂ X, if x, x0 ∈ intM0, then there exists λ ∈ (0, 1) and y ∈ M such

that

x = x0 + λη(y, x0). (∗)

Let f : X → R∞ be an η −Λ-invex function and let x0 ∈ intD(f) be selected

such that f(x0) < +∞. If η is nonexpansive related to the second argument; then

f(x) < +∞ for all x ∈ intD(f).

Proof. Let M := D(f) in (∗) and let x, x0 ∈ D(f), where f(x) = +∞,

f(x0) < +∞. By condition (∗), there exists λ ∈ Λ and y ∈ D(f) such that

x = x0 + λη(y, x0). (10)

Select now a sequence (xk) with xk ∈ D(f) \ {x} such that xk → x, f(xk) →

+∞ (k → +∞). Thus there exists k0 ∈ N with

f(xk) > f(y) for all k ≥ k0. (11)
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Let zk be determined by the equation

xk = zk + λη(y, zk), k ∈ N. (12)

Equation (10) can be solved for all zk (k=fixed), since, by letting, with zk = z,

the application g(z) = x− λη(y, z), g : X → X becomes a contraction. Indeed, one

has

‖g(z1)− g(z2)‖ = λ‖η(y, z1)− η(y, z2)‖ ≤ λ < 1,

η being nonexpansive upon the second argument.

Now Banach’s classical contraction principle assures the existence of a unique

fix point of the operator g; in other words, equation (10) has a single solution.

We shall prove now that

zk → x0. (13)

For this aim, remark that

‖xk − x‖ = ‖zk − x + λη(y, zk)‖ =

= ‖zk − x0 + λ(η(y, x0)− η(y, zk))‖ > ‖zk − x0‖ − λ‖η(y, x0)− η(y, zk)‖ >

> ‖zk − x0‖ − λ‖zk − x0‖ = (1− λ)‖zk − x0‖.

Therefore,

‖zk − x0‖ <
1

1− λ
‖xk − x‖ → 0

as k →∞, finishing the proof of relation (14).

Let now zk be defined uniquely by (10), and let k ≥ k0 be given by (11). One

can write

f(y) < f(xk) ≤ max{f(zk), f(y)} = f(zk),

so on base of (13), one obtains f(x0) ≥ lim
k→∞

f(zk) = +∞, which contradicts the

assumption f(x0) = +∞.

Remark 2.2. If η has the nonexpansivity property upon both argu-

ments, i.e.

‖η(y, x)− η(y0, x0)‖ ≤ ‖y − y0‖+ ‖x− x0‖,

it is immediately seen that if M ⊆ X is an invex set, then intM will be also invex (for

the same η; i.e. η-invex). Thus, for Λ ≡ [0, 1], on base of Proposition 2.1, relation (∗)
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holds true for η-cvazi-invex sets. Remark that for y = y0, the nonexpansivity upon

the second variable is contained in the above duble nonexpansivity property.

We now prove the main result of this section:

Theorem 2.3. ([6], [7]) Let us assume that f : X → R∞ satisfies the

conditions of Theorem 2.2 and that f is inferior semicontinuous. In this case

one has the following alternatives: i) D(f) = ∅, ii) If there exists x0 ∈ intD(f)

with f(x0) < +∞; then the set S(f) of singularities can be written as a numerable

intersection of dense sets in X. If intD(f) 6= ∅, then f(x) < +∞ for all x ∈ intD(f).

Proof. For n ∈ N defined the sets Xn = {x ∈ X : f(x) > n}, which is an

open set. One can write: S(f) = ∩{Xn : n ∈ N}. The sets Xn are dense in X, since

if not, i.e. if Xn0 is not dense (n0 ∈ N), then there exists y0 ∈ X and a closed ball

B(y0, r) = B such that B ∩ Xn0 = ∅. Thus for x ∈ B we would have f(x) ≤ n0.

If intD(f) 6= ∅, by Theorem 2.2 we have f(x) < +∞ for all x ∈ intD(f), which is

impossible, by assumption. If f(x0) = +∞ for an x0 ∈ intD(f), by Baire’s classical

lemma one has S(f) = ∩{Xn : n ∈ N} is dense in X. There for intD(f) = ∅,

contradicting x0 ∈ intD(f).

Remark 2.3. Theorem 2.3 constitutes a generalization of a theorem by J.

Kolumbán [3]. For η(x, y) = x − y (i.e. the convex case), we can deduce a gen-

eralization of the well known theorem of Banach-Steinhaus on the condensation of

singularities.
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