ON CERTAIN CLASSES OF GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS, II

J. SÁNDOR

Dedicated to Professor Wolfgang W. Breckner at his $60^{\text {th }}$ anniversary

In the first part [8] we have studied the η-invex functions first introduced by the author in 1988. We have also introduced and studied η-invexity, η-pseudo-invexity, Jensen-invexity (and the underlying invex and Jensen-invex sets), almost-invexity, as well as almost-cvazi-invexity.

In this second part we shall introduce and study the notions of A-convexity; resp. Λ-invexity $(\Lambda \subset[0,1]$, dense $)$.

1. A-convex functions

Definition 1.1. ([5]) Let X be a real linear space, and $B: X \times X \rightarrow \mathbb{R}$ a given application. We say that a function $f: X \rightarrow \mathbb{R}$ is B-subadditive (superadditive) if one has

$$
\begin{equation*}
f(x+y) \leq(\geq) f(x)+f(y)+B(x, y) \text { for all } x, y \in X . \tag{1}
\end{equation*}
$$

An immediate property related to this definition is:
Proposition 1.1. If B is an antisymmetric application and f is B subadditive (superadditive), then f is subadditive (superadditive).

Proof. One can write

$$
f(x+y) \leq f(x)+f(y)+B(x, y) \text { and } f(x+y) \leq f(y)+f(x)+B(y, x)
$$

By addition, it follows

$$
f(x+y) \leq f(x)+f(y)+\frac{1}{2}[B(x, y)+B(y, x)]=f(x)+f(y),
$$

since $B(x, y)=-B(y, x), B$ being antisymmetric. Therefore, f is subadditive.

Definition 1.2. Let $B: X \times X \rightarrow \mathbb{R}_{+}$, with X again a real linear space. We say that $f: X \rightarrow \mathbb{R}$ is absolutely- B-subadditive, if the following relation holds true:

$$
\begin{equation*}
|f(x+y)-f(x)-f(y)| \leq B(x, y) \tag{2}
\end{equation*}
$$

Theorem 1.1. [5] If $B: X \times X \rightarrow \mathbb{R}$ is homogeneous of order zero, and if $f: X \rightarrow \mathbb{R}$ is absolutely- B-subadditive, then there exists a single additive function $g: X \rightarrow \mathbb{R}$, which "quadratically approximates" f, i.e.

$$
\begin{equation*}
|f(x)-g(x)| \leq B(x, x), \quad x \in X \tag{3}
\end{equation*}
$$

Proof. Put $x:=2^{n-1} x, y:=2^{n-1} x$ in relation (2). We get

$$
\left|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n-1} x\right)}{2^{n-1}}\right| \leq \frac{B(x, x)}{2^{n}}
$$

By the modulus inequality, one has, on the other hand

$$
\begin{gathered}
\left|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{m} x\right)}{2^{m}}\right| \leq\left|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n-1} x\right)}{2^{n-1}}\right|+\left|\frac{f\left(2^{n-1} x\right)}{2^{n-1}}-\frac{f\left(2^{n-2} x\right)}{2^{n-2}}\right|+ \\
+\cdots+\left|\frac{f\left(2^{m+1} x\right)}{2^{m+1}}-\frac{f\left(2^{m} x\right)}{2^{m}}\right| \text { for } n>m
\end{gathered}
$$

Thus

$$
\left|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{m} x\right)}{2^{m}}\right| \leq B(x, x)\left(\frac{1}{2^{n}}+\frac{1}{2^{n-1}}+\cdots+\frac{1}{2^{m}}\right)
$$

This inequality easily implies that the sequence of general term $x_{n}=\frac{f\left(2^{n} x\right)}{2^{n}}$ is fundamental. \mathbb{R} being a complete metric space, $\left(x_{n}\right)$ has a limit; let

$$
\begin{equation*}
g(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}} \tag{4}
\end{equation*}
$$

We now prove that g is additive. Indeed, one has

$$
\begin{aligned}
|g(x+y)-g(x)-g(y)| & =\lim _{n \rightarrow \infty}\left|\frac{f\left(2^{n} x+2^{n} y\right)}{2^{n}}-\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n} y\right)}{2^{n}}\right| \leq \\
& \leq \lim _{n \rightarrow \infty} \frac{B(x, y)}{2^{n}}=0
\end{aligned}
$$

This gives $g(x+y)=g(x)+g(y)$. We now show that g is unique. Let us assume that there exists another additive application h such that

$$
|f(x)-h(x)| \leq B(x, x)
$$

Then

$$
|g(x)-h(x)|=|g(x)-f(x)+f(x)-h(x)| \leq 2 B(x, x)
$$

by assumption. Thus

$$
\left|g\left(2^{n} x\right)-h\left(2^{n} x\right)\right| \leq 2 B\left(2^{n} x, 2^{n} x\right)
$$

implying

$$
|g(x)-h(x)| \leq \frac{B(x, x)}{2^{n-1}} \rightarrow 0
$$

as $n \rightarrow \infty$. (Indeed, $g\left(2^{n} x\right)=2^{n} g(x)$ and $h\left(2^{n} x\right)=2^{n} h(x) ; g$ and h being additive).
Now, an inductive argument shows that $\left|f\left(2^{n} x\right)-2^{n} f(x)\right| \leq 2^{n} B(x, x)$. By dividing with 2^{n} and letting $n \rightarrow \infty$, one has $|f(x)-g(x)| \leq B(x, x)$, i.e. g approximates f in the above defined manner.

Proposition 1.2. Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be such that the application $x \rightarrow$ $\frac{f(x)}{x}$ is B-decreasing on $(0,+\infty)$. Then f is B_{1}-subadditive, where

$$
B_{1}(x, y)=x B(x+y, x)+y B(x+y, y) ; \quad x, y \in(0,+\infty) .
$$

Proof. Since $x, y>0 ; x+y>x$ implies

$$
\frac{f(x+y)}{x+y} \leq \frac{f(x)}{x}+B(x+y, x)
$$

and

$$
\frac{f(x+y)}{x+y} \leq \frac{f(y)}{y}+B(x+y, x)
$$

(here $x+y>y$). Therefore,

$$
\begin{aligned}
f(x+y)=\frac{f(x+y)}{x+y}(x+y) & \leq \frac{f(x)}{x} \cdot x+x B(x+y, x)+\frac{f(y)}{y} \cdot y+y B(x+y, y)= \\
& =f(x)+f(y)+B_{1}(x, y)
\end{aligned}
$$

by the above written two inequalities, and by the definition of B_{1}.
Definition 1.3. Let Y be a convex subset of the real linear space X. Let $A: Y \times Y \times Y \rightarrow \mathbb{R}$ be an application of three variables. We say that the function $f: Y \rightarrow \mathbb{R}$ is A-convex (concave) if the following inequality holds true:

$$
\begin{gather*}
f(\lambda u+(1-\lambda) v) \leq(\geq) \lambda f(u)+(1-\lambda) f(v)+ \\
+\lambda(u-v) A(\lambda u+(1-\lambda) v, u, v) \tag{5}
\end{gather*}
$$

for all $u, v \in Y$, all $\lambda \in[0,1]$.
Definition 1.4. Let Y be an η-invex set of X (see [8] for definition and related examples or results). We say that $f: Y \rightarrow \mathbb{R}$ is an $\eta-A$-invex (incave) function, if

$$
\begin{equation*}
f(v+\lambda \eta(u, v)) \leq(\geq) \lambda f(u)+(1-\lambda) f(v)+\lambda(u-v) A(\eta(u, v), u, v) \tag{6}
\end{equation*}
$$

for all $u, v \in Y$, all $\lambda \in[0,1]$.
Proposition 1.3. Let $A: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}$ and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be an $A(\cdot, \cdot, 0)$ concave function. Put $A_{1}(\cdot, \cdot)=A(\cdot, \cdot, 0)$ and assume that $f(0)=0$. Then f is a B_{1}-subadditive function, where

$$
\begin{equation*}
B_{1}(x, y)=-x A_{1}(x, x+y)-y A_{1}(y, x+y) \tag{7}
\end{equation*}
$$

Proof. First remark that the A-convexity (concavity) of f is equivalent to the inequality

$$
\begin{equation*}
\frac{f(x)-f(z)}{x-z} \leq(\geq) \frac{f(y)-f(z)}{y-z}+A(x, y, z), \quad x<z<y \tag{8}
\end{equation*}
$$

where the application $F_{z}(x)=\frac{f(x)-f(z)}{x-z}$ is an A_{z}-increasing application for all fixed z, with $A_{z}(x, y)=A(x, y, z)$. Indeed, let $z<x<y$. Then inequality (8) with \geq can be written also as

$$
(y-z) f(x)-(y-z) f(z) \geq(x-z) f(y)-(x-z) f(z)+(x-z)(y-z) A(x, y, z)
$$

i.e.

$$
(y-z) f(x) \geq(x-z) f(y)+(y-x) f(z)+(x-z)(y-z) A(x, y, z)
$$

or

$$
f(x) \geq \lambda f(y)+(1-\lambda) f(z)+(x-z) A(x, y, z)
$$

with $\lambda:=\frac{x-z}{y-z} \in(0,1)$ and $1-\lambda=1-\frac{x-z}{y-z}=\frac{y-x}{y-z}$ and $x=\lambda y+(1-\lambda) z$. Since, by assumption one has $f(0)=0$ and $\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}$, from the above remark, the function $\frac{f(\cdot)}{(\cdot)}$ is A_{1}-increasing. Thus, one can write

$$
\frac{f(x)}{x} \geq \frac{f(x+y)}{x+y}+A_{1}(x, x+y), \text { resp. }
$$

ON CERTAIN CLASSES OF GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS, II

$$
\frac{f(y)}{y} \geq \frac{f(x+y)}{x+y}+A_{1}(y, x+y)
$$

giving

$$
\begin{gathered}
f(x)+f(y) \geq f(x+y)\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+x A_{1}(x, x+y)+y A_{1}(y, x+y)= \\
=f(x+y)-B_{1}(x, y) .
\end{gathered}
$$

This implies $f(x+y) \leq f(x)+f(y)+B_{1}(x, y)$, i.e. f is B_{1}-subadditive, where B_{1} is given by (7).

Proposition 1.4. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a convex function (in the classical sense) and B-subadditive. Then the function g given by $g(x)=\frac{f(x)}{x}$ is a C-increasing function for some $C:(0, \infty) \times(0, \infty) \rightarrow \mathbb{R}$.

Proof. Let $\lambda=\frac{x}{x+h} \in(0,1)$ with $h>0$ and $x+h=\lambda x+(1-\lambda)(2 x+h)$. From the B-subadditivity of f one has

$$
f(2 x+h) \leq f(x)+f(x+h)+B(x, x+h) .
$$

The convexity of f implies

$$
f(x+h) \leq \lambda f(x)+(1-\lambda) f(2 x+h) .
$$

Therefore,

$$
f(x+h) \leq \lambda f(x)+(1-\lambda) f(x)+(1-\lambda) f(x+h)+(1-\lambda) B(x, x+h)
$$

This gives

$$
\lambda f(x+h) \leq f(x)+(1-\lambda) B(x, x+h)
$$

Here $\lambda=\frac{x}{x+h}$ and $1-\lambda=\frac{h}{x+h}$, so

$$
\frac{x}{x+h} f(x+h) \leq f(x)+\frac{h}{x+h} B(x, x+h),
$$

or

$$
\frac{f(x+h)}{x+h} \leq \frac{f(x)}{x}+C(x, h),
$$

where $C(x, h)=\frac{h}{x} \cdot \frac{B(x, x+h)}{x+h}$, which concludes of the proof of the C-monotonicity of g.

2. Λ-invex functions $(\Lambda \subseteq[0,1]$, dense)

Let $\Lambda \subseteq[0,1]$ be a fixed, dense subset of $[0,1]$. As a generalization of the notion of η-cvazi-invexity (see [8]), we shall introduce the notion of $\eta-\Lambda$-invexity as follows:

Definition 2.1. ([7]) Let X be a real linear space, $S \subset X$ an η-invex subset of X, where $\eta: X \times X \rightarrow X$ (see [8]), and let $f: S \rightarrow \mathbb{R}_{\infty}=\mathbb{R} \cup\{+\infty\}$. We say that f is an $\eta-\Lambda$-invex function, if the following inequality holds true:

$$
\begin{equation*}
f(x+\lambda \eta(y, x)) \leq \max \{f(x), f(y)\} \text { for all } x, y \in S, \text { all } \lambda \in \Lambda \tag{9}
\end{equation*}
$$

Remark 2.1. When $\Lambda \equiv[0,1]$, the notion of $\eta-\Lambda$-invexity of f coincides with that of η-cvazi-invexity of f.

Definition 2.2. The set $D(f)=\{x \in S: f(x)<+\infty\}$ will be called the effective domain of $f: S \rightarrow \mathbb{R}_{+}$.

Definition 2.3. A point $x \in S$ with the property $f(x)=+\infty$ will be called as a singular point of f. The set of all singular points of f will be denoted by $S(f)$.

In what follows we shall assume that $S=X$, which is a real normed space. Let us use the following (standard) notations

$$
\underline{f}(x)=\liminf _{y \rightarrow x} f(y) ; \quad \bar{f}(x)=\limsup _{y \rightarrow x} f(y) .
$$

The following result extends theorems due to F. Bernstein and G. Doetsch [1], E. Mohr [4], A. Császár [2].

Theorem 2.1. ([7]) Let $f: X \rightarrow \mathbb{R}_{\infty}$ be an $\eta-\Lambda$-invex set and let $K \subset D(f)$ be an open, η-invex set. Let us assume that the application $\eta: X \times X \rightarrow X$ is continuous in the strong topology and that $f(x)>-\infty$ for all $x \in X$. Then the function $\underline{f}: K \rightarrow \mathbb{R}$ is η-cvazi-invex.

Proof. Let $x, y \in K$. There exists $b \in(0,1)$ with $z=x+b \eta(y, x) \in K$. Since we are in the case of normed spaces, we can select sequences $\left(x_{k}\right),\left(y_{k}\right)$ such that $x_{k} \rightarrow x, y_{k} \rightarrow y(k \rightarrow \infty)$ imply $f\left(x_{k}\right) \rightarrow \underline{f}(x)$ and $f\left(y_{k}\right) \rightarrow \underline{f}(y)(k \rightarrow \infty)$.

Let then $\left(a_{k}\right) \subset \Lambda$ be a sequence such that $a_{k} \rightarrow b$, and put $z_{k}=x_{k}+$ $a_{k} \eta\left(y_{k}, x_{k}\right)$.

The function η being continuous in the norm topology, one can write $z_{k} \rightarrow$ $x+b \eta(y, x)=z$ and $\underline{f}(x) \leq \liminf _{k \rightarrow \infty} f\left(z_{k}\right)$. But from $f\left(z_{k}\right) \leq \max \left\{f\left(x_{k}\right), f\left(y_{k}\right)\right\}$, by taking $k \rightarrow \infty$ one obtains immediately

$$
\begin{aligned}
\underline{f}(z) \leq \liminf _{k \rightarrow \infty} f\left(z_{k}\right) & \leq \max \left\{\liminf _{k \rightarrow \infty} f\left(x_{k}\right), \liminf _{k \rightarrow \infty} f\left(y_{k}\right)\right\}= \\
& =\max \{\underline{f}(x), \underline{f}(y)\},
\end{aligned}
$$

proving the η-cvazi-invexity of the function \underline{f}.
Proposition 2.1. If $f: X \rightarrow \mathbb{R}_{\infty}$ is η-invex (or η-cvazi-invex), then the set $D(f)$ is η-invex set (or η-cvazi-invex set).

Proof. Let $x, y \in D(f)$. Then $f(x)<+\infty, f(y)<+\infty$, so

$$
f(x+\lambda \eta(y, x)) \leq \lambda f(y)+(1-\lambda) f(y)<+\infty
$$

(in the η-invex case); or

$$
f(x+\lambda \eta(y, x)) \leq \max \{f(x), f(y)\}<+\infty
$$

(in the η-cvazi-invex case). In any case, one has $x+\lambda \eta(y, x) \in D(f)$ for all $x, y \in D(f)$, all $\lambda \in[0,1]$, proving the η-invexity of the set $D(f)$.

Theorem 2.2. Let us assume that the real Banach space X and the application η have the following property:

For $M \subset X$, if $x, x_{0} \in \operatorname{int} M_{0}$, then there exists $\lambda \in(0,1)$ and $y \in M$ such that

$$
\begin{equation*}
x=x_{0}+\lambda \eta\left(y, x_{0}\right) . \tag{*}
\end{equation*}
$$

Let $f: X \rightarrow \mathbb{R}_{\infty}$ be an $\eta-\Lambda$-invex function and let $x_{0} \in \operatorname{int} D(f)$ be selected such that $\bar{f}\left(x_{0}\right)<+\infty$. If η is nonexpansive related to the second argument; then $f(x)<+\infty$ for all $x \in \operatorname{int} D(f)$.

Proof. Let $M:=D(f)$ in $(*)$ and let $x, x_{0} \in D(f)$, where $\bar{f}(x)=+\infty$, $\bar{f}\left(x_{0}\right)<+\infty$. By condition (*), there exists $\lambda \in \Lambda$ and $y \in D(f)$ such that

$$
\begin{equation*}
x=x_{0}+\lambda \eta\left(y, x_{0}\right) . \tag{10}
\end{equation*}
$$

Select now a sequence $\left(x_{k}\right)$ with $x_{k} \in D(f) \backslash\{x\}$ such that $x_{k} \rightarrow x, f\left(x_{k}\right) \rightarrow$ $+\infty(k \rightarrow+\infty)$. Thus there exists $k_{0} \in \mathbb{N}$ with

$$
\begin{equation*}
f\left(x_{k}\right)>f(y) \text { for all } k \geq k_{0} . \tag{11}
\end{equation*}
$$

Let z_{k} be determined by the equation

$$
\begin{equation*}
x_{k}=z_{k}+\lambda \eta\left(y, z_{k}\right), \quad k \in \mathbb{N} \tag{12}
\end{equation*}
$$

Equation (10) can be solved for all z_{k} ($k=$ fixed), since, by letting, with $z_{k}=z$, the application $g(z)=x-\lambda \eta(y, z), g: X \rightarrow X$ becomes a contraction. Indeed, one has

$$
\left\|g\left(z_{1}\right)-g\left(z_{2}\right)\right\|=\lambda\left\|\eta\left(y, z_{1}\right)-\eta\left(y, z_{2}\right)\right\| \leq \lambda<1
$$

η being nonexpansive upon the second argument.
Now Banach's classical contraction principle assures the existence of a unique fix point of the operator g; in other words, equation (10) has a single solution.

We shall prove now that

$$
\begin{equation*}
z_{k} \rightarrow x_{0} \tag{13}
\end{equation*}
$$

For this aim, remark that

$$
\begin{gathered}
\left\|x_{k}-x\right\|=\left\|z_{k}-x+\lambda \eta\left(y, z_{k}\right)\right\|= \\
=\left\|z_{k}-x_{0}+\lambda\left(\eta\left(y, x_{0}\right)-\eta\left(y, z_{k}\right)\right)\right\|>\left\|z_{k}-x_{0}\right\|-\lambda\left\|\eta\left(y, x_{0}\right)-\eta\left(y, z_{k}\right)\right\|> \\
>\left\|z_{k}-x_{0}\right\|-\lambda\left\|z_{k}-x_{0}\right\|=(1-\lambda)\left\|z_{k}-x_{0}\right\| .
\end{gathered}
$$

Therefore,

$$
\left\|z_{k}-x_{0}\right\|<\frac{1}{1-\lambda}\left\|x_{k}-x\right\| \rightarrow 0
$$

as $k \rightarrow \infty$, finishing the proof of relation (14).
Let now z_{k} be defined uniquely by (10), and let $k \geq k_{0}$ be given by (11). One can write

$$
f(y)<f\left(x_{k}\right) \leq \max \left\{f\left(z_{k}\right), f(y)\right\}=f\left(z_{k}\right)
$$

so on base of (13), one obtains $\bar{f}\left(x_{0}\right) \geq \lim _{k \rightarrow \infty} f\left(z_{k}\right)=+\infty$, which contradicts the assumption $\bar{f}\left(x_{0}\right)=+\infty$.

Remark 2.2. If η has the nonexpansivity property upon both arguments, i.e.

$$
\left\|\eta(y, x)-\eta\left(y_{0}, x_{0}\right)\right\| \leq\left\|y-y_{0}\right\|+\left\|x-x_{0}\right\|
$$

it is immediately seen that if $M \subseteq X$ is an invex set, then int M will be also invex (for the same η; i.e. η-invex). Thus, for $\Lambda \equiv[0,1]$, on base of Proposition 2.1, relation $(*)$
holds true for η-cvazi-invex sets. Remark that for $y=y_{0}$, the nonexpansivity upon the second variable is contained in the above duble nonexpansivity property.

We now prove the main result of this section:
Theorem 2.3. ([6], [7]) Let us assume that $f: X \rightarrow \mathbb{R}_{\infty}$ satisfies the conditions of Theorem 2.2 and that f is inferior semicontinuous. In this case one has the following alternatives: i) $D(f)=\emptyset$, ii) If there exists $x_{0} \in \operatorname{int} D(f)$ with $\bar{f}\left(x_{0}\right)<+\infty$; then the set $S(f)$ of singularities can be written as a numerable intersection of dense sets in X. If $\operatorname{int} D(f) \neq \emptyset$, then $\bar{f}(x)<+\infty$ for all $x \in \operatorname{int} D(f)$.

Proof. For $n \in \mathbb{N}$ defined the sets $X_{n}=\{x \in X: f(x)>n\}$, which is an open set. One can write: $S(f)=\cap\left\{X_{n}: n \in \mathbb{N}\right\}$. The sets X_{n} are dense in X, since if not, i.e. if $X_{n_{0}}$ is not dense ($n_{0} \in \mathbb{N}$), then there exists $y_{0} \in X$ and a closed ball $B\left(y_{0}, r\right)=B$ such that $B \cap X_{n_{0}}=\emptyset$. Thus for $x \in B$ we would have $f(x) \leq n_{0}$. If $\operatorname{int} D(f) \neq \emptyset$, by Theorem 2.2 we have $\bar{f}(x)<+\infty$ for all $x \in \operatorname{int} D(f)$, which is impossible, by assumption. If $\bar{f}\left(x_{0}\right)=+\infty$ for an $x_{0} \in \operatorname{int} D(f)$, by Baire's classical lemma one has $S(f)=\cap\left\{X_{n}: n \in \mathbb{N}\right\}$ is dense in X. There for $\operatorname{int} D(f)=\emptyset$, contradicting $x_{0} \in \operatorname{int} D(f)$.

Remark 2.3. Theorem 2.3 constitutes a generalization of a theorem by J. Kolumbán [3]. For $\eta(x, y)=x-y$ (i.e. the convex case), we can deduce a generalization of the well known theorem of Banach-Steinhaus on the condensation of singularities.

References

[1] F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76(1915), 514-516.
[2] A. Császár, On convex sets and functions (Hungarian), Mat. Lapok (Budapest) 9(1958), 273-282.
[3] J. Kolumbán, Verallgemeinerte konvexe Funktionen und das Prinzip der locallen beschränktheit, L'Analyse Numér. Th. Approx. (Cluj), 11(1982), 99-108.
[4] E. Mohr, Beitrag zur Theorie der konvexen Funktionen, Math. Nachr. 8(1952), 133-148.
[5] J. Sándor, Some open problems in the theory of functional equations, Simpozium on applications of functional equations in education, science and industry, $4^{\text {th }}$ june, 1988, Odorheiu-Secuiesc, Romania.
[6] J. Sándor, On the principle of condensation of singularities, Fourth National Conf. on Mathematical Inequalities, Sibiu, 30-31 oct. 1992.
[7] J. Sándor, Generalized invexity and its applications in optimization theory, First joint Conf. on Modern applied Analysis, Ilieni (Romania), 12-17 June 1995.
[8] J. Sándor, On certain classes of generalized convex functions with applications, I, Studia Univ. Babeş-Bolyai, Math., 44(1999), 73-84.

Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

