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Abstract. Considering a function between two linear normed spaces and
a arbitrary approximant sequence, we will study the conditions for the
convergence of this sequence towards one solution of the equation generated
by this function. The speed of convergence should be of a big enough order,

characterized by a number p € N.

1. Introduction

One of the most often used methods for the approximation of an equa-
tion’s solutions is that of constructing a sequence that is convergent to that solution.
In order to do that it is necessary to know this solution and maybe also its quality of
being the only one existing near a determined point.

A sequence having the quality described above will be called an approximant
sequence.

From the practical point of view, in order to make an approximation of the
solution with an error that doesn’t exceed the maximum admissible value, it is im-
portant not to use too many terms of the approximant sequence, that is to obtain a
good speed of approximation.

In order to make the concepts above clear, let us consider X and Y two
normed linear spaces, their norm ||-|| y and respectively |||, a set D C X, a function
f: D — Y, 0y, the null element of the space Y and, using these elements, the

equation:

fx) =0y (1)
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To clarify these notions, we will have:
Definition 1.1. In addition to the data above, let us also consider p € N,
and (xn)nen € D. We say that the sequence is an approximant sequence of the order

p of a solution of the equation (1), if there exist o, 3 > 0 so that for any n € N we

have:

1f @nid)lly < allf @)y
(2)

[Znt1 = znllx <BISf (@n)lly -

As we showed in papers [3] and [4], if (z,,)nen Is an approximant sequence of
the order p, p > 2; X is a Banach space; f : D — Y is continuous, and the constants

« and G that verify Definition 1.1 are chosen so that:

1
po = aP=L || f(zo) [lv,

S(x,0)={x e X/ ||z -z [|x< 6} C D,

with:
BaiT
1—ph "

then the approximant sequence is convergent towards the element z* which, together

5:

with all the terms of the sequence (x,)nen is placed in the ball S(xg,d) and z* is

a solution of the equation (1). For any n € N the following inequalities take place:

1 gn
|| Tn+1 — Tn ||X§ Bar=1 Pg
a7 p’ @

|| 'CL.* — Tn HS n —1)"
—,08 (p—1)

These inequalities justify the fact of calling it an approximant sequence of
the order p ; the last inequality will also give an evaluation of a superior margin of
the error through which z,, approximates z*.

Above xg is the initial element of the sequence, the starting element of the
approximation proceeding.

The convergence or the non-convergence of the sequence (x,)nen as well as
the convergence speed, materialized through the number p, depend on the fact of
correctly choosing xg.
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In order to verify the inequalities (4) as well as the affirmations preceding
them we have to make the inequalities (2) true. But this often proves to be difficult,
and this is the reason for which we will try to replace them with more practical
conditions. Nevertheless we will consider that the function f : D — Y admits Fréchet
derivatives up to the order p included.

As a series of iterative methods known in practice use the inverse of the
Fréchet derivative of the first order of the mapping [f /(x,)] ™!, an unpractical con-
dition, as the existence of this mapping implies solving the linear equation f’(z,)h
=q;he X, qeY, wewill try to eliminate the conditions about the inverse of the
Fréchet derivative from the hypothesis, but we will try to demonstrate this existence.

From the results that have inspired this work of research we will mention
primarily the well-known theorem of L. V. Kantorovich for the case when the
approximant sequence (2, )nen is generated by the Newton - Kantorovich method
[5], [6]. In this case the existence of the mapping [f’ (x)]~! € (Y, X)* is supposed
only for x = x( , as this is the initial point of the iterative method . In what the
convergence of the same method is concerned, we also mention the result obtained
by Misovski, I. P. , [7], where from a certain point of view the conditions of the
convergence are simpler, but the existence of the mapping [f /(z)]~! and of a constant
M > 0 satisfying the inequality H[f'(:r)]*lu < M for any z - an element of a certain
ball centered in the initial element zq - is imposed. Then Paviloiu, I., in [8] , [9],
generalizes these results for the convergence of a sequence generated by the relation

of recurrence:
Tpt1 = Q (zn) (5)

where @ : X — X verifies certain conditions. In the result obtained by Pavaloiu, I.,.
Misovski’s condition mentioned above does not appear explicitly, but the use of the
result in concrete cases makes it necessary. Thus this general result can be applied in
the case of the Newton-Kantorovich method to obtain Misovski’s result and in
the case of Chebischev’s method, obtaining a corresponding result.

By changing one of the conditions our result is more easily applicable than
that of Pavaloiu, I. for concrete methods. We also succeed to show that for any
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n € N, [f/(z,)]"! exists and these mappings taken for any n € N form an equally

margined set.

2. Main results

We will proceed in the same way as in our papers [1] , [2].
Let us now note by (XP,Y)* the set of p -linear and continuous mappings
defined on
XP=Xx---xX

p times

( the p times Cartesian product), taking values in Y.
The fact that the mapping f ®) : D — (XP,Y)* verifies Lipschitz’s condi-
tion is resumed to the existence of the constant L > 0, so that for any z,y € D we

can have:
179 @) = 12 w)| < Lle - vl (6)
so that L will be called Lipschitz’s constant.
From the verification of such a condition with the constant L > 0 we can

easily deduce that for any x,y € D the following inequality takes place:

L
<——Jlz—y|%t. 7

Then if we take zg € D and § > 0 so that:

%uy—ﬂw—Ej;ﬂ%wu—yv

i=1

S (20,0) = {w € X/ |z — ol| <6} C D
and we define the numbers Lo, ..., L, > 0 through:
Lic = |1 (@o)| + Lisadi k=01, (8)
with L,41 = L, then for any = € S (x¢,d) we have:
£ @] < 2 ©)
for any k € {0,1,...,p} and for any x,y € S (zg, ) we have:
|£ED @) = £50 )| < Ll =l

for any k € {1,2,..p+ 1}.
Under the conditions mentioned above, the following takes place:
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Theorem 2.1. In addition to the data above we consider p € N, § > 0,
(Tn)nen €D .
If:
i) X is a Banach space and S(xp,0) € D , S(xg,0) representing the
ball with the center x¢ and radius J;
i) the function f: D —Y admits Fréchet derivatives up to the order p
including it , and, for f®) : D — (XP.Y)" the number L > 0 exists so that for any
x,y € D the following inequality (6) is verifies:

1) a,b > 0 exist so that for any n € N we have the inequalities:

Hf(xn) + Z %f(i) (@n)(@nt1 — xn)l <allf (mn)||11)/+1 (10)
i=1 Y
and:
1" (@n) (@n1 = za)lly S ONf (@a)lly 5 (11)

) the mapping f'(xo) € (X,Y)* is invertible;

v) if we note:

po=If @o)lly,  Bo= i @) ||, ho=bL2BEpg

(12)

_ ape bM )P
M:H M (xo)] || 22T, a:a+L7(
the following inequalities are verified:
1 L 1 bM p,
ho< 3 arpo <7, 521_0/?;)3 (13)

then:
J) on € S(0,6), [f(x,)]7! exists and ||[f’(mn)]_1|| > M foranyneN;

Ji) the equation (1) admits a solution z* € S(x¢,9);
JJ3) the sequence (xp)nen 1S an approrimant sequence of the order p + 1

of this solution of the equation (1);
Jv) the following estimates hold:

(p+1)"—1

1 n
wax {1l g o — sl a2 Il ()
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and:
1 1 (p+1)™
bM«o P (al’p())

-
1= (apf) "

2% —zn| x < (15)
for anyn € N.

Proof. From the invertibility of the mapping f' (xg) € (X,Y)* we clearly
deduce that:

1" (o)l

17 o)l ~'|| > 0.
Let the sequences (pn)nen , (Bn)nen and (hy,)nen be so that:
po = [If(zo)lly » Bo = ||Lf' (o))

and for any n € N, we have:

B,
1—h,

hn = bLy B pny pry1 = aphth, Buyr =

We will show that for any n € N the following statements are true:
a) x € S(wo,0),

b) [f'(zn)] 7t € (Y, X)* exists, and [|[f"(zn)] || < Bn,

1 1 (p+1)"™
) W@Mb<m:ap<wm> , (16)

1 _1 n
d) h, < min{27 B r (ﬁho)(pﬂ) }, where 3 =

(4ho)P’

Using mathematical induction we notice that for n = 0 the statements a) —e)
are evidently true from the hypotheses of the theorem with the notations we have
introduced.

Let us suppose that for any n < k the assertions a) — e) are true, and let us
demonstrate them for n = k + 1.

a)We notice that for any n € N, n < k we have:
lTni1 — xn”X = H[f/(xn)]_lfl(xn)(xn+l - xn)HX <

< @l (@n) (@ngs = 20)lly < MBS (2a)lly < Mbpy.
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So:
1 1 (r+1)"
||5L'n+1 - anX S Mba P (041’/’0> ’ (17)

from where:

k 1k 1 (p+1)"—1
fonss = gl < 3 fowss = aull < b2 S (apn)

n=0 n=0
From p > 1 we deduce that (p+1)" — 1 > np for any n € N, n > 0 and as

po < 1 we deduce that:

k 1 (p+1)"—1 k D\ k41

2 n 1—(« 1
> (arm) <3 (o = 12l
n=0

— 1 — app 1—apf’
So:
st — ol < Mb—L2 <5
S
from where it results immediately that z,411 € S(xo,9).

b)Let:
Hy, = [f ()] 7" (' (x1) = f/(2141)) € (X, X)",

its existence and its belonging to (X, X)* are guaranteed by the hypothesis of the

induction. It is obvious that:
[H | < |ILF" )] ™| - 1 (k) = f/ (@rg0) | < BiLa [|opgr — 2l
But:
lrsr = @l < (L @I 1 @) (@na = 2)lly < 0B [Lf (@o)lly <

S kapka

from where:

1
| Hell < bLaBipr = hy, < 3 <1
and according to the well known Banach’s theorem we deduce that:
(I — Hy) ' e (X, X)*

and:
1 1

<
[Hell = 1= he
( here I'x : X — X represents the identical mapping of the space X ).

Jore =07 < =
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Obviously:

Ix = H = [f'(x)] 7' f (@r41) s
from where:
f@ner) = (@) T — He).
The hypothesis of the induction guarantees the existence of the mapping
[f(zx)] "t € (Y, X)* , so, from the above, the mapping (I — Hj,)~! will exist, so the
mapping [f'(xr41)] "t = (I — Hy) ™! [f/(x)] ! will exist as well, and:

i oot o - 07 < 2 = B
c) Clearly:
p
IF @l < [[Fn) = f) =3 5O @) @ — )|+
i=1 v
+ [ f(xx) +Z f< (zk) (Thg1 — z1)"
1= 1 Y

Because of the fact that xy,zr+1 € S(z0,d) C D, of the hypothesis ii) and

using the remark that precedes the text of the theorem we deduce that:

L 1
< —— |z —z p+
= (p+1)| || k+1 k:“X

b
1
f(xk+1 xk Z *' l‘]ﬁ.l - Ik)

also using the first inequality from the hypothesis iii) we deduce that:

L 1 1
If (zry1)lly < TR ek — 2l +allf (@e)|5 <
L(Mb)P*! 1 1
< [a + rl If @)% < aphl™ = pra.

1 1 (p+1)
As pppr = aptth and pp = a P <app0> we deduce that:

1 1 p+1 1 (p+1)F
Olppk+1: (Oéppk> = <O[ppk) )

1 1 (p+1)*+*
Pr+1 =0 P (Oépﬂk>

SO:

d) We have the equalities:

B, \? p
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1
From hy < 2 we deduce that:

hi
— % <2
(1 —hk)2 -

SO:

hit1 < 2a0p).

We have:

1 1 (p+1)* 1
aPpy <1= (appo> <aPpy = pp < po = hiy1 < 2ap0 =

1 P 1 1
#hk+1<2(a1’po) <%§5~
Meanwhile:
b o My a1 nptt
BT h)? LBl LY B (1— hy)?

From B > By and:

1 <4
(1= he)* ™

we deduce that:
4ahPt! _ 4nbt!
(bL2)» ByP ~ (bL2B§)P4Ppg

hiy1 < = phi*!

and then, it the same way as in the proof of c¢) we deduce that:

1/ 1 et
hpy1 =0 P (5Pho>

e) Because By = 1 ?khk and hy, €]0, %] we have Bi11 > By, 80 Br11 >
By.
The same initial relation implies:
By,
Bevr = Ay A= ) o = )
Using the inequality between the geometric mean and the arithmetic mean
we deduce:

1
= ho) (I —h)(l—he) =

1 k 1 k+1
k+1z;1 - hi] -
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and

SO:

SO:

k
Z hi < ho + 2ap}
i=0
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. N k+1
1 : .
+k+1§1h¢‘|

=~
=

= — < 1 we deduce that:

4

1/ 1 (p+1)" 1/ 1
max{ﬂp (ﬂph()) /neN} =3P (ﬁpho) = hg

>

=0

But for £ € N we have:

Pii1

k k -
S hi=ho+2>" (aph) "

=0

(1 —hg)?

i=1

For i > 2 we have:

k
h; 1
< — - < > hi

L—=hi = &1 - g7 (Brho) et — 1 —ho =

k
ha o 1 p(p+1)
LU, SPPI (Otppo> =2 (apf) ",

k
1 i—1_
= ho + 2ap}) g (aph) pH) '
=1

(p+1)H—1=p[1+(p+1)+-~-+(p+1)i72} >pi—1),

k

i1 9
1+Z(app€2) ] <h0+a7pg2 <

D
i=2 1- afpg

But, as p > 1 we have :

so, evidently:

and:

from where:

64
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2217 —2p+1 1
Zh <= + =g 2T

k
hi 1 1
! < 9-2+2) < | 4 97 2pH3,
;1 ST oha tE ) S

k+1

k+1
1 272p+3 k+1 i
) < (1 - Jr) < exp (1 +27213)
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and:

Bpi1 < Byexp (14272713)

From the above we deduce that the statements a)-e) from (16) are true for
n = k+1. According to the principle of mathematical induction these statements are
true for any n € N.

Now we will deduce that, that sequence (z,)nen is a Cauchy sequence, be-
cause:

n+m—1 n+m—1

1 1 (p+1)°
forim = anlly < 3 o=l < 30 dvas () =
i=n

i=n

1/ 01 (p+1)" m=-1 , 4 (p+1)"H —(p+1)"
bM«a P (oﬂ’p0> Z (ozl’po) .
j=0

But, for any j € {0,1,...,m — 1} we have:

p+1)" —(p+1)"=(p+1)" {(p+ 1)7 - 1] —

=P+ D" 1+ G+ + o+ p+1 | Zp(p+1)"

SO:

171\ ()" mol .
|Zntm — Tnllx < bMa™ P (app0> 3 [(apg) p }
j=0

1/ 1 (p+1)"
bM«a P (ai"p())

n (18)
1= (aph) "™
The last inequality and the condition:

and so:

|l Tnsm — xn“X <

1
Ppy < - <1
a¥ po 1

determine the fact that (z,)nen is a Cauchy sequence in the Banach space X, so

(zn)nen is convergent. If we note:

¥ = lim z, € X

n—oo

and if we make so that m — oo in the inequality (18) we deduce that:

1/ 1 (p+1)"
bMa P (oﬂ”po>

i <
Hl’ ‘rn”X — 1_ (o[pg)(erl)n 9
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( this is the inequality (15) ), from where for n = 0 we can deduce:

bM
la* = @ollx < 72

— 5 <9,
—apf

so z* € S(xo,9).

From:

1 1 (p+1)"™
If @a)lly <a? (0”’/’0)

1
and the condition aP py < 1 we deduce that:

Tim_ [ (2 ly =0,
from where:
F(a) = by,
so x* is a solution of the equation (1).

The inequalities:

|Znm = @allx < MBS (@a)lly s If @ard)lly < @lf (@a)l5

show that the sequence (z,)ncn is a approximant sequence of the order p+ 1 for the
solution x*.

Form the inequality c) from (16) together with (17) we deduce the inequality
(14).

In this way the theorem is proven.

3. Special cases

Now we will see how Theorem 2.1 is applied in the case of particular pro-
ceedings of approximation.
Let us first suppose that the function f : D — Y admits for any z € D a

Fréchet derivative of the first order, an L > 0 exists so that:

1f (@) = f Wl < Lz —ylx

for any x,y € D, and the sequence (x,)nen C D verifies for any n € N the equality:

f/ (xn) ($n+1 — )+ f (mn) = Oy. (19)
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Obviously, if for any n € N, [f'(z,,)] ! exists, the relation (19) is equivalent

to:
Tn+l = Tp — [f,(xn)]ilf(xn)a (20)

form under which the Newton-Kantorovich method is well known. But the form
(20)of the relation (19) will be one of the conclusions of the statement that will be

established.

Because:

I (2n) + £ (@) (Fni1 — 20)lly =0 <0 | f (20)[l5
and:

||f/ (Tn) (Tn+1 — xn)”y =1 ||f($n)||y )

we deduce that the inequalities (10) and (11) of the hypothesis iii) of Theorem 2.1

are verified for a = 0 and b = 1. In this case:

LM?
2

p=1, Ly =L, ho=2LBfpy, a = » M= H[fl (QEO)]AHE3

and thus the inequality of hypothesis v) of Theorem 2.1 become:

< 1
Po 1
LM?h, h 1
As apy = 4LB(2)0 _ ‘34 % we need the condition hg < o B2po < 5e9

1
condition that evidently also implies hy < 5
In what the radius of the ball on which the properties take place is concerned,
it verifies the inequality:

5> Mpo
~ 1—apo

Mpo

1 4 3
As apg < 1 we deduce that 1 < 3 and soif § > the requirement

is fulfilled. Also:

— @po

= oo

In this way we have the following:
Corollary 3.1. We consider the same elements as in Theorem 2.1. If:
i) X 1is a Banach space, and S(xg,0) C D;
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i) for any x € D, there exists f'(x) € (X,Y)*, representing the Fréchet

derivative of f in x and there exists L > 0 so that:
1" (@) = f" Wl <Lz —ylx

for any x,y € D;

i1 )the sequence verifies the equality:
f(@n) (@1 — 20) + f (20) = Oy,

1) the mapping f' (zo) € (X,Y)" is invertible;

v) the initial point xg € D wverifies the inequalities:

(7 @ )’ 1 oy < g 8 2 17 o™ -1 o™
then:
§)xn € S (20,0) and [f' (2,)]”" € (Y, X)* exists, having the relations:
| @ ™| < || o e
and:

-1

Tn+1 = Tpn — [f/ (.’1371)]

for any n € N.

J3) the equation (1)admits a solution x* € S (z9,0);

Jjj) the sequence (xy), oy 45 a approximant sequence of the second order
of the solution x* of this equation;

Jv) the following estimates hold:

1 Lm\> "
wax {117 @)l g lons —anllx b < (555) 17 @l

[ = znlx <

where M = H[f’(xo)]_lu e® and || f(zo)]ly -
Let us now consider the case of Chebyshev’s method. In this case [ :

D — Y admits, for any x € X, Fréchet derivatives of the first and the second order,
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and in addition to the main sequence (x,)nen C D, we consider another sequence

(Yn)nen € D so that for any n € N the following is verified:

/) st = ) + ) + 50" )2
1)
F'(@n)yn + f(xn) = Oy

If for any n € N, [f'(x,)] ! exists, we can deduce from the relation (21) that:

f(@n) = %[f’(xn)]_1f”(xn){[f’(wn)]_lf(xn)}2 (22)

Tnyl = Tn — [f/ (.’En)}

the form under which Chebychev’s method is known. We will show that in this
case the conditions of Theorem 2.1 will be verified for p = 2.
So we will have:
Theorem 3.2. We consider the same data as in theorem 2.1. If:
i) X is a Banach space and S(xo,d) C D, S(xo,d) representing the ball
with the centre xo and the radius §;
1) the function admits Fréchet derivatives up to the second order included,
and for f"" : D — (X2,Y)*, the number L > 0 exists, so that for any v,y € D the

following inequality is verified:

1f" @) = f" Wl < Lllz =yl x s (23)

ti3) the sequence (xn)neny C D, together with an auxiliary sequence
(Yn)nen C D, verifies the relations (21) for any n € N;
iv) the mapping f' (zo) € (X,Y)" is invertible;

v) if we note:

_ 3 LoM?

po =11 @o)lly » Bo = |[f' (wo)]"|[, M = Boe?, b= 22, o
24

LoM?)? bM)?

a:(b+1)w7 a:a+L%;

the following inequalities are verified:
1 1 bMpo 1 1 "

2 - <O = | ==—— — ; 25
abm < o 1o <0< 1 (g~ 1 @l ) (25)

then:
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J) Tn € S(xo,9), the mapping [f'(z,)]"' € (Y, X)* emists, we have the
inequality H[f’ (xn)]le < M for any n € N and the sequence (Tn)nen is generated by
the relation of recurrence (21) or (22) is convergent;

JJ) the equation (1) are the solution x* € S (x¢,9);

JJ3) the sequence(xy,)nen is an approzimant sequence of the third order of

this solution of the equation (1);

Jv) the following estimates hold:

max {17 @)l 3 lones = anllx b <™ T 1 @l¥ . (20)
and:
3"—1 n
o = zully < My I @lly (27)
1= (allf @o)l1})
for any n € N.

Proof. From the condition:

1 1
< = _ "

if we keep in mind that Ly =| f”(z0) || +Ld, we deduce that:

[N

ho = bL2B3py <

We will introduce the same sequences as in the proof of theorem 2.1. We

will show that for any n € N the following properties are verified:
a) x, € S(x0,0);
b) [f'(zn)] " € (Y, X)" exists and H[f’ (acn)]le < By;

3
O I )l < pn <

gn
d) h, <min {1, (Bho) }7 where 8 = —

e) BWSBOSMv

n

£) N (wn) @ngr = za)lly <ONf (@n)lly

<alf (@)l -
Y

g) Hf (ﬁn) + fl (xn) (anrl - xn) + %fﬁ (xn> ($n+1 - xn)Q
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To start with , let us suppose that the properties a)-e) are true for a certain

number n € N. We will show that, for that number, the properties f) and g) are also

verified.
Indeed, we first notice that from x,, € S (z9,0) we deduce that:
1" (@n)ll < La.
Then it is obvious that:
-1
lynllxc < || @I 7| 17 @l
and:
Hxn+1 — Tn — yn”X = H[f, (xn)]il [f/ (xn) ($n+1 - xn) - f/ (xn) yn] e <
— 1 1
<[t @], - |- ) - g @ )| < Bl <
Y 2 y 2
1
< GMPLy | f ()5 -
So:
1
I8 ) s =l = |1 (o) = 3 @) <
Y

1
< (14 PLLAT @l ) 1 @l
As /apg < 1 we deduce that:
(Vapo)” < vapo

and:
(ﬂj§>3 - \/jg o

IS (@n)lly < pn <
and thus:
15 (@) v = 2l < (14 5MLam ) 1 ()l =B 1F o)l
But, from the symmetry of " (z) € L5 (X,Y) for any z € D, we have:
£ (@n) (@rr = 20)* = " (@0) g = [ (20) (01 — 20)" =
=" (@n) @ns1 = T yn) + 7 (@) Yoy Tnr = 20) = 7 (20) 47, =
= " (@n) (@nt1 = Tny Tptr — T — Yn) + 7 (@0) s Trg1 — T — Yn) =

= [f// (mn) (Tpy1 — xn) + f” (mn) yn] ($n+1 —Tp — yn> )
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then it is obvious that:

SO:

/ (mn) + [ (xn) (xn-i-l - l‘n) + %f” (xn) (xn-&-l - xn)Q =
Y
= % ’ I (n) (Tny1 — xn)z — (7n) y% v <
< % (L7 (zn) (@1 — za) | + (17 (20) Ynll] - lZnt1 — 20 — ynllx <

1
< S @)l znsr = 2 = ynllx - (lznss = zallx + lynllx) -

It is obvious that:

st =l = | @7 F @) @ars = 2a)| < MONF @)l

Hf (xn) + f/ (mn) (xn+1 - xn) + %fﬂ (xn) (-Tn—&-l - xn)Z <
Y
< SMPTE(Mb+ M) I (o)l = 5 (04 DML IF )l = allf )

So indeed f) and g) are true for the n € N we considered.

The statements a)-e) are proven similarly to the proof of theorem 2.1.

This entitles us to assert that the properties a)-g) are true for any n € N. Also, the

properties f) and g) , together with the hypothesis show that impossible to apply

theorem 2.1 with p = 2. Using this theorem, we deduce that the conclusions of the

theorem to be proved are true.
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