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Abstract. Considering a function between two linear normed spaces and

a arbitrary approximant sequence, we will study the conditions for the

convergence of this sequence towards one solution of the equation generated

by this function. The speed of convergence should be of a big enough order,

characterized by a number p ∈ N.

1. Introduction

One of the most often used methods for the approximation of an equa-

tion’s solutions is that of constructing a sequence that is convergent to that solution.

In order to do that it is necessary to know this solution and maybe also its quality of

being the only one existing near a determined point.

A sequence having the quality described above will be called an approximant

sequence.

From the practical point of view, in order to make an approximation of the

solution with an error that doesn’t exceed the maximum admissible value, it is im-

portant not to use too many terms of the approximant sequence, that is to obtain a

good speed of approximation.

In order to make the concepts above clear, let us consider X and Y two

normed linear spaces, their norm ‖·‖X and respectively ‖·‖Y a set D ⊆ X, a function

f : D −→ Y, θY , the null element of the space Y and, using these elements, the

equation:

f (x) = θY (1)
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To clarify these notions, we will have:

Definition 1.1. In addition to the data above, let us also consider p ∈ N,

and (xn)n∈N ⊆ D. We say that the sequence is an approximant sequence of the order

p of a solution of the equation (1), if there exist α, β ≥ 0 so that for any n ∈ N we

have:

‖f (xn+1)‖Y ≤ α ‖f (xn)‖p
Y ;

‖xn+1 − xn‖X ≤ β ‖f (xn)‖Y .

(2)

As we showed in papers [3] and [4], if (xn)n∈N is an approximant sequence of

the order p, p ≥ 2; X is a Banach space; f : D → Y is continuous, and the constants

α and β that verify Definition 1.1 are chosen so that:

ρ0 = α
1

p−1 ‖ f(x0) ‖Y ,

S(x0, δ) = {x ∈ X/ ‖ x− x0 ‖X≤ δ} ⊆ D,

(3)

with:

δ =
βα

1
p−1

1− ρp−1
0

,

then the approximant sequence is convergent towards the element x∗ which, together

with all the terms of the sequence (xn)n∈N is placed in the ball S(x0, δ) and x∗ is

a solution of the equation (1). For any n ∈ N the following inequalities take place:

‖ xn+1 − xn ‖X≤ βα
1

p−1 ρpn

0

‖ x∗ − xn ‖≤
βα

1
p−1 ρpn

0

1− ρ
pn (p−1)
0

.
(4)

These inequalities justify the fact of calling it an approximant sequence of

the order p ; the last inequality will also give an evaluation of a superior margin of

the error through which xn approximates x∗.

Above x0 is the initial element of the sequence, the starting element of the

approximation proceeding.

The convergence or the non-convergence of the sequence (xn)n∈N as well as

the convergence speed, materialized through the number p, depend on the fact of

correctly choosing x0.
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In order to verify the inequalities (4) as well as the affirmations preceding

them we have to make the inequalities (2) true. But this often proves to be difficult,

and this is the reason for which we will try to replace them with more practical

conditions. Nevertheless we will consider that the function f : D → Y admits Fréchet

derivatives up to the order p included.

As a series of iterative methods known in practice use the inverse of the

Fréchet derivative of the first order of the mapping [f ′(xn)]−1, an unpractical con-

dition, as the existence of this mapping implies solving the linear equation f ′(xn)h

= q ; h ∈ X , q ∈ Y, we will try to eliminate the conditions about the inverse of the

Fréchet derivative from the hypothesis, but we will try to demonstrate this existence.

From the results that have inspired this work of research we will mention

primarily the well-known theorem of L. V. Kantorovich for the case when the

approximant sequence (xn)n∈N is generated by the Newton - Kantorovich method

[5], [6]. In this case the existence of the mapping [f ′ (x)]−1 ∈ (Y, X)∗ is supposed

only for x = x0 , as this is the initial point of the iterative method . In what the

convergence of the same method is concerned, we also mention the result obtained

by Misovski, I. P. , [7], where from a certain point of view the conditions of the

convergence are simpler, but the existence of the mapping [f ′(x)]−1 and of a constant

M > 0 satisfying the inequality
∥∥[f ′(x)]−1

∥∥ ≤ M for any x - an element of a certain

ball centered in the initial element x0 - is imposed. Then Păvăloiu, I., in [8] , [9],

generalizes these results for the convergence of a sequence generated by the relation

of recurrence:

xn+1 = Q (xn) (5)

where Q : X → X verifies certain conditions. In the result obtained by Păvăloiu, I.,.

Misovski’s condition mentioned above does not appear explicitly, but the use of the

result in concrete cases makes it necessary. Thus this general result can be applied in

the case of the Newton-Kantorovich method to obtain Misovski’s result and in

the case of Chebischev’s method, obtaining a corresponding result.

By changing one of the conditions our result is more easily applicable than

that of Păvăloiu, I. for concrete methods. We also succeed to show that for any

57



ADRIAN DIACONU

n ∈ N, [f ′(xn)]−1 exists and these mappings taken for any n ∈ N form an equally

margined set.

2. Main results

We will proceed in the same way as in our papers [1] , [2].

Let us now note by (Xp, Y )∗ the set of p -linear and continuous mappings

defined on

Xp = X × · · · ×X︸ ︷︷ ︸
p times

( the p times Cartesian product), taking values in Y.

The fact that the mapping f (p) : D → (Xp, Y )∗ verifies Lipschitz’s condi-

tion is resumed to the existence of the constant L > 0, so that for any x, y ∈ D we

can have: ∥∥∥f (p) (x)− f (p) (y)
∥∥∥ ≤ L ‖x− y‖X (6)

so that L will be called Lipschitz’s constant.

From the verification of such a condition with the constant L > 0 we can

easily deduce that for any x, y ∈ D the following inequality takes place:∥∥∥∥∥f(x)− f(y)−
p∑

i=1

1
i!

f (i)(y)(x− y)i

∥∥∥∥∥
Y

≤ L

(p + 1)!
‖ x− y ‖p+1

X . (7)

Then if we take x0 ∈ D and δ > 0 so that:

S (x0, δ) = {x ∈ X/ ‖x− x0‖ ≤ δ} ⊆ D

and we define the numbers L0, ..., Lp > 0 through:

Lk =
∥∥∥f (k) (x0)

∥∥∥+ Lk+1δ; k = 0, 1, .., p (8)

with Lp+1 = L, then for any x ∈ S (x0, δ) we have:∥∥∥f (k) (x)
∥∥∥ ≤ Lk+1δ (9)

for any k ∈ {0, 1, ..., p} and for any x, y ∈ S (x0, δ) we have:∥∥∥f (k−1) (x)− f (k−1) (y)
∥∥∥ ≤ Lk ‖x− y‖X ,

for any k ∈ {1, 2, ...p + 1} .

Under the conditions mentioned above, the following takes place:
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Theorem 2.1. In addition to the data above we consider p ∈ N, δ > 0,

(xn)n∈N ⊆ D .

If:

i) X is a Banach space and S(x0, δ) ⊆ D , S(x0, δ) representing the

ball with the center x0 and radius δ;

ii) the function f : D → Y admits Fréchet derivatives up to the order p

including it , and, for f (p) : D → (Xp, Y )∗ the number L > 0 exists so that for any

x, y ∈ D the following inequality (6) is verifies:

iii) a, b ≥ 0 exist so that for any n ∈ N we have the inequalities:∥∥∥∥∥f(xn) +
p∑

i=1

1
i!

f (i)(xn)(xn+1 − xn)i

∥∥∥∥∥
Y

≤ a ‖f (xn)‖p+1
Y (10)

and:

‖f ′ (xn) (xn+1 − xn)‖Y ≤ b ‖f (xn)‖Y ; (11)

iv) the mapping f ′(x0) ∈ (X, Y )∗ is invertible;

v) if we note:

ρ0 = ‖f (x0)‖Y , B0 =
∥∥∥[f ′ (x0)]

−1
∥∥∥ , h0 = bL2B

2
0ρ0

M =
∥∥∥[f ′ (x0)]

−1
∥∥∥ e1+2−2p=3

, α = a + L
(bM)p+1

(p + 1)!

(12)

the following inequalities are verified:

h0 ≤
1
2
, α

1
p ρ0 <

1
4
, δ ≥ bMρo

1− αρp
0

(13)

then:

j) xn ∈ S(x0, δ), [f ′(xn)]−1 exists and
∥∥[f ′(xn)]−1

∥∥ ≥ M for any n ∈ N;

jj) the equation (1) admits a solution x∗ ∈ S(x0, δ);

jjj) the sequence (xn)n∈N is an approximant sequence of the order p + 1

of this solution of the equation (1);

jv) the following estimates hold:

max
{
‖f(xn)‖Y ,

1
Mb

‖xn+1 − xn‖X

}
≤ α

(p+1)n−1
p ‖f(x0)‖(p+1)n

Y (14)
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and:

‖x∗ − xn‖X ≤
bMα

− 1
p

(
α

1
p ρ0

)(p+1)n

1− (αρp
0)

(p+1)n (15)

for any n ∈ N.

Proof. From the invertibility of the mapping f ′ (x0) ∈ (X, Y )∗ we clearly

deduce that:

‖f ′ (x0)‖ ,
∥∥∥[f ′ (x0)]

−1
∥∥∥ > 0.

Let the sequences (ρn)n∈N , (Bn)n∈N and (hn)n∈N be so that:

ρ0 = ‖f(x0)‖Y , B0 =
∥∥[f ′(x0)]−1

∥∥
and for any n ∈ N, we have:

hn = bL2B
2
nρn, ρn+1 = αρp+1

n , Bn+1 =
Bn

1− hn
.

We will show that for any n ∈ N the following statements are true:

a) x ∈ S(x0, δ),

b) [f ′(xn)]−1 ∈ (Y, X)∗ exists, and
∥∥[f ′(xn)]−1

∥∥ ≤ Bn,

c) ‖f(xn)‖Y ≤ ρn = α
− 1

p

(
α

1
p ρ0

)(p+1)n

,

d) hn ≤ min
{

1
2
, β

− 1
p (βh0)

(p+1)n
}

, where β =
4

(4h0)p
,

e) B0 ≤ Bn ≤ M.

(16)

Using mathematical induction we notice that for n = 0 the statements a)−e)

are evidently true from the hypotheses of the theorem with the notations we have

introduced.

Let us suppose that for any n ≤ k the assertions a)− e) are true, and let us

demonstrate them for n = k + 1.

a)We notice that for any n ∈ N, n ≤ k we have:

‖xn+1 − xn‖X =
∥∥[f ′(xn)]−1f ′(xn)(xn+1 − xn)

∥∥
X
≤

≤
∥∥[f ′(xn)]−1

∥∥ . ‖f ′(xn)(xn+1 − xn)‖Y ≤ Mb ‖f (xn)‖Y ≤ Mbρn.
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So:

‖xn+1 − xn‖X ≤ Mbα
− 1

p

(
α

1
p ρ0

)(p+1)n

, (17)

from where:

‖xn+1 − x0‖X ≤
k∑

n=0

‖xn+1 − xn‖X ≤ Mbα
− 1

p

k∑
n=0

(
α

1
p ρ0

)(p+1)n−1

From p ≥ 1 we deduce that (p + 1)n − 1 > np for any n ∈ N, n > 0 and as

ρ0 < 1 we deduce that:

k∑
n=0

(
α

1
p ρ0

)(p+1)n−1

<
k∑

n=0

(αρp
0)

n =
1− (αρp

0)
k+1

1− αρp
0

<
1

1− αρp
0

.

So:

‖xn+1 − x0‖X ≤ Mb
ρ0

1− αρp
0

≤ δ

from where it results immediately that xn+1 ∈ S(x0, δ).

b)Let:

Hk = [f ′ (xk)]−1 (f ′(xk)− f ′(xk+1)) ∈ (X, X)∗,

its existence and its belonging to (X, X)∗ are guaranteed by the hypothesis of the

induction. It is obvious that:

‖Hk‖ ≤
∥∥[f ′(xk)]−1

∥∥ · ‖f ′(xk)− f ′(xk+1)‖ ≤ BkL2 ‖xk+1 − xk‖X

But:

‖xk+1 − xk‖X ≤
∥∥[f ′(xk)]−1

∥∥ · ‖f ′(xk)(xk+1 − xk)‖Y ≤ bBk ‖f(xk)‖Y ≤

≤ bBkρk,

from where:

‖Hk‖ ≤ bL2B
2
kρk = hk ≤

1
2

< 1

and according to the well known Banach’s theorem we deduce that:

(Ik −Hk)−1 ∈ (X, X)∗

and: ∥∥∥(Ik −Hk)−1
∥∥∥ ≤ 1

1− ‖Hk‖
≤ 1

1− hk

( here IX : X → X represents the identical mapping of the space X ).
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Obviously:

IX −Hk = [f ′(xk)]−1f ′ (xk+1) ,

from where:

f ′(xk+1) = f ′(xk)(Ik −Hk).

The hypothesis of the induction guarantees the existence of the mapping

[f ′(xk)]−1 ∈ (Y, X)∗ , so, from the above, the mapping (Ik −Hk)−1 will exist, so the

mapping [f ′(xk+1)]−1 = (Ik −Hk)−1 [f ′(xk)]−1 will exist as well, and:∥∥∥[f ′ (xk+1)]
−1
∥∥∥ ≤ ∥∥∥[f ′ (xk)]−1

∥∥∥ · ∥∥∥(IX −Hk)−1
∥∥∥ ≤ Bk

1− hk
= Bk+1.

c) Clearly:

‖f (xk+1)‖Y ≤

∥∥∥∥∥f(xk+1)− f(xk)−
p∑

i=1

1
i!

f (i)(xk)(xk+1 − xk)i

∥∥∥∥∥
Y

+

+

∥∥∥∥∥f(xk) +
p∑

i=1

1
i!

f (i)(xk)(xk+1 − xk)i

∥∥∥∥∥
Y

.

Because of the fact that xk, xk+1 ∈ S(x0, δ) ⊆ D, of the hypothesis ii) and

using the remark that precedes the text of the theorem we deduce that:∥∥∥∥∥f(xk+1)− f(xk)−
p∑

i=1

1
i!

f (i)(xk)(xk+1 − xk)i

∥∥∥∥∥
Y

≤ L

(p + 1)!
‖xk+1 − xk‖p+1

X ,

also using the first inequality from the hypothesis iii) we deduce that:

‖f (xk+1)‖Y ≤ L

(p + 1)!
‖xk+1 − xk‖p+1

X + a ‖f (xk)‖p+1
Y ≤

≤
[
a +

L(Mb)p+1

(p + 1)!

]
‖f (xk)‖p+1

X ≤ αρp+1
k = ρk+1.

As ρk+1 = αρp+1
k and ρk = α

− 1
p

(
α

1
p ρ0

)(p+1)k

we deduce that:

α
1
p ρk+1 =

(
α

1
p ρk

)p+1

=
(

α
1
p ρk

)(p+1)k+1

,

so:

ρk+1 = α
− 1

p

(
α

1
p ρk

)(p+1)k+1

.

d) We have the equalities:

hk+1 = L2bB
2
k+1ρk+1 = L2bαρp+1

k

(
Bk

1− hk

)2

= αhk
ρp

k

(1− hk)2
.
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THE APPROXIMATION OF THE EQUATION’S SOLUTION IN LINEAR NORMED SPACES

From hk ≤
1
2
, we deduce that:

hk

(1− hk)2
≤ 2

so:

hk+1 ≤ 2αρp
k.

We have:

α
1
p ρ0 < 1 ⇒

(
α

1
p ρ0

)(p+1)k

< α
1
p ρ0 ⇒ ρk < ρ0 ⇒ hk+1 ≤ 2αρp

0 ⇒

⇒ hk+1 ≤ 2
(

α
1
p ρ0

)p

<
1

22p−1
≤ 1

2
.

Meanwhile:

hk+1 =
αhk

(1− hk)2
·

hp
k

(bL2B2
k)p =

α

(bL2)
p ·

1
B2p

k

·
hp+1

k

(1− hk)2

From Bk ≥ B0 and:
1

(1− hk)2
≤ 4

we deduce that:

hk+1 ≤
4αhp+1

k

(bL2)p B2p
0

<
4hp+1

k

(bL2B2
0)p4pρp

0

= βhp+1
k

and then, it the same way as in the proof of c) we deduce that:

hk+1 = β
− 1

p

(
β

1
p h0

)(p+1)k+1

e) Because Bk+1 =
Bk

1− hk
and hk ∈]0,

1
2
] we have Bk+1 ≥ Bk, so Bk+1 ≥

B0.

The same initial relation implies:

Bk+1 =
Bk

(1− h0) (1− h1) ... (1− hk)
.

Using the inequality between the geometric mean and the arithmetic mean

we deduce:

1
(1− h0)(1− h1)...(1− hk )

≤

[
1

k + 1

k∑
i=0

1
1 − hi

]k+1

=
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=

[
1 +

1
k + 1

k∑
i=0

hi

1 − hi

]k+1

.

As β
1
p h0 =

4
1
p

4
≤ 1 we deduce that:

max

{
β
− 1

p

(
β

1
p h0

)(p+1)n/
n ∈ N

}
= β

− 1
p

(
β

1
p h0

)
= h0

and:
k∑

i=0

hi

1− hi
≤

k∑
i=0

hi

1− β−
1
p (β

1
p h0)(p+1)i

≤ 1
1− h0

k∑
i=0

hi.

But for k ∈ N we have:

hk+1 =
αhkρp

k

(1− hk)2
≤ 2αα−1

(
α

1
p ρ0

)p(p+1)k

= 2 (αρp
0)

(p+1)k

,

and so:
k∑

i=0

hi = h0 + 2
k∑

i=1

(αρp
0)

(p+1)i−1

= h0 + 2αρp
0

k∑
i=1

(αρp
0)

(p+1)i−1−1
.

For i ≥ 2 we have:

(p + 1)i−1 − 1 = p
[
1 + (p + 1) + ... + (p + 1)i−2

]
≥ p (i− 1) ,

so:
k∑

i=0

hi ≤ h0 + 2αρp
0

[
1 +

k∑
i=2

(
αpρp2

0

)i−1
]

< h0 +
2αρp

0

1− αpρp2

0

<
1
2

+
22p2−2p+1

22p2 − 1

But, as p ≥ 1 we have :

22p2
− 1 = 1 + 2 + 22 + ... + 22p2−1 ≥ 22p2−1

so, evidently:
k∑

i=0

hi <
1
2

+
22p2−2p+1

22p2−1
=

1
2

+ 2−2p+2

and:
k∑

i=0

hi

1− hi
≤ 1

1− h0
(
1
2

+ 2−2p+2) ≤ 1 + 2−2p+3,

from where:(
1 +

1
k + 1

k∑
i=0

hi

1− hi

)k+1

≤
(

1 +
1 + 2−2p+3

k + 1

)k+1

≤ exp
(
1 + 2−2p+3

)
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and:

Bk+1 ≤ B0 exp
(
1 + 2−2p+3

)
.

From the above we deduce that the statements a)-e) from (16) are true for

n = k +1. According to the principle of mathematical induction these statements are

true for any n ∈ N.

Now we will deduce that, that sequence (xn)n∈N is a Cauchy sequence, be-

cause:

‖xn+m − xn‖X <
n+m−1∑

i=n

‖xi+1 − xi‖X ≤
n+m−1∑

i=n

Mbα
− 1

p

(
α

1
p ρ0

)(p+1)i

=

= bMα
− 1

p

(
α

1
p ρ0

)(p+1)n m−1∑
j=0

(
α

1
p ρ0

)(p+1)n+j−(p+1)n

.

But, for any j ∈ {0, 1, ...,m− 1} we have:

(p + 1)n+j − (p + 1)n = (p + 1)n
[
(p + 1)j − 1

]
=

= p (p + 1)n
[
1 + (p + 1) + ... + (p + 1)j−1

]
≥ jp (p + 1)n

,

so:

‖xn+m − xn‖X < bMα
− 1

p

(
α

1
p ρ0

)(p+1)n m−1∑
j=0

[
(αρp

0)
(p+1)n

]j
and so:

‖xn+m − xn‖X <

bMα
− 1

p

(
α

1
p ρ0

)(p+1)n

1− (αρp
0)

(p+1)n (18)

The last inequality and the condition:

α
1
p ρ0 <

1
4

< 1

determine the fact that (xn)n∈N is a Cauchy sequence in the Banach space X, so

(xn)n∈N is convergent. If we note:

x∗ = lim
n→∞

xn ∈ X

and if we make so that m →∞ in the inequality (18) we deduce that:

‖x∗ − xn‖X ≤
bMα

− 1
p

(
α

1
p ρ0

)(p+1)n

1− (αρp
0)

(p+1)n ,
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( this is the inequality (15) ), from where for n = 0 we can deduce:

‖x∗ − x0‖X ≤ bMρ0

1− αρp
0

≤ δ,

so x∗ ∈ S(x0, δ).

From:

‖f (xn)‖Y ≤ α
− 1

p

(
α

1
p ρ0

)(p+1)n

and the condition α
1
p ρ0 < 1 we deduce that:

lim
n→∞

‖f (xn)‖Y = 0,

from where:

f(x∗) = θY ,

so x∗ is a solution of the equation (1).

The inequalities:

‖xn+m − xn‖X ≤ Mb ‖f (xn)‖Y , ‖f (xn+1)‖Y ≤ α ‖f (xn)‖p+1
Y ,

show that the sequence (xn)n∈N is a approximant sequence of the order p + 1 for the

solution x∗.

Form the inequality c) from (16) together with (17) we deduce the inequality

(14) .

In this way the theorem is proven.

3. Special cases

Now we will see how Theorem 2.1 is applied in the case of particular pro-

ceedings of approximation.

Let us first suppose that the function f : D → Y admits for any x ∈ D a

Fréchet derivative of the first order, an L > 0 exists so that:

‖f ′ (x)− f ′ (y)‖ ≤ L ‖x− y‖X

for any x, y ∈ D, and the sequence (xn)n∈N ⊆ D verifies for any n ∈ N the equality:

f ′ (xn) (xn+1 − xn) + f (xn) = θY . (19)

66



THE APPROXIMATION OF THE EQUATION’S SOLUTION IN LINEAR NORMED SPACES

Obviously, if for any n ∈ N, [f ′(xn)]−1 exists, the relation (19) is equivalent

to:

xn+1 = xn − [f ′(xn)]−1f(xn), (20)

form under which the Newton-Kantorovich method is well known. But the form

(20)of the relation (19) will be one of the conclusions of the statement that will be

established.

Because:

‖f (xn) + f ′ (xn) (xn+1 − xn)‖Y = 0 ≤ 0 · ‖f (xn)‖2Y

and:

‖f ′ (xn) (xn+1 − xn)‖Y = 1 · ‖f (xn)‖Y ,

we deduce that the inequalities (10) and (11) of the hypothesis iii) of Theorem 2.1

are verified for a = 0 and b = 1. In this case:

p = 1, L2 = L, h0 = 2LB2
0ρ0, α =

LM2

2
, M =

∥∥∥[f ′ (x0)]
−1
∥∥∥ e3

and thus the inequality of hypothesis v) of Theorem 2.1 become:

ρ0 <
1
4
.

As αρ0 =
LM2h0

4LB2
0

=
e9h0

4
, we need the condition h0 <

1
e9

or B2
0ρ0 <

1
2e9L

,

condition that evidently also implies h0 ≤
1
2
.

In what the radius of the ball on which the properties take place is concerned,

it verifies the inequality:

δ ≥ Mρ0

1− αρ0
.

As αρ0 <
1
4

we deduce that
1

1− αρ0
<

4
3

and so if δ ≥ 3Mρ0

4
the requirement

is fulfilled. Also:

M =
∥∥∥[f ′ (x0)]

−1
∥∥∥ e3.

In this way we have the following:

Corollary 3.1. We consider the same elements as in Theorem 2.1. If:

i) X is a Banach space, and S(x0, δ) ⊆ D;
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ii) for any x ∈ D, there exists f ′(x) ∈ (X, Y )∗, representing the Fréchet

derivative of f in x and there exists L > 0 so that:

‖f ′ (x)− f ′ (y)‖ ≤ L ‖x− y‖X

for any x, y ∈ D;

iii)the sequence verifies the equality:

f ′ (xn) (xn+1 − xn) + f (xn) = θY ,

iv) the mapping f ′ (x0) ∈ (X, Y )∗ is invertible;

v) the initial point x0 ∈ D verifies the inequalities:(∥∥∥[f ′ (x0)]
−1
∥∥∥)2

‖f (x0)‖Y <
1

2e9L
, δ ≥ 3e3

4

∥∥∥[f ′ (x0)]
−1
∥∥∥ · ∥∥∥[f ′ (x0)]

−1
∥∥∥ ,

then:

j)xn ∈ S (x0, δ) and [f ′ (xn)]−1 ∈ (Y, X)∗ exists, having the relations:∥∥∥[f ′ (xn)]−1
∥∥∥ ≤ ∥∥∥[f ′ (x0)]

−1
∥∥∥ e3

and:

xn+1 = xn − [f ′ (xn)]−1
f (xn)

for any n ∈ N.

jj) the equation (1)admits a solution x∗ ∈ S (x0, δ) ;

jjj) the sequence (xn)n∈N is a approximant sequence of the second order

of the solution x∗ of this equation;

jv) the following estimates hold:

max
{
‖f (xn)‖Y ,

1
M
‖xn+1 − xn‖X

}
≤
(

LM2

2

)2n−1

‖f (xn)‖2
n

Y ,

‖x∗ − xn‖X ≤
Mρ0

(
ρ0LM2

2

)2n

1−
(

ρ0LM2

2

)2n

where M =
∥∥∥[f ′(x0)]

−1
∥∥∥ e3 and ‖f(x0)‖Y .

Let us now consider the case of Chebyshev’s method. In this case f :

D → Y admits, for any x ∈ X, Fréchet derivatives of the first and the second order,
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and in addition to the main sequence (xn)n∈N ⊆ D, we consider another sequence

(yn)n∈N ⊆ D so that for any n ∈ N the following is verified:
f ′(xn)(xn+1 − xn) + f(xn) +

1
2
f ′′(xn)y2

n,

f ′(xn)yn + f(xn) = θY

(21)

If for any n ∈ N, [f ′(xn)]−1 exists, we can deduce from the relation (21) that:

xn+1 = xn − [f ′ (xn)]−1
f (xn)− 1

2
[f ′(xn)]−1f ′′(xn){[f ′(xn)]−1f(xn)}2 (22)

the form under which Chebychev’s method is known. We will show that in this

case the conditions of Theorem 2.1 will be verified for p = 2.

So we will have:

Theorem 3.2. We consider the same data as in theorem 2.1. If:

i) X is a Banach space and S(x0, δ) ⊆ D, S(x0, δ) representing the ball

with the centre x0 and the radius δ;

ii) the function admits Fréchet derivatives up to the second order included,

and for f ′′ : D → (X2, Y )∗, the number L > 0 exists, so that for any x, y ∈ D the

following inequality is verified:

‖f ′′ (x)− f ′′ (y)‖ ≤ L ‖x− y‖X ; (23)

iii) the sequence (xn)n∈N ⊆ D, together with an auxiliary sequence

(yn)n∈N ⊆ D, verifies the relations (21) for any n ∈ N;

iv) the mapping f ′ (x0) ∈ (X, Y )∗ is invertible;

v) if we note:

ρ0 = ‖f (x0)‖Y , B0 =
∥∥∥[f ′ (x0)]

−1
∥∥∥ , M = B0e

3
2 , b =

L2M
2ρ0

2
,

a = (b + 1)

(
L2M

2
)2

2
, α = a + L

(bM)3

6
;

(24)

the following inequalities are verified:

α
1
2 ρ0 <

1
4
,

bMρ0

1− αρ2
0

≤ δ ≤ 1
L

(
1

2bB2
0ρ0

− ‖f ′′ (x0)‖
)

; (25)

then:
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j) xn ∈ S(x0, δ), the mapping [f ′(xn)]−1 ∈ (Y, X)∗ exists, we have the

inequality
∥∥∥[f ′ (xn)]−1

∥∥∥ ≤ M for any n ∈ N and the sequence (xn)n∈N is generated by

the relation of recurrence (21) or (22) is convergent;

jj) the equation (1) are the solution x∗ ∈ S (x0, δ) ;

jjj) the sequence(xn)n∈N is an approximant sequence of the third order of

this solution of the equation (1);

jv) the following estimates hold:

max
{
‖f (xn)‖Y ,

1
Mb

‖xn+1 − xn‖X

}
≤ α

3n−1
2 ‖f (x0)‖3

n

Y , (26)

and:

‖x∗ − xn‖X ≤ Mb
α

3n−1
2 ‖f (x0)‖3

n

Y

1−
(
α ‖f (x0)‖2Y

)3n , (27)

for any n ∈ N.

Proof. From the condition:

δ ≤ 1
L

(
1

2bB2
0ρ0

− ‖f ′′ (x0)‖
)

,

if we keep in mind that L2 =‖ f ′′(x0) ‖ +Lδ, we deduce that:

h0 = bL2B
2
0ρ0 ≤

1
2
.

We will introduce the same sequences as in the proof of theorem 2.1. We

will show that for any n ∈ N the following properties are verified:

a) xn ∈ S (x0, δ) ;

b) [f ′ (xn)]−1 ∈ (Y,X)∗ exists and
∥∥∥[f ′ (xn)]−1

∥∥∥ ≤ Bn;

c) ‖f (xn)‖Y ≤ ρn ≤
(
√

αρ0)
3n

√
α

;

d) hn ≤ min

{
1
2
,
(βh0)

3n

√
β

}
, where β =

1
4h2

0

;

e) Bn ≤ B0 ≤ M ;

f) ‖f ′ (xn) (xn+1 − xn)‖Y ≤ b ‖f (xn)‖Y ;

g)
∥∥∥∥f (xn) + f ′ (xn) (xn+1 − xn) +

1
2
f ′′ (xn) (xn+1 − xn)2

∥∥∥∥
Y

≤ a ‖f (xn)‖3Y .
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To start with , let us suppose that the properties a)-e) are true for a certain

number n ∈ N. We will show that, for that number, the properties f) and g) are also

verified.

Indeed, we first notice that from xn ∈ S (x0, δ) we deduce that:

‖f ′′ (xn)‖ ≤ L2.

Then it is obvious that:

‖yn‖X ≤
∥∥∥[f ′ (xn)]−1

∥∥∥ · ‖f (xn)‖Y

and:

‖xn+1 − xn − yn‖X =
∥∥∥[f ′ (xn)]−1 [f ′ (xn) (xn+1 − xn)− f ′ (xn) yn]

∥∥∥
X
≤

≤
∥∥∥[f ′ (xn)]−1

∥∥∥
Y
·
∥∥∥∥−f (xn)− 1

2
f ′′ (xn) y2

n + f (xn)
∥∥∥∥

Y

≤ 1
2
BnL2 ‖yn‖2X ≤

≤ 1
2
M3L2 ‖f (xn)‖2Y .

So:

‖f ′ (xn) (xn+1 − xn)‖Y =
∥∥∥∥−f (xn)− 1

2
f ′′ (xn) y2

n

∥∥∥∥
Y

≤

≤
(

1 +
1
2
M2L2 ‖f (xn)‖Y

)
‖f (xn)‖Y .

As
√

αρ0 < 1 we deduce that:(√
αρ0

)3n

≤
√

αρ0

and:

‖f (xn)‖Y ≤ ρn ≤
(
√

αρ0)
3n

√
α

≤
√

αρ0√
α

= ρ0

and thus:

‖f ′ (xn) (xn+1 − xn)‖Y ≤
(

1 +
1
2
M2L2ρ0

)
‖f (xn)‖Y = b ‖f (xn)‖Y .

But, from the symmetry of f ′′ (x) ∈ L2 (X, Y ) for any x ∈ D, we have:

f ′′ (xn) (xn+1 − xn)2 − f ′′ (xn) y2
n = f ′′ (xn) (xn+1 − xn)2−

−f ′′ (xn) (xn+1 − xn, yn) + f ′′ (xn) (yn, xn+1 − xn)− f ′′ (xn) y2
n =

= f ′′ (xn) (xn+1 − xn, xn+1 − xn − yn) + f ′′ (xn) (yn, xn+1 − xn − yn) =

= [f ′′ (xn) (xn+1 − xn) + f ′′ (xn) yn] (xn+1 − xn − yn) ,
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then it is obvious that:∥∥∥∥f (xn) + f ′ (xn) (xn+1 − xn) +
1
2
f ′′ (xn) (xn+1 − xn)2

∥∥∥∥
Y

=

=
1
2

∥∥∥f ′′ (xn) (xn+1 − xn)2 − f ′′ (xn) y2
n

∥∥∥
Y
≤

≤ 1
2

[‖f ′′ (xn) (xn+1 − xn)‖+ ‖f ′′ (xn) yn‖] · ‖xn+1 − xn − yn‖X ≤

≤ 1
2
‖f ′′ (xn)‖ · ‖xn+1 − xn − yn‖X · (‖xn+1 − xn‖X + ‖yn‖X) .

It is obvious that:

‖xn+1 − xn‖X =
∥∥∥[f ′ (xn)]−1

f ′ (xn) (xn+1 − xn)
∥∥∥

X
≤ Mb ‖f (xn)‖Y ,

so: ∥∥∥∥f (xn) + f ′ (xn) (xn+1 − xn) +
1
2
f ′′ (xn) (xn+1 − xn)2

∥∥∥∥
Y

≤

≤ 1
2
M3L2

2 (Mb + M) ‖f (xn)‖3Y =
1
2

(b + 1) M4L2
2 ‖f (xn)‖3Y = a ‖f (xn)‖3Y .

So indeed f) and g) are true for the n ∈ N we considered.

The statements a)-e) are proven similarly to the proof of theorem 2.1.

This entitles us to assert that the properties a)-g) are true for any n ∈ N. Also, the

properties f) and g) , together with the hypothesis show that impossible to apply

theorem 2.1 with p = 2. Using this theorem, we deduce that the conclusions of the

theorem to be proved are true.
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