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A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL
CONTROL PROBLEM

WOLFGANG W. BRECKNER

Rezumat. Un principiu de maxim pentru o problema
vectoriala de control optimal. Ca aplicatie a unei reguli
abstracte a multiplicatorilor s-a stabilit in lucrarea [1] un prin-
cipiu de maxim pentru o problema vectoriala de control optimal
guvernata de o ecuatie integrala de tip Fredholm. Pentru a nu
mari excesiv lungimea lucrarii [1], demonstratia acestui prin-
cipiu a fost acolo doar schitata. In prezenta lucrare se da acum

demonstratia completa.

1. Introduction

In the paper [1] we have established multiplier rules for so-called weak dy-
namic multiobjective optimization problems by using a suitable generalization of the
derived sets introduced by M. R. Hestenes [2], [3], [4] for scalar optimization prob-
lems. Also in that paper we have used the obtained multiplier rules to state necessary
conditions for the local solutions of an abstract multiobjective optimal control prob-
lem. Furthermore, we have noticed that these very general optimality conditions can
yield a maximum principle for a multiobjective optimal control problem governed by
an integral equation of Fredholm type (Theorem 5.1 in [1]). But, in order to avoid
an excessive length of the paper, in [1] we have limited ourselves only to a sketch of
this application. The goal of the present paper is to give the complete proof of this

specific maximum principle.
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2. Notations

Throughout this paper, N is the set of all positive integers, R is the set of all
real numbers, and for every m € N, R™ is the usual m-dimensional Euclidean space
of all m-tuples v = (vy,...,vn) of real numbers. The subset of R™, consisting of all
vectors v = (vy,...,vp) with v; > 0 for each j € {1,...,m}, is denoted by R'"'. The
inner product of two vectors v,w € R™ is denoted by (v,w). If v € R™, then ||v||

marks its Euclidean norm. Given any number r > 0, we put
BY(r) = {ve Ry | o] <7}

If X and Y are normed linear spaces over the same field, then (X, Y)* denotes
the normed linear space of all continuous linear mappings A : X — ). Given a point
Zo in a normed linear space and a number r > 0, we denote by B(xo,r) the closed
ball centered at xy with radius r.

If M is a subset of a normed linear space, then int M designates the interior
of M and cl M the closure of M.

Finally, we mention some notations regarding functions. The Fréchet deri-
vative of a function f of a single variable is denoted by df, while the partial Fréchet
derivative with respect to the nth variable of a function f of several variables is
denoted by d, f. If x is a point in a linear space X and A is a linear mapping from

X into another linear space, then Az denotes the value of A at z.

3. A Necessary Optimality Condition

Let X be a Banach space, which does not reduce to its zero-vector, let X be a
nonempty open subset of X', let U be a nonempty set, let m1, ms and mg be positive

integers, and let
fi: X xU—-R™, fo:XxU—-R™, f3:XxU—R™

be vector-valued functions which are Fréchet differentiable at each point (z,u) in
X x U with respect to the first variable. Further, let K7, Ko and K3 be convex cones

in the spaces R™!, R™2 and R™3, respectively, satisfying the following assumptions:

int Ky # 0, int Ky # (), K, and K3 are closed. (1)
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For each ¢ € {1,2,3}, we define by

Kf={weR™

VoveK,;: (v,w) >0}

the dual cone of K;.
Let FF: X x U — X be a function which is Fréchet differentiable at each
point (z,u) € X x U with respect to the first variable, and let S be the set defined by

S={(z,u) e X xU | F(z,u) =0, fa(z,u) € Ko, f3(x,u) € K3}.

A point (zg,ug) € X x U is said to be a:

(i) weakly Ki-mazimal point of f1 over S if (xg,ug) € S and

[f1(wo,uo) +int K1] N f1(S) = 0;

(ii) local weakly Ki-mazimal point of f1 over S if (zo,up) € S and if there is

a neighbourhood V' of zy such that

[f1(z0,u0) +int K1) N f1(SN(V x U)) = 0.

The problem of finding the weakly Kj-maximal points of f; over S is called
a weak multiobjective optimal control problem and is expressed in short as

(CP) fi(z,u) —k, max weakly

subject to (z,u) € X x U, F(x,u) =0, fao(z,u) € Ka, f3(z,u) € K.

The introduction of problem (CP) allows one to call the weakly K;-maximal
points of f; over S solutions to problem (CP). By analogy, the local weakly K-
maximal points of f; over S can be named local solutions to problem (CP).

As an application of multiplier rules stated for arbitrary weak dynamic mul-
tiobjective optimization problems, in Section 4 of the paper [1] we have derived ne-
cessary optimality conditions for the local solutions to problem (CP). One of the
theorems given there will be recalled here. In order to formulate shorter this theo-
rem, we put m = my + mg + mg and conceive the corresponding space R™ as the
product space R™ x R™2 x R™3 ie. any vector v € R™ is identified with a cer-
tain triple (vq,vs,v3) € R™ X R™2 x R™3. In particular, the zero-vector in R™
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is 0 = (01,02,03), where 0; (¢ € {1,2,3}) is the zero-vector in R™. Further, we

consider the vector-valued function f: X x U — R™ defined by

f(zvu) = (fl('rvu)7f2(l‘vu)v f3($7u))

By using these notations, the following theorem is valid.

THEOREM 1 [1, Theorem 4.6]. Let (xg,up) € X x U be a local solution to
problem (CP) for which the operator A = dyF(x,up) is bijective, and let D C R™
be a non-empty set such that, for all n € N and all n-tuples (d*,...,d") of points
belonging to D, there exist a number 79 > 0 and a function w, : B (rg) — U satisfying

the following conditions:
(i) wa(0) = uo;
(i) for each z € X, the function t € B (rg) — F(x,w2(t)) € & is continuous

on BY (rg);
(iii) the function t € B (ro) —— d1F(x,wz(t)) € (X, X)* is continuous at 0;
(iv) limgy—q, sup {||diF(z,ws(t)) — diF(zo,wa(t))| | t € B (ro)} = 0;

(v) for each x € X, the function ¢t € B} (ro) — f(x,w2(t)) € R™ is continu-

ous on B (r9);

(vi) there is a number a > 0 such that B(zg,a) C X and such that

sup{[[d1 f (z, w2 (t))|| | = € B(wo,a), t € B (ro)} < o0;

(vii) sup {IIF(wo,wz(t))Il /Nl ’ t € Bli(ro), t # 0} < 003

(viii) sup {||d1f(wo,wz(t)) — dyf(zo, uo)l / [It] ‘ t € Bli(ro), t # 0} < 00;

(ix) limgy—ay sup {[|dif (2, wa(t)) — dif(zo, wa2(t)) | t € B (ro)} = 0;

() limy—o iy [£ (w0, w2(1)) — f(z0,u0) — Pt — di f(zo, up)wo(t)] = 0, where
Pt=tid" 4+ ... +t,d" forallt=(t,...,t,) € R"

and
wo(t) = A~ F(zo,ws(t)) for all t € B (ro).
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Then there exists a vector

(AT A5, A3) € K7 x Ky x K3\ {(01,02,03)}

such that
sup{(d1, \}) + (da, \3) + (d3,\5) | (d1,da,d3) € D} <0
and
(f2(z0,u0), A5) = 0.
hold.

4. The Maximum Principle

In this section we apply Theorem 1 to derive a maximum principle for a
multiobjective optimal control problem governed by an integral equation of Fredholm
type.

In what follows we suppose that T is a positive number, V is a non-empty
subset of a real Banach space V, and W is a real Banach space which does not reduce
to its zero-vector. Let I denote the interval [0, 7], let C(I,) be the linear space of

all continuous functions = : I — W endowed with the norm
2]l = max {[|z(7)[| | T € I},

and let PC(I,V) be the set of all piecewise continuous functions u : I — V that are
continuous at 0 and continuous on the left at each point belonging to the interval
10, T7].

Further, let

wi: I xWxclV —R™ (ie{l,2,3})

be functions that are continuous, Fréchet differentiable with respect to the second

variable and such that the mappings
dow; : I x W xclV — (W, R™)* (ie€{l1,2,3})

are continuous, and let
p:IXxIxWxclV —-W
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be a function which is continuous, Fréchet differentiable with respect to the third

variable, and for which the mapping
dsgp : I X I xWxcV — (W W)*
is continuous and has the property that the family
{ds¢(o,7,-,v) : W — (W, W)* | (o,7,0) €I xIxV}

is uniformly equicontinuous on each closed bounded subset of W.
As in Section 3, let K1, Ko and K3 be convex cones in the spaces R™', R™?2

and R™2 respectively, satisfying the assumptions specified in (1).

The problem we will discuss in this section is:

T
(ECP) /(pl(T,l‘(T),u(T))dT — g, max weakly
0

subject to
x e C(I,W), ue PC(I,V),
xz(o) = oo, 7, x(7),u(r))dr (o €l),
/

T

/@2(7795(7)’“(7'))6576 K, /@3(T,m(7),u(7))dre K.
0 0

This problem is a special case of the problem (CP) investigated in the preceding

section. To see this, it suffices to define the functions

£, C(I,W) x PO(I,V) — R™ (i € {1,2,3})

T
filz,u) = /gﬁi(T,IL'(T),U(T)) dr (i€ {1,2,3}),
0
on the one hand, and

F:C(I,W)x PC(I,V)— C(I,W)
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T
F(z,u)(o /(;50’7'3: u(r))dr (o €l),
0
on the other hand, as well as to take X = X = C(I,W) and U = PC(I,V).

Furthermore, it should be emphasized that the functions f; (¢ € {1,2,3}) and
F introduced above are Fréchet differentiable with respect to the first variable. The

corresponding partial Fréchet derivatives are given by
i, u)y / o, (), u(r)y(r) dr (i € {1,2,3)),

T

(P a)o) = y(o) - [ diotoralr)u(r)y(r)dr (o € 1)
0
for all (z,u) € C(I,W) x PC(I,V) and all y € C(I,W). Thus it makes sense to try

to specialize Theorem 1 to problem (ECP).

To this end we define the functions
p:IxWxcV —-R" and f:CUI,W)xPC(I,V)— R™
by
p(mw,v) = (p1(7, w,0), pa2(7, w,v), p3(7, W, v)),
f@u) = (fr(@,u), falz, u), f3(z,u)),

respectively. Then we have

fla,u) = / o(r,2(7),u(r)) dr, dyf(,u)y / daip(r, (7, u(r))y(r) dr

for all (z,u) € C(I,W) x PC(I,V) and all y € C(I,W).
Taking into account all these assumptions and considerations concerning the

problem (ECP), we get from Theorem 1 the following result.

THEOREM 2 [1, Theorem 5.1]. Let (zg,uo) € C(I,W) x PC(I,V) be a
local solution to problem (ECP) satisfying the following conditions:
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(j) for each y € C(I,W) the integral equation

T

r = y+ / ds (-, 20(7), 1o (7))(7) dr

0

has a unique solution x € C(I, W);

(jj) there is a number a > 0 such that

sup {||d2<p(7',x(r),v)|| | (ryz,v) € I X C(I,W) XV, ||l — 20| < a} < 00.

Then there exists a vector

A" = (A1, A5, A3) € K7 x K5 x K3\ {(01,02,03)}

such that
max {H(r,v) | v € V} = H(r,uo(r)) forall 7 € Iy 2)
and .
([ eatran(r),ua(r)) dr. x5 ) =0, 3)
J

where I is the set of all points 7 € ]0,T] at which ug is continuous, H(7,-) : V — R

is the function defined by

T
H(r,v) = (p(r,x0(7),v) + /dggp(a, zo(0),up(0))h(o;7,v) do, \* ),
0

and h(- ;7,v) : I — W denotes the solution of the variational equation

T

v = O, 7 20(r),v) + / A3, z0(t), uo(t))(t) dt.

0

Proof. At first we notice that the operator A = dyF(xo,up) is bijective
because of condition (j). Next we construct a subset D of the space R™ which
satisfies the hypotheses of Theorem 1. For this purpose we associate with each pair

(r,v) € Iy x V the following expressions:

a(77 U) = <P(T, zo(7),v) — (p(T, l‘o(T),Uo(T)),
/8(7_7 ’U) = ¢('77_7 .’Eo(T),’U) - ¢(a 7, SU()(T),U()(T)),
d(Ta ) O‘(Ta ’U) =+ dlf(x07u0) o Ailﬂ(ﬂv)'

<
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After that we put
D ={d(r,v) | (1,v) € Iy x V'}.

Now, let n be any positive integer, and let &/ = d(rj,v;) (j € {1,...,n})
be points belonging to D. For each j € {1,...,n} we set o/ = a(rj,v;) and B/ =

B(7j,v;). Then we have
& = ad +dyf(zo,up) o A7 forall j € {1,...,n}.

Without loss of the generality we can assume that the points d*, ..., d" are in such a
manner numbered that

O<mm<n<...<1,, <T.
Put 79 = 0. Then choose a number r > 0 satisfying
r < Tj41 —7; whenever j € {0,...,n—1} and 7; < 741 (4)

and
[r; —r,7;] CIp forall je{l,...,n}

Set ro = r/n.
Next we define a function wo : B} (ro) — PC(I,V). Fix any point ¢t =
(t1,...,ty) in B (rg), Then we have

ti4 ...+t <nlt|| <. (5)
For each j € {1,...,n} we denote
Nj={keN|j<k<nandm =1}

and
t if Nj =10

tit+ 2 ken, te 1 N; #0.
It is easily seen that (4) and (5) imply

0<1j—a;<T1j—a;+t;<T forall je{l,...,n}. (6)
When n > 1, then we additionally have

T —a;+t; <Tip1 — ajq forallje{l,...,n—l}. (7)
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From (6) and (7) it follows that the intervals I; (j € {1,...,n}), defined by

I =11j —a;, 75 —aj +t;] forevery je{l,...,n},
satisfy

I; CI forall je{l,...,n},
and
IinIl,=0 foral j ke {l,...,n},j #k.

These properties of the intervals I; (j € {1,...,n}) enable us to define the function
wa(t) : I — V by
vj if 7 € I; for some j € {1,...,n}
uo(r) frel\(HU...UI,).

wa(t)(7) =

In view of this definition we obviously have ws(t) € PC(I,V).
In what follows we prove that the number rg and the function ws defined
above satisfy the conditions (i) — (x) of Theorem 1. In the proofs of some of these

conditions we shall use the compact set
L=[r—rn|U...Ulm—rl

which is enclosed in Iy. Besides, given any t = (t1,...,t,) € B’ (rg), we shall need
the intervals
L; =[rj —a;,7j —a; +t;], where j € {1,...,n}.
They satisfy
L Clrj—rm]CL forall je{l,...,n}.

Indeed, let j be any index in {1,...,n}. Since t; < a;j, we have L; C [1; — a;,T;].
On the other hand, the inequality a; <t + ...+ t, holds. Consequently, (5) implies
a; < r, whence [1; — aj,7;] C [r; —r,7;]. Thus we have L; C [r; —r,7;] C L, as
claimed.

Now we consecutively prove that the conditions (i) — (x) occurring in Theorem

1 are satisfied.

Condition (1): If t = 0, then I; = () for every j € {1,...,n}. Thus we have
w2(0) = ug.

34



A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM
Condition (ii): We fix a function € C(I,W). Since the functions
(o,7) €I x L+— ¢(o,7,2(7),v;) €W (j€{1,...,n})
and
(o,7) €I X L+ ¢(o,7,2(7),uo(1)) € W
are continuous on the compact set I x L, there exists a number ¢ > 0 such that
l6(0, 7, 2(7), vj) | + lp(o, 7, 2(7), uo (7)) || < ¢ (8)

for all (o,7) € I x L and all j € {1,...,n}.
Let t' = (t1,...,t5) and t* = (¢3,...,t2) be points in B (rg). For every

j € {1,...777/} we pu(
ljl — [7—] _aj177-j — ajl +t]1], l]Q — [7- _a/'Q,Tj _aj2 _|_t]2]7

Mj:{Tj—(l—T)ajl—Tan|T€[0,1]},

where a;1 and ajo are the numbers used in the definition of the function ws (tl) and

ws(t?), respectively. Obviously, we have

lag —asal < [ — 82+ 3 b — 2] <l — 22 )
kEN;

for every j € {1,...,n}. Fix any o € I. In virtue of (8) and (9) it follows that
| / (0, 7,(r),v;) dT — / oo, a(r) o) dr| < e(2lag - ags| + [t~ £2])
L Ljs
< c@n+1) ||t -4

and

H /(;S(U, 7,2(7), uo(T)) dTH <claj1 —aj2| < cn (= t2||
M;

for all j € {1,...,n}. Accordingly, we have

H /¢(U,7’,m(7’),w2(t1)(7))d7— / ¢(0,T,m(7),w2(t2)(7))dTH

< H/(ﬁ(a,r,x(r),uo(r))dTH—l—H/¢(U,T,x(7’),vj)d7'—/(/ﬁ(a,T,x(T),vj)dTH
L Lja

M; J J
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+Z’/¢a¢x )vde—/gi)JTx , Uk dTH<2cnn+1)Ht1—t2||

KEN; [
for every j € {1,...,n} such that 7,_; < 7;. Taking into account that
T T
H /d)((r, 7, 2(T), wa (t! /gb o, T, x(T w2(t2)(7))dTH
0 0
<>|| [ dtomatrwa@onir— [ oo ram.ea)m)ar.
=t S
we obtain
T T
H /QS(J T, x(7), wa(t /gb (0,7, 2(T), wa (t? dTH
0 0

< 2en?(n+1) ||t — 2.
Since o € I was arbitrarily chosen, this result implies
IF (2, w2 (1) = F(z,w2 ()] < 2en®(n +1) It — £2]].
Thus the function t € B (ro) — F(x,w2(t)) € C(I,W) is continuous on BY (rg).
Condition (iil): Since the functions
(0,7) € I X L+ dsp(o,T,20(7),v;) € WIW)* (j€{1,...,n})
and
(o,7) € I x L+ d3¢(o,7,20(7),uo(7)) € W, W)*
are continuous on the compact set I x L, there exists a number ¢ > 0 such that
ds(o, 7, x0(T),v;) = dsg(o, 7, 20(7), uo(7))|| < ¢ (10)

for all (o,7) € I x L and all j € {1,...,n}.
Let the number ¢ > 0 be arbitrarily given. Let t € B%(rg) be such that
llt]] < e/(en). Fix any function y € C(I, W) for which ||y|| < 1. In virtue of (10), the

expression
T
9(0) = | [ [dsbtovm.20(r), wa(2)(r)) — daslo: . 20(r). ()] (r) ]
0
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satisfies for all o € T

CEDS / lds (o, ,20(7), v5) — ds(a, 7,0 (7), uo ()] - (7]l dr
J=1 L;

<clty+...4+ty) <enlt] <e.
On the other hand we have
| [d1F (w0, wa(t)) — di F (0, uo)] y|| = max {g(c) | o €I}
Consequently, it follows that
|| [di F(20,wa(t)) — di F(x0,uo)] yH <e.
Since y was arbitrarily chosen in C'(I, W) such that ||y| < 1, we get
ld1 F (20, wa(t)) — diF (20, uo0)|| < e.
So we have shown that the function
t € B (ro) — diF(x0,w2(t)) € (C(I,W),C(I,W))*
is continuous at 0.
Condition (iv): Let the number € > 0 be arbitrarily given. Since the family
{d3¢(0’,7’,',1]> W — (W, W)* | (o,7,v) eI xIx V}
is uniformly equicontinuous on the set
W={weW /| |wl < |zoll +1},
there is a number § > 0 such that
ldsd(o, 7,wi,v) = dsd(o, 7, w2,v)|| < /T (11)

for all wy,ws € W with ||wy —ws|| < § and all (o,7,v) € I x I x V. Now fix any
x € C(I,W) such that || — x¢|| < min {1,6}. Then we have x(7),zo(7) € W and
|lz(7) — 2o(7)|| < 6 for all 7 € I. Next fix a point ¢t € B (o) and, for short, denote
u = wa(t). Then (11) implies

T

| [d1F (2, u) — di F(zo,u)] y|| = max {H /G(a, T)y(7) dTH ‘ o€ I}

0
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T
< max {/HG(G,T)dTH | s I} <e
0
for all y € C(I, W) satistying ||ly|| < 1, where
G(U7 T) = dg(b(O', T, $(7)7 U(T)) - d3¢(07 T, ,’1,‘0(7'), u<T))

Consequently, we have

|d1F(z,u) — di F(xo,u)| <e.

Since t was arbitrarily chosen in BY (r¢), the following inequality is true:
sup {||d1F(x,w2(t)) — d1 F(zg,wa(t))]] ‘ te Bi(ro)} <e.
Thus we have

limg ., sup {||diF(z,wa(t)) — di F(xo,w2(t))|| | t € Bl (ro)} = 0.

Condition (v): We fix a function z € C(I, W). Since the functions
T€ L+ p(r,z(1),v;) € R™ (j€{1,...,n})

and
T€L— o(r,x(r),uo(1)) € R™

are continuous on the compact set L, there exists a number ¢ > 0 such that

(T, 2(7), )| + lle(T, 2(7), uo (7)) || < ¢ (12)

forall 7 € L and all j € {1,...,n}.

Let t! = (t],...,t}) and ¢* = (¢3,...,t2) be points in B%(r). By using the
intervals L1, L2 and M; (j € {1,...,n}) that we previously employed to show that
condition (ii) is satisfied, it follows from (9) and (12) that

| [ etramioar= [ ot
L Ljs
< e(2laj1 — ajo| +|t; — £]) < c@n+ 1) ||t — 7]
and that
| [ etratr)uarar| < claj - asel < en it~ 2]
M;
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for all j € {1,...,n}. Accordingly, we have

Tj

H/ (7, 2(7), wa(t )(T))dT_/‘p(Tax(T)vw(tQ)(T))dTH

<H/ 7, 2(7), uo(T dT’—I—H/ T,2(T), v; dT—/ (T, ()’Uj)dTH

j2

+ Z H/ 7, 2(T), vk dT—/ o(r, x(r ),vk)dTH < 2en(n+1) ||t* — 2

kEN; I, Lo
for every j € {1,...,n} such that 7,_; < 7;. Taking into account that
1f (@, wa (1) = f(z,wa(t?))]]
T T
= || [ etrameaermyar - [ ot or), v dr
0 0
n Tj Tj
<Y [ etmatnwa@mar - [ omam.w@)m)],
j:1 Tj—1 Tj—1
we obtain

1f (@, wa(th)) = f(@,wa(t?))]| < 2en®(n+ 1) |t = £

Thus the function t € B (ro) — f(x,w2(t)) € R™ is continuous on B (r9).
Condition (vi): Set
B(zo,a) = {z € C(I,W) | ||z — x|l < a}

and
¢ = sup {Hdg(p(T,x(T),v)H | 7€l x € B(xg,a),v € V}.

Let = be in B(zo,a), and let ¢ be in BY (rg). Since the function wy(t) takes its values

in V, we have

[dap (7, 2(7), w2 (8) (7)) y(7) || < [ldaip(7, 2(7), wa () (M) - ly (T < e[l

for all 7 € I and all y € C(I,W). This result implies

T
s wa®)ol = | [ daolr,alr),nlt)r) y(r) |
0

< T sup {|ldap(, a(7), w2 ()(7) y(7)Il | 7 € I} < eT[ly]
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for all y € C(I,W). Hence, we have ||dif(x,ws(t))|| < ¢T. Since z and t were

arbitrarily chosen in B(zo,a) and B (rq), respectively, it is true that

sup {||dy f(z,w2(t))|| | © € B(xo,a),t € Bl (ro)} < cT.

Condition (vii): Since the functions
(o,7) €I x L+ ¢(o,7,20(T),up(7)) €W
and
(0,7) € I X L — ¢(o,7,20(7),v;) €W (j €{1,...,n})
are continuous on the compact set I x L, there exists a number ¢ > 0 such that
[6(o, 7, 0(T), u0(7)) — @0, T, 20(7), v5) || < ¢

for all (0,7) € I x L and all j € {1,...,n}. Then we have

[ (o, wa (1))

T
= max {H / [d)(o, 7, 20(T), uo(7)) — P(0, 7, IQ(T),LUQ(t)(T))] dTH ’ o€ I}
0
< max {Zn:/ H(ﬁ(a, 7,20(T),uo(7)) — P(0, 7, xO(T),Uj)H dr ‘ o€ I}
=y

<elti+...+ty) <enlt

for all t € B (o), and thus

sup {[|F(wo,w2()]| / Itl] | t € BY(ro),t # 0} < en.

Condition (viii): Since the functions
T € L+ dao(T,20(7),v;) € W,R™)* (j€{1,...,n})
and
7€ L dop(T,20(7),u0(7)) € (W, R™)*
are continuous on the compact set L, there exists a number ¢ > 0 such that

ld26p(7, 20(7), v5) = dap(T, 20 (7), uo (7)) < ¢
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for all 7 € L and all j € {1,...,n}. Fix any t € B} (r9). Then we have

|[d1.f (20, w2(t)) — dif(zo,u0)] Yl

T
/ dap(T, 20(T),w2(t) (7)) — dagp(T, zO(T)’UO(T))] y(7) dTH
0

T
< / dato (7, 20(r), w2(£) (7)) — daso(r, 20(r), uo (7)) || dr
0

n

=Y [ lldsetr20(r). v5)  dap(r, z0(r). wo(r)]| dr

cti+...+t,) <cenllt]
for all y € C(I,W) satisfying ||y|| < 1. This result implies
lld1 f (0, wa(t)) — dif (w0, uo)l| < en|t]].

Since t was arbitrarily chosen in B (o), we get

sup {||d1 f (2o, w2(t)) — dif(wo,uo)ll / Itll | ¢ € BT (ro), t # 0} < cn.

Condition (ix): Let the number € > 0 be arbitrarily given. For each (7,w) €

I x W we denote

9i(1,w) = |ldap (7, 20(7) + w,v5) — daip(7, w0 (7), 05)|| (G €{1,....,n}),
and
9(r,w) = |ldaip(7, 0 (7) + w, uo (7)) — dap (7, 20(7), uo (7)) |-
Since the function
(r,w,v) €I X W x clV —— dop(r,w,v) € (W, R™)*
is continuous, we can apply Lemma 2, given in [5], and conclude that
lim,—o sup {g;(r,w) | 7 € [,w € W, |w|| < s} =0 for each j € {1,...,n}

and that
lims_o sup {g(r,w) | 7 € [Lw e W, |Jw| < s} =0.
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Consequently, there is a number § > 0 such that

Zsup {gj(T,w) | TelbweW,|w| < 5} <e/(2T)
j=1
and

sup {g(7, w) ’ relweW,|w| <6} <e/(2T).

Now let € C(I,W) be any function satisfying || — z¢|| < d. Fix any

t € B (rg). Then we have

|| f (2, w2 (t)) — di f (w0, w2 (t))] y|

= || [ ldaptra(r) wale)(r) — daptrmo(r) wnle )] i) |
0
/ ldap(r, 2(r), 02 (8)(7)) — dagp(r, (), wale)(r) | dr

<Z/Hd2@7x()%) dap(r, x0(7), vy)|| dr

j=1

4 / oo (7, 2(7), 10(7)) — daspl(r, w0 (7)o (7)) dir

§Tisup{gj(7,x( ) — xo(T |T€I}+Tsup{ng T) — xo(T |T€I}<5
for all 3;6 C(I,W) satisfying ||y|| < 1. This result implies
[d1f(z,w2(t)) — di f(zo,w2(1))]| < e.
Since t was arbitrarily chosen in B (r(), we have
sup {||dif (2, wa(t)) — di f(wo,wa(t))]| | ¢ € BlL(ro)} < e.

Consequently, it is true that

limy .z, sup {[|d1f(x,wa(t)) — di f(zo,wa(t))|| | ¢ € B (ro)} = 0.

Condition (x): We denote

Pt =tiat +... +t,a™ forall t = (t1,...,tn) € BY(ro).
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We claim that the function
t € Bl (ro) > f(zo,w2(t)) — f(zo,u0) — Pat € R™

satisfies

ﬁ [/ (w0, wa(t)) — f(z0,u0) — Pat] =0. (13)

To prove this, let the number € > 0 be arbitrarily given. Since the functions

limt_,o

7€ L+ o(1,20(7),v;) € R™ (j €{L,...,n})
and
T €L+ p(r,20(7),u0(7)) € R™

are continuous on the compact set L, they are uniformly continuous on this set. Thus
there exists a number § > 0 such that for all j € {1,...,n} and all 7 € L satisfying

|7 — 7;| < ¢ the following inequalities hold:
(7, 20(7), 05) = (75, 20 (75), v5)|| < &/(2n);
l(rs 20(T), uo(7)) = (75, 20(7;), uo ()| < &/ (2n).
These inequalities imply
le(r, 20(7), v3) — (7, 20(7), w0 (7)) — &’[| < e/n (14)
for all j € {1,...,n} and all 7 € L satisfying |7 — 7| < 4.
Now let t € B (o) \ {0} be any point such that [|t[| < §/n. Then we have

1f (w0, w2(t)) = f(wo,u0) — Pt

= H En: /[@(7, 20(7),v5) — (7, 20(T), uo (1)) — o] dTH

-
J L;

<tAL 4.+ taAn, (15)
where
A; = max {|lo(1, xo(7),v;) — (7, 20(7),u0(7)) — || | T € L;}
for j € {1,...,n}. Next take into consideration that, if 7 € L; for some j € {1,...,n},
then 7 lies in L and satisfies
T —71j] <a; <ti+...+t, <n|t|]| <. (16)
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Consequently, (14) implies A; < e/n for all j € {1,...,n}. In view of this result, we
get from (15) that

| f (2o, w2(t)) — fmo,u0) — Patl| <e(t1+...+ty)/n <ce|tl,
and hence

||ﬁ [f(xo,wg(t)) — f(zo,up) — Pat} H <e.

Thus (13) is true, as claimed.

Next, we denote
Pst = B .. A t,f" forallt = (ty,...,t,) € B (ro).
A reasoning similar to that used in the proof of (13) reveals that the function
t € B (ro) — F(xg,ws(t)) + Pst € C(I,WV)
satisfies

limtﬂo ”T]-H [F(l’o,&]g(t)) + Pﬁt] =0. (17)

Indeed, let the number £ > 0 be arbitrarily given. Since the functions
(0,7) €I X L — ¢(o,7,20(7),v;) €W (j €{1,...,n})

and

(0,7) €I X L+ ¢(0,7,20(7),u0(7)) €W

are continuous on the compact set I x L, they are uniformly continuous on this set.
Thus there exists a number § > 0 such that for all j € {1,...,n}, all o € I, and all

T € L satisfying |7 — 7;| < 6 the following inequalities hold:
160, 7, 20(7), v5) — &0, 75, w0(75), v3) || < &/(2n);

¢, 7, 20(7), uo(7)) = b0, 75, 20 (75), w0 ()| < €/(2n).
These inequalities imply
l¢(e, 7, 20(7), u0(7)) = ¢(o, 7,20 (1), v5) + F (0)|| < /n (18)

for all j € {1,...,n}, all 0 € I, and all 7 € L satisfying |7 — 7;| < 6.
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Now, let t € B} (r9) \ {0} be any point such that ||t|| < §/n. Then we have
1 (0, wa(t)) (o) + (Pat) (o)

—HZ/ (0,7, 20(7), wo()) — (0,7, 20(r), v5) + (0] dr |
_1L]
< 1,B1(0) + ...+ tnBn(0) (19)

for every o € I, where

BJ(U) = max {H(b(g, T, x0(7)7u0(7—>) - ¢(U7 T, .TO(T)7’U]‘) +/6j(0)|| ‘ TE Lj}

for j € {1,...,n}. As before, now take into consideration that if 7 € L; for some

index j € {1,...,n}, then 7 lies in L and satisfies (16). Consequently, (18) implies
Bj(o) <e/n forall je{l,...,n} and all o € I.
In view of this result, we get from (19) that
(20, w2 (1)) (o) + (Pat)(0)[ <e(tr+ ... +tn)/n <]
for all o € I. From this it follows that
1F (0, w2 (1)) + Patl| < e |lt]),

and hence
1
||m [F(Z‘o,(.«)g(f)) + Pgt] H < €.
Thus (17) is true, as claimed.

From (17) we obtain

hthO

)+ 3 4,413 = (20)

1
a0+ 2

where
WO(t) = AilF(l’o,WQ(t)) for all t € Bi(ro)

Obviously, (20) yields

hmt_,o

[dlf(ﬂio,UQ wo —|—Zt di f l‘o,uO) oA~ 1ﬁj] =0. (21)

T 2

Finally, note that the point Pt defined by

Pt=tid" +... +t,d" forallt=(t,...,t,) € R",
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in our case can be written under the form

Pt = Pat + th dlf(dfo, ’U,O) o Ailﬂj.

j=1
Accordingly, we conclude from (13) and (21) that

1

= [ (@0, wa(t)) — f (w0, uo) — Pt — di f (o, uo)wo(t)] = 0.

im0 15y

Summing up, all the hypotheses of Theorem 1 are fulfilled. By applying this
theorem, it follows that there is a vector
A" = (AL, A3, A3) € KY x K3 x K3\ {(01,02,03)}
satisfying the inequality
(d(7,v),\*) <0 whenever (1,v) € Iy x V (22)

as well as the equality (3).
From (22) we obtain (2). Indeed, to see this, we fix any 7 € Iy. Since we

have

A7'( 7, 20(T),v) = h(;;7,v) forallv €V,

it follows that

T
i (a0, 10) 0 46,7, 20(r).0) = [ dag (o), ()l 7,v) do

0

In view of this result, H(7,-) can be rewritten as follows:

H(7,v) = {o(1,20(7),v) + di f(x0,u0) 0 A~ (-, 7, 20 (T),v), \*)
for every v € V. Therefore we have
H(r,v) — H(1,up(7)) = {d(1,v),\") forallve V.
In virtue of (22) it follows that
H(r,v) < H(t,up(7)) forallveV.

Consequently, the equality (2) holds, which completes the proof.

46



A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM

References

[1] W. W. Breckner, Derived sets for weak multiobjective optimization problems with state
and control variables, J. Optim. Theory Appl. 93 (1997), 73-102.

[2] M. R. Hestenes, On variational theory and optimal control theory, SIAM J. Control 3
(1965), 23-48.

[3] M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley and
Sons, New York, 1966.

[4] M. R. Hestenes, Optimization Theory, John Wiley and Sons, New York, 1975.

[5] W. H. Schmidt, Notwendige Optimalititsbedingungen fiir Prozesse mit zeitvariablen In-
tegralgleichungen in Banachrdumen, Z. Angew. Math. Mech. 60 (1980), 595-608.

FacuLTty OF MATHEMATICS AND COMPUTER. SCIENCE,
BABES-BoLyAl UNIVERSITY, 3400 CLUJ-NAPOCA, ROMANIA

47



