A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM

WOLFGANG W. BRECKNER

Abstract

Rezumat. Un principiu de maxim pentru o problemă vectorială de control optimal. Ca aplicaţie a unei reguli abstracte a multiplicatorilor s-a stabilit în lucrarea [1] un principiu de maxim pentru o problemă vectorială de control optimal guvernată de o ecuaţie integrală de tip Fredholm. Pentru a nu mări excesiv lungimea lucrării [1], demonstraţia acestui principiu a fost acolo doar schiţată. În prezenta lucrare se dă acum demonstraţia completă.

1. Introduction

In the paper [1] we have established multiplier rules for so-called weak dynamic multiobjective optimization problems by using a suitable generalization of the derived sets introduced by M. R. Hestenes [2], [3], [4] for scalar optimization problems. Also in that paper we have used the obtained multiplier rules to state necessary conditions for the local solutions of an abstract multiobjective optimal control problem. Furthermore, we have noticed that these very general optimality conditions can yield a maximum principle for a multiobjective optimal control problem governed by an integral equation of Fredholm type (Theorem 5.1 in [1]). But, in order to avoid an excessive length of the paper, in [1] we have limited ourselves only to a sketch of this application. The goal of the present paper is to give the complete proof of this specific maximum principle.

2. Notations

Throughout this paper, N is the set of all positive integers, R is the set of all real numbers, and for every $m \in N, R^{m}$ is the usual m-dimensional Euclidean space of all m-tuples $v=\left(v_{1}, \ldots, v_{m}\right)$ of real numbers. The subset of R^{m}, consisting of all vectors $v=\left(v_{1}, \ldots, v_{m}\right)$ with $v_{j} \geq 0$ for each $j \in\{1, \ldots, m\}$, is denoted by R_{+}^{m}. The inner product of two vectors $v, w \in R^{m}$ is denoted by $\langle v, w\rangle$. If $v \in R^{m}$, then $\|v\|$ marks its Euclidean norm. Given any number $r>0$, we put

$$
B_{+}^{m}(r)=\left\{v \in R_{+}^{m} \mid\|v\| \leq r\right\} .
$$

If \mathcal{X} and \mathcal{Y} are normed linear spaces over the same field, then $(\mathcal{X}, \mathcal{Y})^{*}$ denotes the normed linear space of all continuous linear mappings $A: \mathcal{X} \rightarrow \mathcal{Y}$. Given a point x_{0} in a normed linear space and a number $r>0$, we denote by $B\left(x_{0}, r\right)$ the closed ball centered at x_{0} with radius r.

If M is a subset of a normed linear space, then int M designates the interior of M and $\mathrm{cl} M$ the closure of M.

Finally, we mention some notations regarding functions. The Fréchet derivative of a function f of a single variable is denoted by $d f$, while the partial Fréchet derivative with respect to the nth variable of a function f of several variables is denoted by $d_{n} f$. If x is a point in a linear space \mathcal{X} and A is a linear mapping from \mathcal{X} into another linear space, then $A x$ denotes the value of A at x.

3. A Necessary Optimality Condition

Let \mathcal{X} be a Banach space, which does not reduce to its zero-vector, let X be a nonempty open subset of \mathcal{X}, let U be a nonempty set, let m_{1}, m_{2} and m_{3} be positive integers, and let

$$
f_{1}: X \times U \rightarrow R^{m_{1}}, \quad f_{2}: X \times U \rightarrow R^{m_{2}}, \quad f_{3}: X \times U \rightarrow R^{m_{3}}
$$

be vector-valued functions which are Fréchet differentiable at each point (x, u) in $X \times U$ with respect to the first variable. Further, let K_{1}, K_{2} and K_{3} be convex cones in the spaces $R^{m_{1}}, R^{m_{2}}$ and $R^{m_{3}}$, respectively, satisfying the following assumptions:

$$
\begin{equation*}
\operatorname{int} K_{1} \neq \emptyset, \text { int } K_{2} \neq \emptyset, K_{2} \text { and } K_{3} \text { are closed. } \tag{1}
\end{equation*}
$$

For each $i \in\{1,2,3\}$, we define by

$$
K_{i}^{*}=\left\{w \in R^{m_{i}} \mid \forall v \in K_{i}:\langle v, w\rangle \geq 0\right\}
$$

the dual cone of K_{i}.
Let $F: X \times U \rightarrow \mathcal{X}$ be a function which is Fréchet differentiable at each point $(x, u) \in X \times U$ with respect to the first variable, and let S be the set defined by

$$
S=\left\{(x, u) \in X \times U \mid F(x, u)=0, f_{2}(x, u) \in K_{2}, f_{3}(x, u) \in K_{3}\right\}
$$

A point $\left(x_{0}, u_{0}\right) \in \mathcal{X} \times U$ is said to be a:
(i) weakly K_{1}-maximal point of f_{1} over S if $\left(x_{0}, u_{0}\right) \in S$ and

$$
\left[f_{1}\left(x_{0}, u_{0}\right)+\operatorname{int} K_{1}\right] \cap f_{1}(S)=\emptyset ;
$$

(ii) local weakly K_{1}-maximal point of f_{1} over S if $\left(x_{0}, u_{0}\right) \in S$ and if there is a neighbourhood V of x_{0} such that

$$
\left[f_{1}\left(x_{0}, u_{0}\right)+\operatorname{int} K_{1}\right] \cap f_{1}(S \cap(V \times U))=\emptyset .
$$

The problem of finding the weakly K_{1}-maximal points of f_{1} over S is called a weak multiobjective optimal control problem and is expressed in short as
(CP) $\quad f_{1}(x, u) \longrightarrow K_{1}$ max weakly
subject to $(x, u) \in X \times U, F(x, u)=0, f_{2}(x, u) \in K_{2}, f_{3}(x, u) \in K_{3}$.
The introduction of problem (CP) allows one to call the weakly K_{1}-maximal points of f_{1} over S solutions to problem (CP). By analogy, the local weakly K_{1-} maximal points of f_{1} over S can be named local solutions to problem (CP).

As an application of multiplier rules stated for arbitrary weak dynamic multiobjective optimization problems, in Section 4 of the paper [1] we have derived necessary optimality conditions for the local solutions to problem (CP). One of the theorems given there will be recalled here. In order to formulate shorter this theorem, we put $m=m_{1}+m_{2}+m_{3}$ and conceive the corresponding space R^{m} as the product space $R^{m_{1}} \times R^{m_{2}} \times R^{m_{3}}$, i.e. any vector $v \in R^{m}$ is identified with a certain triple $\left(v_{1}, v_{2}, v_{3}\right) \in R^{m_{1}} \times R^{m_{2}} \times R^{m_{3}}$. In particular, the zero-vector in R^{m}
is $0=\left(0_{1}, 0_{2}, 0_{3}\right)$, where $0_{i}(i \in\{1,2,3\})$ is the zero-vector in $R^{m_{i}}$. Further, we consider the vector-valued function $f: X \times U \rightarrow R^{m}$ defined by

$$
f(x, u)=\left(f_{1}(x, u), f_{2}(x, u), f_{3}(x, u)\right) .
$$

By using these notations, the following theorem is valid.

THEOREM 1 [1, Theorem 4.6]. Let $\left(x_{0}, u_{0}\right) \in \mathcal{X} \times U$ be a local solution to problem (CP) for which the operator $A=d_{1} F\left(x_{0}, u_{0}\right)$ is bijective, and let $D \subseteq R^{m}$ be a non-empty set such that, for all $n \in N$ and all n-tuples (d^{1}, \ldots, d^{n}) of points belonging to D, there exist a number $r_{0}>0$ and a function $\omega_{2}: B_{+}^{n}\left(r_{0}\right) \rightarrow U$ satisfying the following conditions:
(i) $\omega_{2}(0)=u_{0}$;
(ii) for each $x \in X$, the function $t \in B_{+}^{n}\left(r_{0}\right) \longmapsto F\left(x, \omega_{2}(t)\right) \in \mathcal{X}$ is continuous on $B_{+}^{n}\left(r_{0}\right)$;
(iii) the function $t \in B_{+}^{n}\left(r_{0}\right) \longmapsto d_{1} F\left(x_{0}, \omega_{2}(t)\right) \in(\mathcal{X}, \mathcal{X})^{*}$ is continuous at 0 ;
(iv) $\lim _{x \rightarrow x_{0}} \sup \left\{\left\|d_{1} F\left(x, \omega_{2}(t)\right)-d_{1} F\left(x_{0}, \omega_{2}(t)\right)\right\| \mid t \in B_{+}^{n}\left(r_{0}\right)\right\}=0 ;$
(v) for each $x \in X$, the function $t \in B_{+}^{n}\left(r_{0}\right) \longmapsto f\left(x, \omega_{2}(t)\right) \in R^{m}$ is continuous on $B_{+}^{n}\left(r_{0}\right)$;
(vi) there is a number $a>0$ such that $B\left(x_{0}, a\right) \subseteq X$ and such that

$$
\sup \left\{\left\|d_{1} f\left(x, \omega_{2}(t)\right)\right\| \mid x \in B\left(x_{0}, a\right), t \in B_{+}^{n}\left(r_{0}\right)\right\}<\infty
$$

(vii) $\sup \left\{\left\|F\left(x_{0}, \omega_{2}(t)\right)\right\| /\|t\| \mid t \in B_{+}^{n}\left(r_{0}\right), t \neq 0\right\}<\infty$;
(viii) $\sup \left\{\left\|d_{1} f\left(x_{0}, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, u_{0}\right)\right\| /\|t\| \mid t \in B_{+}^{n}\left(r_{0}\right), t \neq 0\right\}<\infty$;
(ix) $\lim _{x \rightarrow x_{0}} \sup \left\{\left\|d_{1} f\left(x, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, \omega_{2}(t)\right)\right\| \mid t \in B_{+}^{n}\left(r_{0}\right)\right\}=0$;
(x) $\lim _{t \rightarrow 0} \frac{1}{\|t\|}\left[f\left(x_{0}, \omega_{2}(t)\right)-f\left(x_{0}, u_{0}\right)-P t-d_{1} f\left(x_{0}, u_{0}\right) \omega_{0}(t)\right]=0$, where

$$
P t=t_{1} d^{1}+\ldots+t_{n} d^{n} \text { for all } t=\left(t_{1}, \ldots, t_{n}\right) \in R^{n}
$$

and

$$
\omega_{0}(t)=A^{-1} F\left(x_{0}, \omega_{2}(t)\right) \text { for all } t \in B_{+}^{n}\left(r_{0}\right) .
$$

Then there exists a vector

$$
\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}\right) \in K_{1}^{*} \times K_{2}^{*} \times K_{3}^{*} \backslash\left\{\left(0_{1}, 0_{2}, 0_{3}\right)\right\}
$$

such that

$$
\sup \left\{\left\langle d_{1}, \lambda_{1}^{*}\right\rangle+\left\langle d_{2}, \lambda_{2}^{*}\right\rangle+\left\langle d_{3}, \lambda_{3}^{*}\right\rangle \mid\left(d_{1}, d_{2}, d_{3}\right) \in D\right\} \leq 0
$$

and

$$
\left\langle f_{2}\left(x_{0}, u_{0}\right), \lambda_{2}^{*}\right\rangle=0 .
$$

hold.

4. The Maximum Principle

In this section we apply Theorem 1 to derive a maximum principle for a multiobjective optimal control problem governed by an integral equation of Fredholm type.

In what follows we suppose that T is a positive number, V is a non-empty subset of a real Banach space \mathcal{V}, and \mathcal{W} is a real Banach space which does not reduce to its zero-vector. Let I denote the interval $[0, T]$, let $C(I, \mathcal{W})$ be the linear space of all continuous functions $x: I \rightarrow \mathcal{W}$ endowed with the norm

$$
\|x\|=\max \{\|x(\tau)\| \mid \tau \in I\}
$$

and let $P C(I, V)$ be the set of all piecewise continuous functions $u: I \rightarrow V$ that are continuous at 0 and continuous on the left at each point belonging to the interval]0, T.

Further, let

$$
\varphi_{i}: I \times \mathcal{W} \times \operatorname{cl} V \rightarrow R^{m_{i}} \quad(i \in\{1,2,3\})
$$

be functions that are continuous, Fréchet differentiable with respect to the second variable and such that the mappings

$$
d_{2} \varphi_{i}: I \times \mathcal{W} \times \operatorname{cl} V \rightarrow\left(\mathcal{W}, R^{m_{i}}\right)^{*} \quad(i \in\{1,2,3\})
$$

are continuous, and let

$$
\phi: I \times I \times \mathcal{W} \times \operatorname{cl} V \rightarrow \mathcal{W}
$$

be a function which is continuous, Fréchet differentiable with respect to the third variable, and for which the mapping

$$
d_{3} \phi: I \times I \times \mathcal{W} \times \operatorname{cl} V \rightarrow(\mathcal{W}, \mathcal{W})^{*}
$$

is continuous and has the property that the family

$$
\left\{d_{3} \phi(\sigma, \tau, \cdot, v): \mathcal{W} \rightarrow(\mathcal{W}, \mathcal{W})^{*} \mid(\sigma, \tau, v) \in I \times I \times V\right\}
$$

is uniformly equicontinuous on each closed bounded subset of \mathcal{W}.
As in Section 3, let K_{1}, K_{2} and K_{3} be convex cones in the spaces $R^{m_{1}}, R^{m_{2}}$ and $R^{m_{3}}$, respectively, satisfying the assumptions specified in (1).

The problem we will discuss in this section is:
(ECP)

$$
\int_{0}^{T} \varphi_{1}(\tau, x(\tau), u(\tau)) d \tau \longrightarrow_{K_{1}} \max \text { weakly }
$$

subject to

$$
\begin{gathered}
x \in C(I, \mathcal{W}), u \in P C(I, V), \\
x(\sigma)=\int_{0}^{T} \phi(\sigma, \tau, x(\tau), u(\tau)) d \tau \quad(\sigma \in I), \\
\int_{0}^{T} \varphi_{2}(\tau, x(\tau), u(\tau)) d \tau \in K_{2}, \int_{0}^{T} \varphi_{3}(\tau, x(\tau), u(\tau)) d \tau \in K_{3} .
\end{gathered}
$$

This problem is a special case of the problem (CP) investigated in the preceding section. To see this, it suffices to define the functions

$$
f_{i}: C(I, \mathcal{W}) \times P C(I, V) \rightarrow R^{m_{i}} \quad(i \in\{1,2,3\})
$$

by

$$
f_{i}(x, u)=\int_{0}^{T} \varphi_{i}(\tau, x(\tau), u(\tau)) d \tau \quad(i \in\{1,2,3\})
$$

on the one hand, and

$$
F: C(I, \mathcal{W}) \times P C(I, V) \rightarrow C(I, \mathcal{W})
$$

by

A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM

$$
F(x, u)(\sigma)=x(\sigma)-\int_{0}^{T} \phi(\sigma, \tau, x(\tau), u(\tau)) d \tau \quad(\sigma \in I)
$$

on the other hand, as well as to take $\mathcal{X}=X=C(I, \mathcal{W})$ and $U=P C(I, V)$.

Furthermore, it should be emphasized that the functions $f_{i}(i \in\{1,2,3\})$ and F introduced above are Fréchet differentiable with respect to the first variable. The corresponding partial Fréchet derivatives are given by

$$
\begin{gathered}
d_{1} f_{i}(x, u) y=\int_{0}^{T} d_{2} \varphi_{i}(\tau, x(\tau), u(\tau)) y(\tau) d \tau \quad(i \in\{1,2,3\}), \\
\left(d_{1} F(x, u) y\right)(\sigma)=y(\sigma)-\int_{0}^{T} d_{3} \phi(\sigma, \tau, x(\tau), u(\tau)) y(\tau) d \tau \quad(\sigma \in I),
\end{gathered}
$$

for all $(x, u) \in C(I, \mathcal{W}) \times P C(I, V)$ and all $y \in C(I, \mathcal{W})$. Thus it makes sense to try to specialize Theorem 1 to problem (ECP).

To this end we define the functions

$$
\varphi: I \times \mathcal{W} \times \operatorname{cl} V \rightarrow R^{m} \quad \text { and } \quad f: C(I, \mathcal{W}) \times P C(I, V) \rightarrow R^{m}
$$

by

$$
\begin{aligned}
& \varphi(\tau, w, v)=\left(\varphi_{1}(\tau, w, v), \varphi_{2}(\tau, w, v), \varphi_{3}(\tau, w, v)\right) \\
& f(x, u)=\left(f_{1}(x, u), f_{2}(x, u), f_{3}(x, u)\right)
\end{aligned}
$$

respectively. Then we have

$$
f(x, u)=\int_{0}^{T} \varphi(\tau, x(\tau), u(\tau)) d \tau, \quad d_{1} f(x, u) y=\int_{0}^{T} d_{2} \varphi(\tau, x(\tau), u(\tau)) y(\tau) d \tau
$$

for all $(x, u) \in C(I, \mathcal{W}) \times P C(I, V)$ and all $y \in C(I, \mathcal{W})$.
Taking into account all these assumptions and considerations concerning the problem (ECP), we get from Theorem 1 the following result.

THEOREM 2 [1, Theorem 5.1]. Let $\left(x_{0}, u_{0}\right) \in C(I, \mathcal{W}) \times P C(I, V)$ be a local solution to problem (ECP) satisfying the following conditions:
(j) for each $y \in C(I, \mathcal{W})$ the integral equation

$$
x=y+\int_{0}^{T} d_{3} \phi\left(\cdot, \tau, x_{0}(\tau), u_{0}(\tau)\right) x(\tau) d \tau
$$

has a unique solution $x \in C(I, \mathcal{W})$;
(jj) there is a number $a>0$ such that

$$
\sup \left\{\left\|d_{2} \varphi(\tau, x(\tau), v)\right\| \mid(\tau, x, v) \in I \times C(I, \mathcal{W}) \times V,\left\|x-x_{0}\right\| \leq a\right\}<\infty
$$

Then there exists a vector

$$
\lambda^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}\right) \in K_{1}^{*} \times K_{2}^{*} \times K_{3}^{*} \backslash\left\{\left(0_{1}, 0_{2}, 0_{3}\right)\right\}
$$

such that

$$
\begin{equation*}
\max \{H(\tau, v) \mid v \in V\}=H\left(\tau, u_{0}(\tau)\right) \text { for all } \tau \in I_{0} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\int_{0}^{T} \varphi_{2}\left(\tau, x_{0}(\tau), u_{0}(\tau)\right) d \tau, \lambda_{2}^{*}\right\rangle=0 \tag{3}
\end{equation*}
$$

where I_{0} is the set of all points $\left.\left.\tau \in\right] 0, T\right]$ at which u_{0} is continuous, $H(\tau, \cdot): V \rightarrow R$ is the function defined by

$$
H(\tau, v)=\left\langle\varphi\left(\tau, x_{0}(\tau), v\right)+\int_{0}^{T} d_{2} \varphi\left(\sigma, x_{0}(\sigma), u_{0}(\sigma)\right) h(\sigma ; \tau, v) d \sigma, \lambda^{*}\right\rangle
$$

and $h(\cdot ; \tau, v): I \rightarrow \mathcal{W}$ denotes the solution of the variational equation

$$
x=\phi\left(\cdot, \tau, x_{0}(\tau), v\right)+\int_{0}^{T} d_{3} \phi\left(\cdot, t, x_{0}(t), u_{0}(t)\right) x(t) d t
$$

Proof. At first we notice that the operator $A=d_{1} F\left(x_{0}, u_{0}\right)$ is bijective because of condition (j). Next we construct a subset D of the space R^{m} which satisfies the hypotheses of Theorem 1. For this purpose we associate with each pair $(\tau, v) \in I_{0} \times V$ the following expressions:

$$
\begin{aligned}
& \alpha(\tau, v)=\varphi\left(\tau, x_{0}(\tau), v\right)-\varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right), \\
& \beta(\tau, v)=\phi\left(\cdot, \tau, x_{0}(\tau), v\right)-\phi\left(\cdot, \tau, x_{0}(\tau), u_{0}(\tau)\right), \\
& d(\tau, v)=\alpha(\tau, v)+d_{1} f\left(x_{0}, u_{0}\right) \circ A^{-1} \beta(\tau, v) .
\end{aligned}
$$

After that we put

$$
D=\left\{d(\tau, v) \mid(\tau, v) \in I_{0} \times V\right\}
$$

Now, let n be any positive integer, and let $d^{j}=d\left(\tau_{j}, v_{j}\right)(j \in\{1, \ldots, n\})$ be points belonging to D. For each $j \in\{1, \ldots, n\}$ we set $\alpha^{j}=\alpha\left(\tau_{j}, v_{j}\right)$ and $\beta^{j}=$ $\beta\left(\tau_{j}, v_{j}\right)$. Then we have

$$
d^{j}=\alpha^{j}+d_{1} f\left(x_{0}, u_{0}\right) \circ A^{-1} \beta^{j} \text { for all } j \in\{1, \ldots, n\} .
$$

Without loss of the generality we can assume that the points d^{1}, \ldots, d^{n} are in such a manner numbered that

$$
0<\tau_{1} \leq \tau_{2} \leq \ldots \leq \tau_{n} \leq T
$$

Put $\tau_{0}=0$. Then choose a number $r>0$ satisfying

$$
\begin{equation*}
r<\tau_{j+1}-\tau_{j} \text { whenever } j \in\{0, \ldots, n-1\} \text { and } \tau_{j}<\tau_{j+1} \tag{4}
\end{equation*}
$$

and

$$
\left[\tau_{j}-r, \tau_{j}\right] \subseteq I_{0} \text { for all } j \in\{1, \ldots, n\}
$$

Set $r_{0}=r / n$.
Next we define a function $\omega_{2}: B_{+}^{n}\left(r_{0}\right) \rightarrow P C(I, V)$. Fix any point $t=$ $\left(t_{1}, \ldots, t_{n}\right)$ in $B_{+}^{n}\left(r_{0}\right)$, Then we have

$$
\begin{equation*}
t_{1}+\ldots+t_{n} \leq n\|t\| \leq r \tag{5}
\end{equation*}
$$

For each $j \in\{1, \ldots, n\}$ we denote

$$
N_{j}=\left\{k \in N \mid j<k \leq n \text { and } \tau_{k}=\tau_{j}\right\}
$$

and

$$
a_{j}= \begin{cases}t_{j} & \text { if } N_{j}=\emptyset \\ t_{j}+\sum_{k \in N_{j}} t_{k} & \text { if } N_{j} \neq \emptyset\end{cases}
$$

It is easily seen that (4) and (5) imply

$$
\begin{equation*}
0<\tau_{j}-a_{j} \leq \tau_{j}-a_{j}+t_{j} \leq T \text { for all } j \in\{1, \ldots, n\} \tag{6}
\end{equation*}
$$

When $n>1$, then we additionally have

$$
\begin{equation*}
\tau_{j}-a_{j}+t_{j} \leq \tau_{j+1}-a_{j+1} \text { for all } j \in\{1, \ldots, n-1\} \tag{7}
\end{equation*}
$$

From (6) and (7) it follows that the intervals $I_{j}(j \in\{1, \ldots, n\})$, defined by

$$
\left.\left.I_{j}=\right] \tau_{j}-a_{j}, \tau_{j}-a_{j}+t_{j}\right] \text { for every } j \in\{1, \ldots, n\}
$$

satisfy

$$
I_{j} \subseteq I \text { for all } j \in\{1, \ldots, n\}
$$

and

$$
I_{j} \cap I_{k}=\emptyset \text { for all } j, k \in\{1, \ldots, n\}, j \neq k
$$

These properties of the intervals $I_{j}(j \in\{1, \ldots, n\})$ enable us to define the function $\omega_{2}(t): I \rightarrow V$ by

$$
\omega_{2}(t)(\tau)= \begin{cases}v_{j} & \text { if } \tau \in I_{j} \text { for some } j \in\{1, \ldots, n\} \\ u_{0}(\tau) & \text { if } \tau \in I \backslash\left(I_{1} \cup \ldots \cup I_{n}\right) .\end{cases}
$$

In view of this definition we obviously have $\omega_{2}(t) \in P C(I, V)$.
In what follows we prove that the number r_{0} and the function ω_{2} defined above satisfy the conditions (i) - (x) of Theorem 1. In the proofs of some of these conditions we shall use the compact set

$$
L=\left[\tau_{1}-r, \tau_{1}\right] \cup \ldots \cup\left[\tau_{n}-r, \tau_{n}\right],
$$

which is enclosed in I_{0}. Besides, given any $t=\left(t_{1}, \ldots, t_{n}\right) \in B_{+}^{n}\left(r_{0}\right)$, we shall need the intervals

$$
L_{j}=\left[\tau_{j}-a_{j}, \tau_{j}-a_{j}+t_{j}\right], \text { where } j \in\{1, \ldots, n\}
$$

They satisfy

$$
L_{j} \subseteq\left[\tau_{j}-r, \tau_{j}\right] \subseteq L \text { for all } j \in\{1, \ldots, n\}
$$

Indeed, let j be any index in $\{1, \ldots, n\}$. Since $t_{j} \leq a_{j}$, we have $L_{j} \subseteq\left[\tau_{j}-a_{j}, \tau_{j}\right]$. On the other hand, the inequality $a_{j} \leq t_{1}+\ldots+t_{n}$ holds. Consequently, (5) implies $a_{j} \leq r$, whence $\left[\tau_{j}-a_{j}, \tau_{j}\right] \subseteq\left[\tau_{j}-r, \tau_{j}\right]$. Thus we have $L_{j} \subseteq\left[\tau_{j}-r, \tau_{j}\right] \subseteq L$, as claimed.

Now we consecutively prove that the conditions (i) - (x) occurring in Theorem 1 are satisfied.

Condition (i): If $t=0$, then $I_{j}=\emptyset$ for every $j \in\{1, \ldots, n\}$. Thus we have $\omega_{2}(0)=u_{0}$.

A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM
Condition (ii): We fix a function $x \in C(I, \mathcal{W})$. Since the functions

$$
(\sigma, \tau) \in I \times L \longmapsto \phi\left(\sigma, \tau, x(\tau), v_{j}\right) \in \mathcal{W} \quad(j \in\{1, \ldots, n\})
$$

and

$$
(\sigma, \tau) \in I \times L \longmapsto \phi\left(\sigma, \tau, x(\tau), u_{0}(\tau)\right) \in \mathcal{W}
$$

are continuous on the compact set $I \times L$, there exists a number $c>0$ such that

$$
\begin{equation*}
\left\|\phi\left(\sigma, \tau, x(\tau), v_{j}\right)\right\|+\left\|\phi\left(\sigma, \tau, x(\tau), u_{0}(\tau)\right)\right\| \leq c \tag{8}
\end{equation*}
$$

for all $(\sigma, \tau) \in I \times L$ and all $j \in\{1, \ldots, n\}$.
Let $t^{1}=\left(t_{1}^{1}, \ldots, t_{n}^{1}\right)$ and $t^{2}=\left(t_{1}^{2}, \ldots, t_{n}^{2}\right)$ be points in $B_{+}^{n}\left(r_{0}\right)$. For every $j \in\{1, \ldots, n\}$ we put

$$
\begin{gathered}
L_{j 1}=\left[\tau_{j}-a_{j 1}, \tau_{j}-a_{j 1}+t_{j}^{1}\right], \quad L_{j 2}=\left[\tau_{j}-a_{j 2}, \tau_{j}-a_{j 2}+t_{j}^{2}\right] \\
M_{j}=\left\{\tau_{j}-(1-\tau) a_{j 1}-\tau a_{j 2} \mid \tau \in[0,1]\right\},
\end{gathered}
$$

where $a_{j 1}$ and $a_{j 2}$ are the numbers used in the definition of the function $\omega_{2}\left(t^{1}\right)$ and $\omega_{2}\left(t^{2}\right)$, respectively. Obviously, we have

$$
\begin{equation*}
\left|a_{j 1}-a_{j 2}\right| \leq\left|t_{j}^{1}-t_{j}^{2}\right|+\sum_{k \in N_{j}}\left|t_{k}^{1}-t_{k}^{2}\right| \leq n\left\|t^{1}-t^{2}\right\| \tag{9}
\end{equation*}
$$

for every $j \in\{1, \ldots, n\}$. Fix any $\sigma \in I$. In virtue of (8) and (9) it follows that

$$
\begin{aligned}
\left\|\int_{L_{j 1}} \phi\left(\sigma, \tau, x(\tau), v_{j}\right) d \tau-\int_{L_{j 2}} \phi\left(\sigma, \tau, x(\tau), v_{j}\right) d \tau\right\| & \leq c\left(2\left|a_{j 1}-a_{j 2}\right|+\left|t_{j}^{1}-t_{j}^{2}\right|\right) \\
& \leq c(2 n+1)\left\|t^{1}-t^{2}\right\|
\end{aligned}
$$

and

$$
\left\|\int_{M_{j}} \phi\left(\sigma, \tau, x(\tau), u_{0}(\tau)\right) d \tau\right\| \leq c\left|a_{j 1}-a_{j 2}\right| \leq c n\left\|t^{1}-t^{2}\right\|
$$

for all $j \in\{1, \ldots, n\}$. Accordingly, we have

$$
\begin{gathered}
\left\|\int_{\tau_{j-1}}^{\tau_{j}} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{1}\right)(\tau)\right) d \tau-\int_{\tau_{j-1}}^{\tau_{j}} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{2}\right)(\tau)\right) d \tau\right\| \\
\leq\left\|\int_{M_{j}} \phi\left(\sigma, \tau, x(\tau), u_{0}(\tau)\right) d \tau\right\|+\left\|\int_{L_{j 1}} \phi\left(\sigma, \tau, x(\tau), v_{j}\right) d \tau-\int_{L_{j 2}} \phi\left(\sigma, \tau, x(\tau), v_{j}\right) d \tau\right\|
\end{gathered}
$$

$$
+\sum_{k \in N_{j}}\left\|\int_{L_{k 1}} \phi\left(\sigma, \tau, x(\tau), v_{k}\right) d \tau-\int_{L_{k 2}} \phi\left(\sigma, \tau, x(\tau), v_{k}\right) d \tau\right\| \leq 2 c n(n+1)\left\|t^{1}-t^{2}\right\|
$$

for every $j \in\{1, \ldots, n\}$ such that $\tau_{j-1}<\tau_{j}$. Taking into account that

$$
\begin{aligned}
& \left\|\int_{0}^{T} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{1}\right)(\tau)\right) d \tau-\int_{0}^{T} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{2}\right)(\tau)\right) d \tau\right\| \\
\leq & \sum_{j=1}^{n}\left\|\int_{\tau_{j-1}}^{\tau_{j}} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{1}\right)(\tau)\right) d \tau-\int_{\tau_{j-1}}^{\tau_{j}} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{2}\right)(\tau)\right) d \tau\right\|,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left\|\int_{0}^{T} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{1}\right)(\tau)\right) d \tau-\int_{0}^{T} \phi\left(\sigma, \tau, x(\tau), \omega_{2}\left(t^{2}\right)(\tau)\right) d \tau\right\| \\
& \quad \leq 2 c n^{2}(n+1)\left\|t^{1}-t^{2}\right\| .
\end{aligned}
$$

Since $\sigma \in I$ was arbitrarily chosen, this result implies

$$
\left\|F\left(x, \omega_{2}\left(t^{1}\right)\right)-F\left(x, \omega_{2}\left(t^{2}\right)\right)\right\| \leq 2 c n^{2}(n+1)\left\|t^{1}-t^{2}\right\| .
$$

Thus the function $t \in B_{+}^{n}\left(r_{0}\right) \longmapsto F\left(x, \omega_{2}(t)\right) \in C(I, \mathcal{W})$ is continuous on $B_{+}^{n}\left(r_{0}\right)$.
Condition (iii): Since the functions

$$
(\sigma, \tau) \in I \times L \longmapsto d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right) \in(\mathcal{W}, \mathcal{W})^{*} \quad(j \in\{1, \ldots, n\})
$$

and

$$
(\sigma, \tau) \in I \times L \longmapsto d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right) \in(\mathcal{W}, \mathcal{W})^{*}
$$

are continuous on the compact set $I \times L$, there exists a number $c>0$ such that

$$
\begin{equation*}
\left\|d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)-d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)\right\| \leq c \tag{10}
\end{equation*}
$$

for all $(\sigma, \tau) \in I \times L$ and all $j \in\{1, \ldots, n\}$.
Let the number $\varepsilon>0$ be arbitrarily given. Let $t \in B_{+}^{n}\left(r_{0}\right)$ be such that $\|t\|<\varepsilon /(c n)$. Fix any function $y \in C(I, \mathcal{W})$ for which $\|y\| \leq 1$. In virtue of (10), the expression

$$
g(\sigma)=\left\|\int_{0}^{T}\left[d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), \omega_{2}(t)(\tau)\right)-d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)\right] y(\tau) d \tau\right\|
$$

satisfies for all $\sigma \in I$

$$
\begin{gathered}
g(\sigma) \leq \sum_{j=1}^{n} \int_{L_{j}}\left\|d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)-d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)\right\| \cdot\|y(\tau)\| d \tau \\
\leq c\left(t_{1}+\ldots+t_{n}\right) \leq c n\|t\|<\varepsilon
\end{gathered}
$$

On the other hand we have

$$
\left\|\left[d_{1} F\left(x_{0}, \omega_{2}(t)\right)-d_{1} F\left(x_{0}, u_{0}\right)\right] y\right\|=\max \{g(\sigma) \mid \sigma \in I\} .
$$

Consequently, it follows that

$$
\left\|\left[d_{1} F\left(x_{0}, \omega_{2}(t)\right)-d_{1} F\left(x_{0}, u_{0}\right)\right] y\right\|<\varepsilon .
$$

Since y was arbitrarily chosen in $C(I, \mathcal{W})$ such that $\|y\| \leq 1$, we get

$$
\left\|d_{1} F\left(x_{0}, \omega_{2}(t)\right)-d_{1} F\left(x_{0}, u_{0}\right)\right\| \leq \varepsilon .
$$

So we have shown that the function

$$
t \in B_{+}^{n}\left(r_{0}\right) \longmapsto d_{1} F\left(x_{0}, \omega_{2}(t)\right) \in(C(I, \mathcal{W}), C(I, \mathcal{W}))^{*}
$$

is continuous at 0 .

Condition (iv): Let the number $\varepsilon>0$ be arbitrarily given. Since the family

$$
\left\{d_{3} \phi(\sigma, \tau, \cdot, v): \mathcal{W} \rightarrow(\mathcal{W}, \mathcal{W})^{*} \mid(\sigma, \tau, v) \in I \times I \times V\right\}
$$

is uniformly equicontinuous on the set

$$
W=\left\{w \in \mathcal{W} \mid\|w\| \leq\left\|x_{0}\right\|+1\right\},
$$

there is a number $\delta>0$ such that

$$
\begin{equation*}
\left\|d_{3} \phi\left(\sigma, \tau, w_{1}, v\right)-d_{3} \phi\left(\sigma, \tau, w_{2}, v\right)\right\|<\varepsilon / T \tag{11}
\end{equation*}
$$

for all $w_{1}, w_{2} \in W$ with $\left\|w_{1}-w_{2}\right\|<\delta$ and all $(\sigma, \tau, v) \in I \times I \times V$. Now fix any $x \in C(I, \mathcal{W})$ such that $\left\|x-x_{0}\right\|<\min \{1, \delta\}$. Then we have $x(\tau), x_{0}(\tau) \in W$ and $\left\|x(\tau)-x_{0}(\tau)\right\|<\delta$ for all $\tau \in I$. Next fix a point $t \in B_{+}^{n}\left(r_{0}\right)$ and, for short, denote $u=\omega_{2}(t)$. Then (11) implies

$$
\left\|\left[d_{1} F(x, u)-d_{1} F\left(x_{0}, u\right)\right] y\right\|=\max \left\{\left\|\int_{0}^{T} G(\sigma, \tau) y(\tau) d \tau\right\| \mid \sigma \in I\right\}
$$

$$
\leq \max \left\{\int_{0}^{T}\|G(\sigma, \tau) d \tau\| \mid \sigma \in I\right\} \leq \varepsilon
$$

for all $y \in C(I, \mathcal{W})$ satisfying $\|y\| \leq 1$, where

$$
G(\sigma, \tau)=d_{3} \phi(\sigma, \tau, x(\tau), u(\tau))-d_{3} \phi\left(\sigma, \tau, x_{0}(\tau), u(\tau)\right) .
$$

Consequently, we have

$$
\left\|d_{1} F(x, u)-d_{1} F\left(x_{0}, u\right)\right\| \leq \varepsilon .
$$

Since t was arbitrarily chosen in $B_{+}^{n}\left(r_{0}\right)$, the following inequality is true:

$$
\sup \left\{\left\|d_{1} F\left(x, \omega_{2}(t)\right)-d_{1} F\left(x_{0}, \omega_{2}(t)\right)\right\| \mid t \in B_{+}^{n}\left(r_{0}\right)\right\} \leq \varepsilon .
$$

Thus we have

$$
\lim _{x \rightarrow x_{0}} \sup \left\{\left\|d_{1} F\left(x, \omega_{2}(t)\right)-d_{1} F\left(x_{0}, \omega_{2}(t)\right)\right\| \mid t \in B_{+}^{n}\left(r_{0}\right)\right\}=0
$$

Condition (v): We fix a function $x \in C(I, \mathcal{W})$. Since the functions

$$
\tau \in L \longmapsto \varphi\left(\tau, x(\tau), v_{j}\right) \in R^{m} \quad(j \in\{1, \ldots, n\})
$$

and

$$
\tau \in L \longmapsto \varphi\left(\tau, x(\tau), u_{0}(\tau)\right) \in R^{m}
$$

are continuous on the compact set L, there exists a number $c>0$ such that

$$
\begin{equation*}
\left\|\varphi\left(\tau, x(\tau), v_{j}\right)\right\|+\left\|\varphi\left(\tau, x(\tau), u_{0}(\tau)\right)\right\| \leq c \tag{12}
\end{equation*}
$$

for all $\tau \in L$ and all $j \in\{1, \ldots, n\}$.
Let $t^{1}=\left(t_{1}^{1}, \ldots, t_{n}^{1}\right)$ and $t^{2}=\left(t_{1}^{2}, \ldots, t_{n}^{2}\right)$ be points in $B_{+}^{n}\left(r_{0}\right)$. By using the intervals $L_{j 1}, L_{j 2}$ and $M_{j}(j \in\{1, \ldots, n\})$ that we previously employed to show that condition (ii) is satisfied, it follows from (9) and (12) that

$$
\begin{aligned}
& \left\|\int_{L_{j 1}} \varphi\left(\tau, x(\tau), v_{j}\right) d \tau-\int_{L_{j 2}} \varphi\left(\tau, x(\tau), v_{j}\right) d \tau\right\| \\
\leq & c\left(2\left|a_{j 1}-a_{j 2}\right|+\left|t_{j}^{1}-t_{j}^{2}\right|\right) \leq c(2 n+1)\left\|t^{1}-t^{2}\right\|
\end{aligned}
$$

and that

$$
\left\|\int_{M_{j}} \varphi\left(\tau, x(\tau), u_{0}(\tau)\right) d \tau\right\| \leq c\left|a_{j 1}-a_{j 2}\right| \leq c n\left\|t^{1}-t^{2}\right\|
$$

for all $j \in\{1, \ldots, n\}$. Accordingly, we have

$$
\begin{gathered}
\left\|\int_{\tau_{j-1}}^{\tau_{j}} \varphi\left(\tau, x(\tau), \omega_{2}\left(t^{1}\right)(\tau)\right) d \tau-\int_{\tau_{j-1}}^{\tau_{j}} \varphi\left(\tau, x(\tau), \omega_{2}\left(t^{2}\right)(\tau)\right) d \tau\right\| \\
\leq\left\|\int_{M_{j}} \varphi\left(\tau, x(\tau), u_{0}(\tau)\right) d \tau\right\|+\left\|\int_{L_{j 1}} \varphi\left(\tau, x(\tau), v_{j}\right) d \tau-\int_{L_{j 2}} \varphi\left(\tau, x(\tau), v_{j}\right) d \tau\right\| \\
+\sum_{k \in N_{j}}\left\|\int_{L_{k 1}} \varphi\left(\tau, x(\tau), v_{k}\right) d \tau-\int_{L_{k 2}} \varphi\left(\tau, x(\tau), v_{k}\right) d \tau\right\| \leq 2 c n(n+1)\left\|t^{1}-t^{2}\right\|
\end{gathered}
$$

for every $j \in\{1, \ldots, n\}$ such that $\tau_{j-1}<\tau_{j}$. Taking into account that

$$
\begin{gathered}
\left\|f\left(x, \omega_{2}\left(t^{1}\right)\right)-f\left(x, \omega_{2}\left(t^{2}\right)\right)\right\| \\
=\left\|\int_{0}^{T} \varphi\left(\tau, x(\tau), \omega_{2}\left(t^{1}\right)(\tau)\right) d \tau-\int_{0}^{T} \varphi\left(\tau, x(\tau), \omega_{2}\left(t^{2}\right)(\tau)\right) d \tau\right\| \\
\leq \sum_{j=1}^{n}\left\|\int_{\tau_{j-1}}^{\tau_{j}} \varphi\left(\tau, x(\tau), \omega_{2}\left(t^{1}\right)(\tau)\right) d \tau-\int_{\tau_{j-1}}^{\tau_{j}} \varphi\left(\tau, x(\tau), \omega_{2}\left(t^{2}\right)(\tau)\right) d \tau\right\|
\end{gathered}
$$

we obtain

$$
\left\|f\left(x, \omega_{2}\left(t^{1}\right)\right)-f\left(x, \omega_{2}\left(t^{2}\right)\right)\right\| \leq 2 c n^{2}(n+1)\left\|t^{1}-t^{2}\right\| .
$$

Thus the function $t \in B_{+}^{n}\left(r_{0}\right) \longmapsto f\left(x, \omega_{2}(t)\right) \in R^{m}$ is continuous on $B_{+}^{n}\left(r_{0}\right)$.
Condition (vi): Set

$$
B\left(x_{0}, a\right)=\left\{x \in C(I, \mathcal{W}) \mid\left\|x-x_{0}\right\| \leq a\right\}
$$

and

$$
c=\sup \left\{\left\|d_{2} \varphi(\tau, x(\tau), v)\right\| \mid \tau \in I, x \in B\left(x_{0}, a\right), v \in V\right\} .
$$

Let x be in $B\left(x_{0}, a\right)$, and let t be in $B_{+}^{n}\left(r_{0}\right)$. Since the function $\omega_{2}(t)$ takes its values in V, we have

$$
\left\|d_{2} \varphi\left(\tau, x(\tau), \omega_{2}(t)(\tau)\right) y(\tau)\right\| \leq\left\|d_{2} \varphi\left(\tau, x(\tau), \omega_{2}(t)(\tau)\right)\right\| \cdot\|y(\tau)\| \leq c\|y\|
$$

for all $\tau \in I$ and all $y \in C(I, \mathcal{W})$. This result implies

$$
\begin{aligned}
&\left\|d_{1} f\left(x, \omega_{2}(t)\right) y\right\|=\left\|\int_{0}^{T} d_{2} \varphi\left(\tau, x(\tau), \omega_{2}(t)(\tau)\right) y(\tau) d \tau\right\| \\
& \leq T \sup \left\{\left\|d_{2} \varphi\left(\tau, x(\tau), \omega_{2}(t)(\tau)\right) y(\tau)\right\| \mid \tau \in I\right\} \leq c T\|y\|
\end{aligned}
$$

for all $y \in C(I, \mathcal{W})$. Hence, we have $\left\|d_{1} f\left(x, \omega_{2}(t)\right)\right\| \leq c T$. Since x and t were arbitrarily chosen in $B\left(x_{0}, a\right)$ and $B_{+}^{n}\left(r_{0}\right)$, respectively, it is true that

$$
\sup \left\{\left\|d_{1} f\left(x, \omega_{2}(t)\right)\right\| \mid x \in B\left(x_{0}, a\right), t \in B_{+}^{n}\left(r_{0}\right)\right\} \leq c T
$$

Condition (vii): Since the functions

$$
(\sigma, \tau) \in I \times L \longmapsto \phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right) \in \mathcal{W}
$$

and

$$
(\sigma, \tau) \in I \times L \longmapsto \phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right) \in \mathcal{W} \quad(j \in\{1, \ldots, n\})
$$

are continuous on the compact set $I \times L$, there exists a number $c>0$ such that

$$
\left\|\phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)-\phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)\right\| \leq c
$$

for all $(\sigma, \tau) \in I \times L$ and all $j \in\{1, \ldots, n\}$. Then we have

$$
\begin{gathered}
\left\|F\left(x_{0}, \omega_{2}(t)\right)\right\| \\
=\max \left\{\left\|\int_{0}^{T}\left[\phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)-\phi\left(\sigma, \tau, x_{0}(\tau), \omega_{2}(t)(\tau)\right)\right] d \tau\right\| \mid \sigma \in I\right\} \\
\leq \max \left\{\sum_{j=1}^{n} \int_{L_{j}}\left\|\phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)-\phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)\right\| d \tau \mid \sigma \in I\right\} \\
\leq c\left(t_{1}+\ldots+t_{n}\right) \leq c n\|t\|
\end{gathered}
$$

for all $t \in B_{+}^{n}\left(r_{0}\right)$, and thus

$$
\sup \left\{\left\|F\left(x_{0}, \omega_{2}(t)\right)\right\| /\|t\| \mid t \in B_{+}^{n}\left(r_{0}\right), t \neq 0\right\} \leq c n
$$

Condition (viii): Since the functions

$$
\tau \in L \longmapsto d_{2} \varphi\left(\tau, x_{0}(\tau), v_{j}\right) \in\left(\mathcal{W}, R^{m}\right)^{*} \quad(j \in\{1, \ldots, n\})
$$

and

$$
\tau \in L \longmapsto d_{2} \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right) \in\left(\mathcal{W}, R^{m}\right)^{*}
$$

are continuous on the compact set L, there exists a number $c>0$ such that

$$
\left\|d_{2} \varphi\left(\tau, x_{0}(\tau), v_{j}\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)\right\| \leq c
$$

A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM
for all $\tau \in L$ and all $j \in\{1, \ldots, n\}$. Fix any $t \in B_{+}^{n}\left(r_{0}\right)$. Then we have

$$
\begin{gathered}
\left\|\left[d_{1} f\left(x_{0}, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, u_{0}\right)\right] y\right\| \\
=\left\|\int_{0}^{T}\left[d_{2} \varphi\left(\tau, x_{0}(\tau), \omega_{2}(t)(\tau)\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)\right] y(\tau) d \tau\right\| \\
\leq \int_{0}^{T}\left\|d_{2} \varphi\left(\tau, x_{0}(\tau), \omega_{2}(t)(\tau)\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)\right\| d \tau \\
=\sum_{j=1}^{n} \int_{L_{j}}\left\|d_{2} \varphi\left(\tau, x_{0}(\tau), v_{j}\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)\right\| d \tau \\
\leq c\left(t_{1}+\ldots+t_{n}\right) \leq c n\|t\|
\end{gathered}
$$

for all $y \in C(I, \mathcal{W})$ satisfying $\|y\| \leq 1$. This result implies

$$
\left\|d_{1} f\left(x_{0}, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, u_{0}\right)\right\| \leq c n\|t\|
$$

Since t was arbitrarily chosen in $B_{+}^{n}\left(r_{0}\right)$, we get

$$
\sup \left\{\left\|d_{1} f\left(x_{0}, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, u_{0}\right)\right\| /\|t\| \mid t \in B_{+}^{n}\left(r_{0}\right), t \neq 0\right\} \leq c n
$$

Condition (ix): Let the number $\varepsilon>0$ be arbitrarily given. For each $(\tau, w) \in$ $I \times \mathcal{W}$ we denote

$$
g_{j}(\tau, w)=\left\|d_{2} \varphi\left(\tau, x_{0}(\tau)+w, v_{j}\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), v_{j}\right)\right\|(j \in\{1, \ldots, n\})
$$

and

$$
g(\tau, w)=\left\|d_{2} \varphi\left(\tau, x_{0}(\tau)+w, u_{0}(\tau)\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)\right\|
$$

Since the function

$$
(\tau, w, v) \in I \times \mathcal{W} \times \mathrm{cl} V \longmapsto d_{2} \varphi(\tau, w, v) \in\left(\mathcal{W}, R^{m}\right)^{*}
$$

is continuous, we can apply Lemma 2, given in [5], and conclude that

$$
\lim _{s \rightarrow 0} \sup \left\{g_{j}(\tau, w) \mid \tau \in I, w \in \mathcal{W},\|w\| \leq s\right\}=0 \text { for each } j \in\{1, \ldots, n\}
$$

and that

$$
\lim _{s \rightarrow 0} \sup \{g(\tau, w) \mid \tau \in I, w \in \mathcal{W},\|w\| \leq s\}=0
$$

Consequently, there is a number $\delta>0$ such that

$$
\sum_{j=1}^{n} \sup \left\{g_{j}(\tau, w) \mid \tau \in I, w \in \mathcal{W},\|w\| \leq \delta\right\}<\varepsilon /(2 T)
$$

and

$$
\sup \{g(\tau, w) \mid \tau \in I, w \in \mathcal{W},\|w\| \leq \delta\}<\varepsilon /(2 T)
$$

Now let $x \in C(I, \mathcal{W})$ be any function satisfying $\left\|x-x_{0}\right\|<\delta$. Fix any $t \in B_{+}^{n}\left(r_{0}\right)$. Then we have

$$
\begin{aligned}
& \qquad\left\|\left[d_{1} f\left(x, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, \omega_{2}(t)\right)\right] y\right\| \\
& =\left\|\int_{0}^{T}\left[d_{2} \varphi\left(\tau, x(\tau), \omega_{2}(t)(\tau)\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), \omega_{2}(t)(\tau)\right)\right] y(\tau) d \tau\right\| \\
& \leq \int_{0}^{T}\left\|d_{2} \varphi\left(\tau, x(\tau), \omega_{2}(t)(\tau)\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), \omega_{2}(t)(\tau)\right)\right\| d \tau \\
& \quad \leq \sum_{j=1}^{n} \int_{0}^{T}\left\|d_{2} \varphi\left(\tau, x(\tau), v_{j}\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), v_{j}\right)\right\| d \tau \\
& \quad+\int_{0}^{T}\left\|d_{2} \varphi\left(\tau, x(\tau), u_{0}(\tau)\right)-d_{2} \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)\right\| d \tau \\
& \leq T \sum_{j=1}^{n} \sup \left\{g_{j}\left(\tau, x(\tau)-x_{0}(\tau)\right) \mid \tau \in I\right\}+T \sup \left\{g\left(\tau, x(\tau)-x_{0}(\tau)\right) \mid \tau \in I\right\}<\varepsilon \\
& \text { for all } y \in C(I, \mathcal{W}) \operatorname{satisfying}\|y\| \leq 1 . \text { This result implies }
\end{aligned}
$$

$$
\left\|d_{1} f\left(x, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, \omega_{2}(t)\right)\right\| \leq \varepsilon
$$

Since t was arbitrarily chosen in $B_{+}^{n}\left(r_{0}\right)$, we have

$$
\sup \left\{\left\|d_{1} f\left(x, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, \omega_{2}(t)\right)\right\| \mid t \in B_{+}^{n}\left(r_{0}\right)\right\} \leq \varepsilon
$$

Consequently, it is true that

$$
\lim _{x \rightarrow x_{0}} \sup \left\{\left\|d_{1} f\left(x, \omega_{2}(t)\right)-d_{1} f\left(x_{0}, \omega_{2}(t)\right)\right\| \mid t \in B_{+}^{n}\left(r_{0}\right)\right\}=0
$$

Condition (x): We denote

$$
P_{\alpha} t=t_{1} \alpha^{1}+\ldots+t_{n} \alpha^{n} \text { for all } t=\left(t_{1}, \ldots, t_{n}\right) \in B_{+}^{n}\left(r_{0}\right)
$$

We claim that the function

$$
t \in B_{+}^{n}\left(r_{0}\right) \longmapsto f\left(x_{0}, \omega_{2}(t)\right)-f\left(x_{0}, u_{0}\right)-P_{\alpha} t \in R^{m}
$$

satisfies

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{\|t\|}\left[f\left(x_{0}, \omega_{2}(t)\right)-f\left(x_{0}, u_{0}\right)-P_{\alpha} t\right]=0 \tag{13}
\end{equation*}
$$

To prove this, let the number $\varepsilon>0$ be arbitrarily given. Since the functions

$$
\tau \in L \longmapsto \varphi\left(\tau, x_{0}(\tau), v_{j}\right) \in R^{m} \quad(j \in\{1, \ldots, n\})
$$

and

$$
\tau \in L \longmapsto \varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right) \in R^{m}
$$

are continuous on the compact set L, they are uniformly continuous on this set. Thus there exists a number $\delta>0$ such that for all $j \in\{1, \ldots, n\}$ and all $\tau \in L$ satisfying $\left|\tau-\tau_{j}\right|<\delta$ the following inequalities hold:

$$
\begin{gathered}
\left\|\varphi\left(\tau, x_{0}(\tau), v_{j}\right)-\varphi\left(\tau_{j}, x_{0}\left(\tau_{j}\right), v_{j}\right)\right\|<\varepsilon /(2 n) \\
\left\|\varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)-\varphi\left(\tau_{j}, x_{0}\left(\tau_{j}\right), u_{0}\left(\tau_{j}\right)\right)\right\|<\varepsilon /(2 n)
\end{gathered}
$$

These inequalities imply

$$
\begin{equation*}
\left\|\varphi\left(\tau, x_{0}(\tau), v_{j}\right)-\varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)-\alpha^{j}\right\|<\varepsilon / n \tag{14}
\end{equation*}
$$

for all $j \in\{1, \ldots, n\}$ and all $\tau \in L$ satisfying $\left|\tau-\tau_{j}\right|<\delta$.
Now let $t \in B_{+}^{n}\left(r_{0}\right) \backslash\{0\}$ be any point such that $\|t\|<\delta / n$. Then we have

$$
\begin{gather*}
\left\|f\left(x_{0}, \omega_{2}(t)\right)-f\left(x_{0}, u_{0}\right)-P_{\alpha} t\right\| \\
=\left\|\sum_{j=1}^{n} \int_{L_{j}}\left[\varphi\left(\tau, x_{0}(\tau), v_{j}\right)-\varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)-\alpha^{j}\right] d \tau\right\| \\
\leq t_{1} A_{1}+\ldots+t_{n} A_{n}, \tag{15}
\end{gather*}
$$

where

$$
A_{j}=\max \left\{\left\|\varphi\left(\tau, x_{0}(\tau), v_{j}\right)-\varphi\left(\tau, x_{0}(\tau), u_{0}(\tau)\right)-\alpha^{j}\right\| \mid \tau \in L_{j}\right\}
$$

for $j \in\{1, \ldots, n\}$. Next take into consideration that, if $\tau \in L_{j}$ for some $j \in\{1, \ldots, n\}$, then τ lies in L and satisfies

$$
\begin{equation*}
\left|\tau-\tau_{j}\right| \leq a_{j} \leq t_{1}+\ldots+t_{n} \leq n\|t\|<\delta . \tag{16}
\end{equation*}
$$

Consequently, (14) implies $A_{j}<\varepsilon / n$ for all $j \in\{1, \ldots, n\}$. In view of this result, we get from (15) that

$$
\left\|f\left(x_{0}, \omega_{2}(t)\right)-f\left(x_{0}, u_{0}\right)-P_{\alpha} t\right\|<\varepsilon\left(t_{1}+\ldots+t_{n}\right) / n \leq \varepsilon\|t\|
$$

and hence

$$
\left\|\frac{1}{\|t\|}\left[f\left(x_{0}, \omega_{2}(t)\right)-f\left(x_{0}, u_{0}\right)-P_{\alpha} t\right]\right\|<\varepsilon .
$$

Thus (13) is true, as claimed.
Next, we denote

$$
P_{\beta} t=t_{1} \beta^{1}+\ldots+t_{n} \beta^{n} \text { for all } t=\left(t_{1}, \ldots, t_{n}\right) \in B_{+}^{n}\left(r_{0}\right) .
$$

A reasoning similar to that used in the proof of (13) reveals that the function

$$
t \in B_{+}^{n}\left(r_{0}\right) \longmapsto F\left(x_{0}, \omega_{2}(t)\right)+P_{\beta} t \in C(I, \mathcal{W})
$$

satisfies

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{\|t\|}\left[F\left(x_{0}, \omega_{2}(t)\right)+P_{\beta} t\right]=0 \tag{17}
\end{equation*}
$$

Indeed, let the number $\varepsilon>0$ be arbitrarily given. Since the functions

$$
(\sigma, \tau) \in I \times L \longmapsto \phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right) \in \mathcal{W} \quad(j \in\{1, \ldots, n\})
$$

and

$$
(\sigma, \tau) \in I \times L \longmapsto \phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right) \in \mathcal{W}
$$

are continuous on the compact set $I \times L$, they are uniformly continuous on this set. Thus there exists a number $\delta>0$ such that for all $j \in\{1, \ldots, n\}$, all $\sigma \in I$, and all $\tau \in L$ satisfying $\left|\tau-\tau_{j}\right|<\delta$ the following inequalities hold:

$$
\begin{gathered}
\left\|\phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)-\phi\left(\sigma, \tau_{j}, x_{0}\left(\tau_{j}\right), v_{j}\right)\right\|<\varepsilon /(2 n) \\
\left\|\phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)-\phi\left(\sigma, \tau_{j}, x_{0}\left(\tau_{j}\right), u_{0}\left(\tau_{j}\right)\right)\right\|<\varepsilon /(2 n)
\end{gathered}
$$

These inequalities imply

$$
\begin{equation*}
\left\|\phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)-\phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)+\beta^{j}(\sigma)\right\|<\varepsilon / n \tag{18}
\end{equation*}
$$

for all $j \in\{1, \ldots, n\}$, all $\sigma \in I$, and all $\tau \in L$ satisfying $\left|\tau-\tau_{j}\right|<\delta$.

A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM
Now, let $t \in B_{+}^{n}\left(r_{0}\right) \backslash\{0\}$ be any point such that $\|t\|<\delta / n$. Then we have

$$
\begin{gather*}
\left\|F\left(x_{0}, \omega_{2}(t)\right)(\sigma)+\left(P_{\beta} t\right)(\sigma)\right\| \\
=\left\|\sum_{j=1}^{n} \int_{L_{j}}\left[\phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)-\phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)+\beta^{j}(\sigma)\right] d \tau\right\| \\
\leq t_{1} B_{1}(\sigma)+\ldots+t_{n} B_{n}(\sigma) \tag{19}
\end{gather*}
$$

for every $\sigma \in I$, where

$$
B_{j}(\sigma)=\max \left\{\left\|\phi\left(\sigma, \tau, x_{0}(\tau), u_{0}(\tau)\right)-\phi\left(\sigma, \tau, x_{0}(\tau), v_{j}\right)+\beta^{j}(\sigma)\right\| \mid \tau \in L_{j}\right\}
$$

for $j \in\{1, \ldots, n\}$. As before, now take into consideration that if $\tau \in L_{j}$ for some index $j \in\{1, \ldots, n\}$, then τ lies in L and satisfies (16). Consequently, (18) implies

$$
B_{j}(\sigma)<\varepsilon / n \text { for all } j \in\{1, \ldots, n\} \text { and all } \sigma \in I
$$

In view of this result, we get from (19) that

$$
\left\|F\left(x_{0}, \omega_{2}(t)\right)(\sigma)+\left(P_{\beta} t\right)(\sigma)\right\|<\varepsilon\left(t_{1}+\ldots+t_{n}\right) / n \leq \varepsilon\|t\|
$$

for all $\sigma \in I$. From this it follows that

$$
\left\|F\left(x_{0}, \omega_{2}(t)\right)+P_{\beta} t\right\|<\varepsilon\|t\|,
$$

and hence

$$
\left\|\frac{1}{\|t\|}\left[F\left(x_{0}, \omega_{2}(t)\right)+P_{\beta} t\right]\right\|<\varepsilon .
$$

Thus (17) is true, as claimed.
From (17) we obtain

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{\|t\|}\left[\omega_{0}(t)+\sum_{j=1}^{n} t_{j} A^{-1} \beta^{j}\right]=0 \tag{20}
\end{equation*}
$$

where

$$
\omega_{0}(t)=A^{-1} F\left(x_{0}, \omega_{2}(t)\right) \text { for all } t \in B_{+}^{n}\left(r_{0}\right) .
$$

Obviously, (20) yields

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{\|t\|}\left[d_{1} f\left(x_{0}, u_{0}\right) \omega_{0}(t)+\sum_{j=1}^{n} t_{j} d_{1} f\left(x_{0}, u_{0}\right) \circ A^{-1} \beta^{j}\right]=0 . \tag{21}
\end{equation*}
$$

Finally, note that the point $P t$ defined by

$$
P t=t_{1} d^{1}+\ldots+t_{n} d^{n} \text { for all } t=\left(t_{1}, \ldots, t_{n}\right) \in R^{n},
$$

in our case can be written under the form

$$
P t=P_{\alpha} t+\sum_{j=1}^{n} t_{j} d_{1} f\left(x_{0}, u_{0}\right) \circ A^{-1} \beta^{j} .
$$

Accordingly, we conclude from (13) and (21) that

$$
\lim _{t \rightarrow 0} \frac{1}{\|t\|}\left[f\left(x_{0}, \omega_{2}(t)\right)-f\left(x_{0}, u_{0}\right)-P t-d_{1} f\left(x_{0}, u_{0}\right) \omega_{0}(t)\right]=0
$$

Summing up, all the hypotheses of Theorem 1 are fulfilled. By applying this theorem, it follows that there is a vector

$$
\lambda^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}\right) \in K_{1}^{*} \times K_{2}^{*} \times K_{3}^{*} \backslash\left\{\left(0_{1}, 0_{2}, 0_{3}\right)\right\}
$$

satisfying the inequality

$$
\begin{equation*}
\left\langle d(\tau, v), \lambda^{*}\right\rangle \leq 0 \text { whenever }(\tau, v) \in I_{0} \times V \tag{22}
\end{equation*}
$$

as well as the equality (3).
From (22) we obtain (2). Indeed, to see this, we fix any $\tau \in I_{0}$. Since we have

$$
A^{-1} \phi\left(\cdot, \tau, x_{0}(\tau), v\right)=h(\cdot ; \tau, v) \text { for all } v \in V,
$$

it follows that

$$
d_{1} f\left(x_{0}, u_{0}\right) \circ A^{-1} \phi\left(\cdot, \tau, x_{0}(\tau), v\right)=\int_{0}^{T} d_{2} \varphi\left(\sigma, x_{0}(\sigma), u_{0}(\sigma)\right) h(\sigma ; \tau, v) d \sigma
$$

In view of this result, $H(\tau, \cdot)$ can be rewritten as follows:

$$
H(\tau, v)=\left\langle\varphi\left(\tau, x_{0}(\tau), v\right)+d_{1} f\left(x_{0}, u_{0}\right) \circ A^{-1} \phi\left(\cdot, \tau, x_{0}(\tau), v\right), \lambda^{*}\right\rangle
$$

for every $v \in V$. Therefore we have

$$
H(\tau, v)-H\left(\tau, u_{0}(\tau)\right)=\left\langle d(\tau, v), \lambda^{*}\right\rangle \text { for all } v \in V
$$

In virtue of (22) it follows that

$$
H(\tau, v) \leq H\left(\tau, u_{0}(\tau)\right) \text { for all } v \in V
$$

Consequently, the equality (2) holds, which completes the proof.

References

[1] W. W. Breckner, Derived sets for weak multiobjective optimization problems with state and control variables, J. Optim. Theory Appl. 93 (1997), 73-102.
[2] M. R. Hestenes, On variational theory and optimal control theory, SIAM J. Control 3 (1965), 23-48.
[3] M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley and Sons, New York, 1966.
[4] M. R. Hestenes, Optimization Theory, John Wiley and Sons, New York, 1975.
[5] W. H. Schmidt, Notwendige Optimalitätsbedingungen für Prozesse mit zeitvariablen Integralgleichungen in Banachräumen, Z. Angew. Math. Mech. 60 (1980), 595-608

Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

