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A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL
CONTROL PROBLEM

WOLFGANG W. BRECKNER

Rezumat. Un principiu de maxim pentru o problemă

vectorială de control optimal. Ca aplicaţie a unei reguli

abstracte a multiplicatorilor s-a stabilit ı̂n lucrarea [1] un prin-

cipiu de maxim pentru o problemă vectorială de control optimal

guvernată de o ecuaţie integrală de tip Fredholm. Pentru a nu

mări excesiv lungimea lucrării [1], demonstraţia acestui prin-

cipiu a fost acolo doar schiţată. În prezenta lucrare se dă acum

demonstraţia completă.

1. Introduction

In the paper [1] we have established multiplier rules for so-called weak dy-

namic multiobjective optimization problems by using a suitable generalization of the

derived sets introduced by M. R. Hestenes [2], [3], [4] for scalar optimization prob-

lems. Also in that paper we have used the obtained multiplier rules to state necessary

conditions for the local solutions of an abstract multiobjective optimal control prob-

lem. Furthermore, we have noticed that these very general optimality conditions can

yield a maximum principle for a multiobjective optimal control problem governed by

an integral equation of Fredholm type (Theorem 5.1 in [1]). But, in order to avoid

an excessive length of the paper, in [1] we have limited ourselves only to a sketch of

this application. The goal of the present paper is to give the complete proof of this

specific maximum principle.
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2. Notations

Throughout this paper, N is the set of all positive integers, R is the set of all

real numbers, and for every m ∈ N , Rm is the usual m-dimensional Euclidean space

of all m-tuples v = (v1, . . . , vm) of real numbers. The subset of Rm, consisting of all

vectors v = (v1, . . . , vm) with vj ≥ 0 for each j ∈ {1, . . . ,m}, is denoted by Rm
+ . The

inner product of two vectors v, w ∈ Rm is denoted by 〈v, w〉. If v ∈ Rm, then ‖v‖

marks its Euclidean norm. Given any number r > 0, we put

Bm
+ (r) =

{
v ∈ Rm

+

∣∣ ‖v‖ ≤ r
}
.

If X and Y are normed linear spaces over the same field, then (X ,Y)∗ denotes

the normed linear space of all continuous linear mappings A : X → Y. Given a point

x0 in a normed linear space and a number r > 0, we denote by B(x0, r) the closed

ball centered at x0 with radius r.

If M is a subset of a normed linear space, then int M designates the interior

of M and cl M the closure of M .

Finally, we mention some notations regarding functions. The Fréchet deri-

vative of a function f of a single variable is denoted by df , while the partial Fréchet

derivative with respect to the nth variable of a function f of several variables is

denoted by dnf . If x is a point in a linear space X and A is a linear mapping from

X into another linear space, then Ax denotes the value of A at x.

3. A Necessary Optimality Condition

Let X be a Banach space, which does not reduce to its zero-vector, let X be a

nonempty open subset of X , let U be a nonempty set, let m1,m2 and m3 be positive

integers, and let

f1 : X × U → Rm1 , f2 : X × U → Rm2 , f3 : X × U → Rm3

be vector-valued functions which are Fréchet differentiable at each point (x, u) in

X ×U with respect to the first variable. Further, let K1, K2 and K3 be convex cones

in the spaces Rm1 , Rm2 and Rm3 , respectively, satisfying the following assumptions:

int K1 6= ∅, int K2 6= ∅, K2 and K3 are closed. (1)
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For each i ∈ {1, 2, 3}, we define by

K∗
i = {w ∈ Rmi | ∀ v ∈ Ki : 〈v, w〉 ≥ 0}

the dual cone of Ki.

Let F : X × U → X be a function which is Fréchet differentiable at each

point (x, u) ∈ X×U with respect to the first variable, and let S be the set defined by

S = {(x, u) ∈ X × U | F (x, u) = 0, f2(x, u) ∈ K2, f3(x, u) ∈ K3}.

A point (x0, u0) ∈ X × U is said to be a:

(i) weakly K1-maximal point of f1 over S if (x0, u0) ∈ S and

[f1(x0, u0) + int K1] ∩ f1(S) = ∅;

(ii) local weakly K1-maximal point of f1 over S if (x0, u0) ∈ S and if there is

a neighbourhood V of x0 such that

[f1(x0, u0) + int K1] ∩ f1(S ∩ (V × U)) = ∅.

The problem of finding the weakly K1-maximal points of f1 over S is called

a weak multiobjective optimal control problem and is expressed in short as

(CP) f1(x, u) −→K1 max weakly

subject to (x, u) ∈ X × U, F (x, u) = 0, f2(x, u) ∈ K2, f3(x, u) ∈ K3.

The introduction of problem (CP) allows one to call the weakly K1-maximal

points of f1 over S solutions to problem (CP). By analogy, the local weakly K1-

maximal points of f1 over S can be named local solutions to problem (CP).

As an application of multiplier rules stated for arbitrary weak dynamic mul-

tiobjective optimization problems, in Section 4 of the paper [1] we have derived ne-

cessary optimality conditions for the local solutions to problem (CP). One of the

theorems given there will be recalled here. In order to formulate shorter this theo-

rem, we put m = m1 + m2 + m3 and conceive the corresponding space Rm as the

product space Rm1 × Rm2 × Rm3 , i.e. any vector v ∈ Rm is identified with a cer-

tain triple (v1, v2, v3) ∈ Rm1 × Rm2 × Rm3 . In particular, the zero-vector in Rm
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is 0 = (01, 02, 03), where 0i (i ∈ {1, 2, 3}) is the zero-vector in Rmi . Further, we

consider the vector-valued function f : X × U → Rm defined by

f(x, u) = (f1(x, u), f2(x, u), f3(x, u)).

By using these notations, the following theorem is valid.

THEOREM 1 [1, Theorem 4.6]. Let (x0, u0) ∈ X ×U be a local solution to

problem (CP) for which the operator A = d1F (x0, u0) is bijective, and let D ⊆ Rm

be a non-empty set such that, for all n ∈ N and all n-tuples (d1, . . . , dn) of points

belonging to D, there exist a number r0 > 0 and a function ω2 : Bn
+(r0) → U satisfying

the following conditions:

(i) ω2(0) = u0;

(ii) for each x ∈ X, the function t ∈ Bn
+(r0) 7−→ F (x, ω2(t)) ∈ X is continuous

on Bn
+(r0);

(iii) the function t ∈ Bn
+(r0) 7−→ d1F (x0, ω2(t)) ∈ (X ,X )∗ is continuous at 0;

(iv) limx→x0 sup
{
‖d1F (x, ω2(t))− d1F (x0, ω2(t))‖

∣∣ t ∈ Bn
+(r0)

}
= 0;

(v) for each x ∈ X, the function t ∈ Bn
+(r0) 7−→ f(x, ω2(t)) ∈ Rm is continu-

ous on Bn
+(r0);

(vi) there is a number a > 0 such that B(x0, a) ⊆ X and such that

sup
{
‖d1f(x, ω2(t))‖

∣∣ x ∈ B(x0, a), t ∈ Bn
+(r0)

}
< ∞;

(vii) sup
{
‖F (x0, ω2(t))‖ / ‖t‖

∣∣∣ t ∈ Bn
+(r0), t 6= 0

}
< ∞;

(viii) sup
{
‖d1f(x0, ω2(t))− d1f(x0, u0)‖ / ‖t‖

∣∣∣ t ∈ Bn
+(r0), t 6= 0

}
< ∞;

(ix) limx→x0 sup
{
‖d1f(x, ω2(t))− d1f(x0, ω2(t))‖

∣∣ t ∈ Bn
+(r0)

}
= 0;

(x) limt→0
1
‖t‖

[
f(x0, ω2(t))− f(x0, u0)− Pt− d1f(x0, u0)ω0(t)

]
= 0, where

Pt = t1d
1 + . . . + tndn for all t = (t1, . . . , tn) ∈ Rn

and

ω0(t) = A−1F (x0, ω2(t)) for all t ∈ Bn
+(r0).
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Then there exists a vector

(λ∗1, λ
∗
2, λ

∗
3) ∈ K∗

1 ×K∗
2 ×K∗

3 \ {(01, 02, 03)}

such that

sup
{
〈d1, λ

∗
1〉+ 〈d2, λ

∗
2〉+ 〈d3, λ

∗
3〉

∣∣ (d1, d2, d3) ∈ D
}
≤ 0

and

〈f2(x0, u0), λ∗2〉 = 0.

hold.

4. The Maximum Principle

In this section we apply Theorem 1 to derive a maximum principle for a

multiobjective optimal control problem governed by an integral equation of Fredholm

type.

In what follows we suppose that T is a positive number, V is a non-empty

subset of a real Banach space V, and W is a real Banach space which does not reduce

to its zero-vector. Let I denote the interval [0, T ], let C(I,W) be the linear space of

all continuous functions x : I →W endowed with the norm

‖x‖ = max {‖x(τ)‖ | τ ∈ I},

and let PC(I, V ) be the set of all piecewise continuous functions u : I → V that are

continuous at 0 and continuous on the left at each point belonging to the interval

]0, T ].

Further, let

ϕi : I ×W × cl V → Rmi (i ∈ {1, 2, 3})

be functions that are continuous, Fréchet differentiable with respect to the second

variable and such that the mappings

d2ϕi : I ×W × cl V → (W, Rmi)∗ (i ∈ {1, 2, 3})

are continuous, and let

φ : I × I ×W × cl V →W
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be a function which is continuous, Fréchet differentiable with respect to the third

variable, and for which the mapping

d3φ : I × I ×W × cl V → (W,W)∗

is continuous and has the property that the family{
d3φ(σ, τ, ·, v) : W → (W,W)∗

∣∣ (σ, τ, v) ∈ I × I × V
}

is uniformly equicontinuous on each closed bounded subset of W.

As in Section 3, let K1, K2 and K3 be convex cones in the spaces Rm1 , Rm2

and Rm3 , respectively, satisfying the assumptions specified in (1).

The problem we will discuss in this section is:

(ECP)

T∫
0

ϕ1(τ, x(τ), u(τ)) dτ −→K1 max weakly

subject to

x ∈ C(I,W), u ∈ PC(I, V ),

x(σ) =

T∫
0

φ(σ, τ, x(τ), u(τ)) dτ (σ ∈ I),

T∫
0

ϕ2(τ, x(τ), u(τ)) dτ ∈ K2,

T∫
0

ϕ3(τ, x(τ), u(τ)) dτ ∈ K3.

This problem is a special case of the problem (CP) investigated in the preceding

section. To see this, it suffices to define the functions

fi : C(I,W)× PC(I, V ) → Rmi (i ∈ {1, 2, 3})

by

fi(x, u) =

T∫
0

ϕi(τ, x(τ), u(τ)) dτ (i ∈ {1, 2, 3}),

on the one hand, and

F : C(I,W)× PC(I, V ) → C(I,W)

by
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F (x, u)(σ) = x(σ)−
T∫

0

φ(σ, τ, x(τ), u(τ)) dτ (σ ∈ I),

on the other hand, as well as to take X = X = C(I,W) and U = PC(I, V ).

Furthermore, it should be emphasized that the functions fi (i ∈ {1, 2, 3}) and

F introduced above are Fréchet differentiable with respect to the first variable. The

corresponding partial Fréchet derivatives are given by

d1fi(x, u)y =

T∫
0

d2ϕi(τ, x(τ), u(τ))y(τ) dτ (i ∈ {1, 2, 3}),

(d1F (x, u)y)(σ) = y(σ)−
T∫

0

d3φ(σ, τ, x(τ), u(τ))y(τ) dτ (σ ∈ I),

for all (x, u) ∈ C(I,W)× PC(I, V ) and all y ∈ C(I,W). Thus it makes sense to try

to specialize Theorem 1 to problem (ECP).

To this end we define the functions

ϕ : I ×W × cl V → Rm and f : C(I,W)× PC(I, V ) → Rm

by

ϕ(τ, w, v) = (ϕ1(τ, w, v), ϕ2(τ, w, v), ϕ3(τ, w, v)),

f(x, u) = (f1(x, u), f2(x, u), f3(x, u)),

respectively. Then we have

f(x, u) =

T∫
0

ϕ(τ, x(τ), u(τ)) dτ, d1f(x, u)y =

T∫
0

d2ϕ(τ, x(τ), u(τ))y(τ) dτ

for all (x, u) ∈ C(I,W)× PC(I, V ) and all y ∈ C(I,W).

Taking into account all these assumptions and considerations concerning the

problem (ECP), we get from Theorem 1 the following result.

THEOREM 2 [1, Theorem 5.1]. Let (x0, u0) ∈ C(I,W) × PC(I, V ) be a

local solution to problem (ECP) satisfying the following conditions:
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(j) for each y ∈ C(I,W) the integral equation

x = y +

T∫
0

d3φ(·, τ, x0(τ), u0(τ))x(τ) dτ

has a unique solution x ∈ C(I,W);

(jj) there is a number a > 0 such that

sup
{
‖d2ϕ(τ, x(τ), v)‖

∣∣ (τ, x, v) ∈ I × C(I,W)× V, ‖x− x0‖ ≤ a
}

< ∞.

Then there exists a vector

λ∗ = (λ∗1, λ
∗
2, λ

∗
3) ∈ K∗

1 ×K∗
2 ×K∗

3 \ {(01, 02, 03)}

such that

max {H(τ, v) | v ∈ V } = H(τ, u0(τ)) for all τ ∈ I0 (2)

and

〈
T∫

0

ϕ2(τ, x0(τ), u0(τ)) dτ, λ∗2 〉 = 0, (3)

where I0 is the set of all points τ ∈ ]0, T ] at which u0 is continuous, H(τ, ·) : V → R

is the function defined by

H(τ, v) = 〈 ϕ(τ, x0(τ), v) +

T∫
0

d2ϕ(σ, x0(σ), u0(σ))h(σ; τ, v) dσ, λ∗ 〉,

and h(· ; τ, v) : I →W denotes the solution of the variational equation

x = φ(·, τ, x0(τ), v) +

T∫
0

d3φ(·, t, x0(t), u0(t))x(t) dt.

Proof. At first we notice that the operator A = d1F (x0, u0) is bijective

because of condition (j). Next we construct a subset D of the space Rm which

satisfies the hypotheses of Theorem 1. For this purpose we associate with each pair

(τ, v) ∈ I0 × V the following expressions:

α(τ, v) = ϕ(τ, x0(τ), v)− ϕ(τ, x0(τ), u0(τ)),

β(τ, v) = φ(·, τ, x0(τ), v)− φ(·, τ, x0(τ), u0(τ)),

d(τ, v) = α(τ, v) + d1f(x0, u0) ◦A−1β(τ, v).
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After that we put

D = {d(τ, v) | (τ, v) ∈ I0 × V }.

Now, let n be any positive integer, and let dj = d(τj , vj) (j ∈ {1, . . . , n})

be points belonging to D. For each j ∈ {1, . . . , n} we set αj = α(τj , vj) and βj =

β(τj , vj). Then we have

dj = αj + d1f(x0, u0) ◦A−1βj for all j ∈ {1, . . . , n}.

Without loss of the generality we can assume that the points d1, . . . , dn are in such a

manner numbered that

0 < τ1 ≤ τ2 ≤ . . . ≤ τn ≤ T.

Put τ0 = 0. Then choose a number r > 0 satisfying

r < τj+1 − τj whenever j ∈ {0, . . . , n− 1} and τj < τj+1 (4)

and

[τj − r, τj ] ⊆ I0 for all j ∈ {1, . . . , n}.

Set r0 = r/n.

Next we define a function ω2 : Bn
+(r0) → PC(I, V ). Fix any point t =

(t1, . . . , tn) in Bn
+(r0), Then we have

t1 + . . . + tn ≤ n‖t‖ ≤ r. (5)

For each j ∈ {1, . . . , n} we denote

Nj =
{
k ∈ N

∣∣ j < k ≤ n and τk = τj

}
and

aj =

 tj if Nj = ∅

tj +
∑

k∈Nj
tk if Nj 6= ∅.

It is easily seen that (4) and (5) imply

0 < τj − aj ≤ τj − aj + tj ≤ T for all j ∈ {1, . . . , n}. (6)

When n > 1, then we additionally have

τj − aj + tj ≤ τj+1 − aj+1 for all j ∈ {1, . . . , n− 1}. (7)
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From (6) and (7) it follows that the intervals Ij (j ∈ {1, . . . , n}), defined by

Ij = ]τj − aj , τj − aj + tj ] for every j ∈ {1, . . . , n},

satisfy

Ij ⊆ I for all j ∈ {1, . . . , n},

and

Ij ∩ Ik = ∅ for all j, k ∈ {1, . . . , n}, j 6= k.

These properties of the intervals Ij (j ∈ {1, . . . , n}) enable us to define the function

ω2(t) : I → V by

ω2(t)(τ) =

 vj if τ ∈ Ij for some j ∈ {1, . . . , n}

u0(τ) if τ ∈ I \ (I1 ∪ . . . ∪ In).

In view of this definition we obviously have ω2(t) ∈ PC(I, V ).

In what follows we prove that the number r0 and the function ω2 defined

above satisfy the conditions (i) – (x) of Theorem 1. In the proofs of some of these

conditions we shall use the compact set

L = [τ1 − r, τ1] ∪ . . . ∪ [τn − r, τn],

which is enclosed in I0. Besides, given any t = (t1, . . . , tn) ∈ Bn
+(r0), we shall need

the intervals

Lj = [τj − aj , τj − aj + tj ], where j ∈ {1, . . . , n}.

They satisfy

Lj ⊆ [τj − r, τj ] ⊆ L for all j ∈ {1, . . . , n}.

Indeed, let j be any index in {1, . . . , n}. Since tj ≤ aj , we have Lj ⊆ [τj − aj , τj ].

On the other hand, the inequality aj ≤ t1 + . . . + tn holds. Consequently, (5) implies

aj ≤ r, whence [τj − aj , τj ] ⊆ [τj − r, τj ]. Thus we have Lj ⊆ [τj − r, τj ] ⊆ L, as

claimed.

Now we consecutively prove that the conditions (i) – (x) occurring in Theorem

1 are satisfied.

Condition (i): If t = 0, then Ij = ∅ for every j ∈ {1, . . . , n}. Thus we have

ω2(0) = u0.
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Condition (ii): We fix a function x ∈ C(I,W). Since the functions

(σ, τ) ∈ I × L 7−→ φ(σ, τ, x(τ), vj) ∈ W (j ∈ {1, . . . , n})

and

(σ, τ) ∈ I × L 7−→ φ(σ, τ, x(τ), u0(τ)) ∈ W

are continuous on the compact set I × L, there exists a number c > 0 such that

‖φ(σ, τ, x(τ), vj)‖+ ‖φ(σ, τ, x(τ), u0(τ))‖ ≤ c (8)

for all (σ, τ) ∈ I × L and all j ∈ {1, . . . , n}.

Let t1 = (t11, . . . , t
1
n) and t2 = (t21, . . . , t

2
n) be points in Bn

+(r0). For every

j ∈ {1, . . . , n} we put

Lj1 = [τj − aj1, τj − aj1 + t1j ], Lj2 = [τj − aj2, τj − aj2 + t2j ],

Mj = {τj − (1− τ)aj1 − τaj2 | τ ∈ [0, 1]},

where aj1 and aj2 are the numbers used in the definition of the function ω2(t1) and

ω2(t2), respectively. Obviously, we have

|aj1 − aj2| ≤ |t1j − t2j |+
∑

k∈Nj

|t1k − t2k| ≤ n ‖t1 − t2‖ (9)

for every j ∈ {1, . . . , n}. Fix any σ ∈ I. In virtue of (8) and (9) it follows that∥∥∥ ∫
Lj1

φ(σ, τ, x(τ), vj) dτ −
∫

Lj2

φ(σ, τ, x(τ), vj) dτ
∥∥∥ ≤ c(2|aj1 − aj2|+ |t1j − t2j |)

≤ c(2n + 1) ‖t1 − t2‖

and ∥∥∥ ∫
Mj

φ(σ, τ, x(τ), u0(τ)) dτ
∥∥∥ ≤ c|aj1 − aj2| ≤ cn ‖t1 − t2‖

for all j ∈ {1, . . . , n}. Accordingly, we have

∥∥∥ τj∫
τj−1

φ(σ, τ, x(τ), ω2(t1)(τ)) dτ −
τj∫

τj−1

φ(σ, τ, x(τ), ω2(t2)(τ)) dτ
∥∥∥

≤
∥∥∥ ∫

Mj

φ(σ, τ, x(τ), u0(τ)) dτ
∥∥∥ +

∥∥∥ ∫
Lj1

φ(σ, τ, x(τ), vj) dτ −
∫

Lj2

φ(σ, τ, x(τ), vj) dτ
∥∥∥
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+
∑

k∈Nj

∥∥∥ ∫
Lk1

φ(σ, τ, x(τ), vk) dτ −
∫

Lk2

φ(σ, τ, x(τ), vk) dτ
∥∥∥ ≤ 2cn(n + 1) ‖t1 − t2‖

for every j ∈ {1, . . . , n} such that τj−1 < τj . Taking into account that

∥∥∥ T∫
0

φ(σ, τ, x(τ), ω2(t1)(τ)) dτ −
T∫

0

φ(σ, τ, x(τ), ω2(t2)(τ)) dτ
∥∥∥

≤
n∑

j=1

∥∥∥ τj∫
τj−1

φ(σ, τ, x(τ), ω2(t1)(τ)) dτ −
τj∫

τj−1

φ(σ, τ, x(τ), ω2(t2)(τ)) dτ
∥∥∥,

we obtain

∥∥∥ T∫
0

φ(σ, τ, x(τ), ω2(t1)(τ)) dτ −
T∫

0

φ(σ, τ, x(τ), ω2(t2)(τ)) dτ
∥∥∥

≤ 2cn2(n + 1) ‖t1 − t2‖.

Since σ ∈ I was arbitrarily chosen, this result implies

‖F (x, ω2(t1))− F (x, ω2(t2))‖ ≤ 2cn2(n + 1) ‖t1 − t2‖.

Thus the function t ∈ Bn
+(r0) 7−→ F (x, ω2(t)) ∈ C(I,W) is continuous on Bn

+(r0).

Condition (iii): Since the functions

(σ, τ) ∈ I × L 7−→ d3φ(σ, τ, x0(τ), vj) ∈ (W,W)∗ (j ∈ {1, . . . , n})

and

(σ, τ) ∈ I × L 7−→ d3φ(σ, τ, x0(τ), u0(τ)) ∈ (W,W)∗

are continuous on the compact set I × L, there exists a number c > 0 such that

‖d3φ(σ, τ, x0(τ), vj)− d3φ(σ, τ, x0(τ), u0(τ))‖ ≤ c (10)

for all (σ, τ) ∈ I × L and all j ∈ {1, . . . , n}.

Let the number ε > 0 be arbitrarily given. Let t ∈ Bn
+(r0) be such that

‖t‖ < ε/(cn). Fix any function y ∈ C(I,W) for which ‖y‖ ≤ 1. In virtue of (10), the

expression

g(σ) =
∥∥∥ T∫

0

[
d3φ(σ, τ, x0(τ), ω2(t)(τ))− d3φ(σ, τ, x0(τ), u0(τ))

]
y(τ) dτ

∥∥∥
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satisfies for all σ ∈ I

g(σ) ≤
n∑

j=1

∫
Lj

‖d3φ(σ, τ, x0(τ), vj)− d3φ(σ, τ, x0(τ), u0(τ))‖ · ‖y(τ)‖ dτ

≤ c(t1 + . . . + tn) ≤ cn ‖t‖ < ε.

On the other hand we have∥∥[
d1F (x0, ω2(t))− d1F (x0, u0)

]
y
∥∥ = max {g(σ) | σ ∈ I}.

Consequently, it follows that∥∥[
d1F (x0, ω2(t))− d1F (x0, u0)

]
y
∥∥ < ε.

Since y was arbitrarily chosen in C(I,W) such that ‖y‖ ≤ 1, we get

‖d1F (x0, ω2(t))− d1F (x0, u0)‖ ≤ ε.

So we have shown that the function

t ∈ Bn
+(r0) 7−→ d1F (x0, ω2(t)) ∈ (C(I,W), C(I,W))∗

is continuous at 0.

Condition (iv): Let the number ε > 0 be arbitrarily given. Since the family{
d3φ(σ, τ, ·, v) : W → (W,W)∗

∣∣ (σ, τ, v) ∈ I × I × V
}

is uniformly equicontinuous on the set

W =
{
w ∈ W

∣∣ ‖w‖ ≤ ‖x0‖+ 1
}
,

there is a number δ > 0 such that

‖d3φ(σ, τ, w1, v)− d3φ(σ, τ, w2, v)‖ < ε/T (11)

for all w1, w2 ∈ W with ‖w1 − w2‖ < δ and all (σ, τ, v) ∈ I × I × V . Now fix any

x ∈ C(I,W) such that ‖x − x0‖ < min {1, δ}. Then we have x(τ), x0(τ) ∈ W and

‖x(τ) − x0(τ)‖ < δ for all τ ∈ I. Next fix a point t ∈ Bn
+(r0) and, for short, denote

u = ω2(t). Then (11) implies

∥∥[
d1F (x, u)− d1F (x0, u)

]
y
∥∥ = max

{∥∥∥ T∫
0

G(σ, τ)y(τ) dτ
∥∥∥ ∣∣∣ σ ∈ I

}
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≤ max
{ T∫

0

∥∥G(σ, τ) dτ
∥∥ ∣∣ σ ∈ I

}
≤ ε

for all y ∈ C(I,W) satisfying ‖y‖ ≤ 1, where

G(σ, τ) = d3φ(σ, τ, x(τ), u(τ))− d3φ(σ, τ, x0(τ), u(τ)).

Consequently, we have

‖d1F (x, u)− d1F (x0, u)‖ ≤ ε.

Since t was arbitrarily chosen in Bn
+(r0), the following inequality is true:

sup
{
‖d1F (x, ω2(t))− d1F (x0, ω2(t))‖

∣∣ t ∈ Bn
+(r0)

}
≤ ε.

Thus we have

limx→x0 sup
{
‖d1F (x, ω2(t))− d1F (x0, ω2(t))‖

∣∣ t ∈ Bn
+(r0)

}
= 0.

Condition (v): We fix a function x ∈ C(I,W). Since the functions

τ ∈ L 7−→ ϕ(τ, x(τ), vj) ∈ Rm (j ∈ {1, . . . , n})

and

τ ∈ L 7−→ ϕ(τ, x(τ), u0(τ)) ∈ Rm

are continuous on the compact set L, there exists a number c > 0 such that

‖ϕ(τ, x(τ), vj)‖+ ‖ϕ(τ, x(τ), u0(τ))‖ ≤ c (12)

for all τ ∈ L and all j ∈ {1, . . . , n}.

Let t1 = (t11, . . . , t
1
n) and t2 = (t21, . . . , t

2
n) be points in Bn

+(r0). By using the

intervals Lj1, Lj2 and Mj (j ∈ {1, . . . , n}) that we previously employed to show that

condition (ii) is satisfied, it follows from (9) and (12) that∥∥∥ ∫
Lj1

ϕ(τ, x(τ), vj) dτ −
∫

Lj2

ϕ(τ, x(τ), vj) dτ
∥∥∥

≤ c(2|aj1 − aj2|+ |t1j − t2j |) ≤ c(2n + 1) ‖t1 − t2‖

and that ∥∥∥ ∫
Mj

ϕ(τ, x(τ), u0(τ)) dτ
∥∥∥ ≤ c|aj1 − aj2| ≤ cn ‖t1 − t2‖

38



A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM

for all j ∈ {1, . . . , n}. Accordingly, we have

∥∥∥ τj∫
τj−1

ϕ(τ, x(τ), ω2(t1)(τ)) dτ −
τj∫

τj−1

ϕ(τ, x(τ), ω2(t2)(τ)) dτ
∥∥∥

≤
∥∥∥ ∫

Mj

ϕ(τ, x(τ), u0(τ)) dτ
∥∥∥ +

∥∥∥ ∫
Lj1

ϕ(τ, x(τ), vj) dτ −
∫

Lj2

ϕ(τ, x(τ), vj) dτ
∥∥∥

+
∑

k∈Nj

∥∥∥ ∫
Lk1

ϕ(τ, x(τ), vk) dτ −
∫

Lk2

ϕ(τ, x(τ), vk) dτ
∥∥∥ ≤ 2cn(n + 1) ‖t1 − t2‖

for every j ∈ {1, . . . , n} such that τj−1 < τj . Taking into account that

‖f(x, ω2(t1))− f(x, ω2(t2))‖

=
∥∥∥ T∫

0

ϕ(τ, x(τ), ω2(t1)(τ)) dτ −
T∫

0

ϕ(τ, x(τ), ω2(t2)(τ)) dτ
∥∥∥

≤
n∑

j=1

∥∥∥ τj∫
τj−1

ϕ(τ, x(τ), ω2(t1)(τ)) dτ −
τj∫

τj−1

ϕ(τ, x(τ), ω2(t2)(τ)) dτ
∥∥∥,

we obtain

‖f(x, ω2(t1))− f(x, ω2(t2))‖ ≤ 2cn2(n + 1) ‖t1 − t2‖.

Thus the function t ∈ Bn
+(r0) 7−→ f(x, ω2(t)) ∈ Rm is continuous on Bn

+(r0).

Condition (vi): Set

B(x0, a) =
{
x ∈ C(I,W)

∣∣ ‖x− x0‖ ≤ a
}

and

c = sup
{
‖d2ϕ(τ, x(τ), v)‖

∣∣ τ ∈ I, x ∈ B(x0, a), v ∈ V
}
.

Let x be in B(x0, a), and let t be in Bn
+(r0). Since the function ω2(t) takes its values

in V , we have

‖d2ϕ(τ, x(τ), ω2(t)(τ)) y(τ)‖ ≤ ‖d2ϕ(τ, x(τ), ω2(t)(τ))‖ · ‖y(τ)‖ ≤ c ‖y‖

for all τ ∈ I and all y ∈ C(I,W). This result implies

‖d1f(x, ω2(t))y‖ =
∥∥∥ T∫

0

d2ϕ(τ, x(τ), ω2(t)(τ)) y(τ) dτ
∥∥∥

≤ T sup
{
‖d2ϕ(τ, x(τ), ω2(t)(τ)) y(τ)‖

∣∣ τ ∈ I
}
≤ cT ‖y‖
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for all y ∈ C(I,W). Hence, we have ‖d1f(x, ω2(t))‖ ≤ cT . Since x and t were

arbitrarily chosen in B(x0, a) and Bn
+(r0), respectively, it is true that

sup
{
‖d1f(x, ω2(t))‖

∣∣ x ∈ B(x0, a), t ∈ Bn
+(r0)

}
≤ cT.

Condition (vii): Since the functions

(σ, τ) ∈ I × L 7−→ φ(σ, τ, x0(τ), u0(τ)) ∈ W

and

(σ, τ) ∈ I × L 7−→ φ(σ, τ, x0(τ), vj) ∈ W (j ∈ {1, . . . , n})

are continuous on the compact set I × L, there exists a number c > 0 such that

‖φ(σ, τ, x0(τ), u0(τ))− φ(σ, τ, x0(τ), vj)‖ ≤ c

for all (σ, τ) ∈ I × L and all j ∈ {1, . . . , n}. Then we have

‖F (x0, ω2(t))‖

= max
{∥∥∥ T∫

0

[
φ(σ, τ, x0(τ), u0(τ))− φ(σ, τ, x0(τ), ω2(t)(τ))

]
dτ

∥∥∥ ∣∣∣ σ ∈ I
}

≤ max
{ n∑

j=1

∫
Lj

∥∥φ(σ, τ, x0(τ), u0(τ))− φ(σ, τ, x0(τ), vj)
∥∥ dτ

∣∣ σ ∈ I
}

≤ c(t1 + . . . + tn) ≤ cn ‖t‖

for all t ∈ Bn
+(r0), and thus

sup
{
‖F (x0, ω2(t))‖ / ‖t‖

∣∣ t ∈ Bn
+(r0), t 6= 0

}
≤ cn.

Condition (viii): Since the functions

τ ∈ L 7−→ d2ϕ(τ, x0(τ), vj) ∈ (W, Rm)∗ (j ∈ {1, . . . , n})

and

τ ∈ L 7−→ d2ϕ(τ, x0(τ), u0(τ)) ∈ (W, Rm)∗

are continuous on the compact set L, there exists a number c > 0 such that

‖d2ϕ(τ, x0(τ), vj)− d2ϕ(τ, x0(τ), u0(τ))‖ ≤ c
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for all τ ∈ L and all j ∈ {1, . . . , n}. Fix any t ∈ Bn
+(r0). Then we have

‖[d1f(x0, ω2(t))− d1f(x0, u0)] y‖

=
∥∥∥ T∫

0

[
d2ϕ(τ, x0(τ), ω2(t)(τ))− d2ϕ(τ, x0(τ), u0(τ))

]
y(τ) dτ

∥∥∥
≤

T∫
0

∥∥d2ϕ(τ, x0(τ), ω2(t)(τ))− d2ϕ(τ, x0(τ), u0(τ))
∥∥ dτ

=
n∑

j=1

∫
Lj

∥∥d2ϕ(τ, x0(τ), vj)− d2ϕ(τ, x0(τ), u0(τ))
∥∥ dτ

≤ c(t1 + . . . + tn) ≤ cn ‖t‖

for all y ∈ C(I,W) satisfying ‖y‖ ≤ 1. This result implies

‖d1f(x0, ω2(t))− d1f(x0, u0)‖ ≤ cn ‖t‖.

Since t was arbitrarily chosen in Bn
+(r0), we get

sup
{
‖d1f(x0, ω2(t))− d1f(x0, u0)‖ / ‖t‖

∣∣ t ∈ Bn
+(r0), t 6= 0

}
≤ cn.

Condition (ix): Let the number ε > 0 be arbitrarily given. For each (τ, w) ∈

I ×W we denote

gj(τ, w) = ‖d2ϕ(τ, x0(τ) + w, vj)− d2ϕ(τ, x0(τ), vj)‖ (j ∈ {1, . . . , n}),

and

g(τ, w) = ‖d2ϕ(τ, x0(τ) + w, u0(τ))− d2ϕ(τ, x0(τ), u0(τ))‖.

Since the function

(τ, w, v) ∈ I ×W × cl V 7−→ d2ϕ(τ, w, v) ∈ (W, Rm)∗

is continuous, we can apply Lemma 2, given in [5], and conclude that

lims→0 sup
{
gj(τ, w)

∣∣ τ ∈ I, w ∈ W, ‖w‖ ≤ s
}

= 0 for each j ∈ {1, . . . , n}

and that

lims→0 sup
{
g(τ, w)

∣∣ τ ∈ I, w ∈ W, ‖w‖ ≤ s
}

= 0.
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Consequently, there is a number δ > 0 such that
n∑

j=1

sup
{
gj(τ, w)

∣∣ τ ∈ I, w ∈ W, ‖w‖ ≤ δ
}

< ε/(2T )

and

sup
{
g(τ, w)

∣∣ τ ∈ I, w ∈ W, ‖w‖ ≤ δ
}

< ε/(2T ).

Now let x ∈ C(I,W) be any function satisfying ‖x − x0‖ < δ. Fix any

t ∈ Bn
+(r0). Then we have∥∥[d1f(x, ω2(t))− d1f(x0, ω2(t))] y

∥∥
=

∥∥∥ T∫
0

[
d2ϕ(τ, x(τ), ω2(t)(τ))− d2ϕ(τ, x0(τ), ω2(t)(τ))

]
y(τ) dτ

∥∥∥
≤

T∫
0

∥∥d2ϕ(τ, x(τ), ω2(t)(τ))− d2ϕ(τ, x0(τ), ω2(t)(τ))
∥∥ dτ

≤
n∑

j=1

T∫
0

∥∥d2ϕ(τ, x(τ), vj)− d2ϕ(τ, x0(τ), vj)
∥∥ dτ

+

T∫
0

∥∥d2ϕ(τ, x(τ), u0(τ))− d2ϕ(τ, x0(τ), u0(τ))
∥∥ dτ

≤ T
n∑

j=1

sup
{
gj(τ, x(τ)− x0(τ))

∣∣ τ ∈ I
}

+ T sup
{
g(τ, x(τ)− x0(τ))

∣∣ τ ∈ I
}

< ε

for all y ∈ C(I,W) satisfying ‖y‖ ≤ 1. This result implies

‖d1f(x, ω2(t))− d1f(x0, ω2(t))‖ ≤ ε.

Since t was arbitrarily chosen in Bn
+(r0), we have

sup
{
‖d1f(x, ω2(t))− d1f(x0, ω2(t))‖

∣∣ t ∈ Bn
+(r0)

}
≤ ε.

Consequently, it is true that

limx→x0 sup
{
‖d1f(x, ω2(t))− d1f(x0, ω2(t))‖

∣∣ t ∈ Bn
+(r0)

}
= 0.

Condition (x): We denote

Pαt = t1α
1 + . . . + tnαn for all t = (t1, . . . , tn) ∈ Bn

+(r0).
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We claim that the function

t ∈ Bn
+(r0) 7−→ f(x0, ω2(t))− f(x0, u0)− Pαt ∈ Rm

satisfies

limt→0
1
‖t‖

[
f(x0, ω2(t))− f(x0, u0)− Pαt

]
= 0. (13)

To prove this, let the number ε > 0 be arbitrarily given. Since the functions

τ ∈ L 7−→ ϕ(τ, x0(τ), vj) ∈ Rm (j ∈ {1, . . . , n})

and

τ ∈ L 7−→ ϕ(τ, x0(τ), u0(τ)) ∈ Rm

are continuous on the compact set L, they are uniformly continuous on this set. Thus

there exists a number δ > 0 such that for all j ∈ {1, . . . , n} and all τ ∈ L satisfying

|τ − τj | < δ the following inequalities hold:

‖ϕ(τ, x0(τ), vj)− ϕ(τj , x0(τj), vj)‖ < ε/(2n);

‖ϕ(τ, x0(τ), u0(τ))− ϕ(τj , x0(τj), u0(τj))‖ < ε/(2n).

These inequalities imply

‖ϕ(τ, x0(τ), vj)− ϕ(τ, x0(τ), u0(τ))− αj‖ < ε/n (14)

for all j ∈ {1, . . . , n} and all τ ∈ L satisfying |τ − τj | < δ.

Now let t ∈ Bn
+(r0) \ {0} be any point such that ‖t‖ < δ/n. Then we have

‖f(x0, ω2(t))− f(x0, u0)− Pαt‖

=
∥∥∥ n∑

j=1

∫
Lj

[
ϕ(τ, x0(τ), vj)− ϕ(τ, x0(τ), u0(τ))− αj

]
dτ

∥∥∥
≤ t1A1 + . . . + tnAn, (15)

where

Aj = max
{
‖ϕ(τ, x0(τ), vj)− ϕ(τ, x0(τ), u0(τ))− αj‖

∣∣ τ ∈ Lj

}
for j ∈ {1, . . . , n}. Next take into consideration that, if τ ∈ Lj for some j ∈ {1, . . . , n},

then τ lies in L and satisfies

|τ − τj | ≤ aj ≤ t1 + . . . + tn ≤ n ‖t‖ < δ. (16)
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Consequently, (14) implies Aj < ε/n for all j ∈ {1, . . . , n}. In view of this result, we

get from (15) that

‖f(x0, ω2(t))− f(x0, u0)− Pαt‖ < ε (t1 + . . . + tn)/n ≤ ε ‖t‖,

and hence ∥∥ 1
‖t‖

[
f(x0, ω2(t))− f(x0, u0)− Pαt

]∥∥ < ε.

Thus (13) is true, as claimed.

Next, we denote

Pβt = t1β
1 + . . . + tnβn for all t = (t1, . . . , tn) ∈ Bn

+(r0).

A reasoning similar to that used in the proof of (13) reveals that the function

t ∈ Bn
+(r0) 7−→ F (x0, ω2(t)) + Pβt ∈ C(I,W)

satisfies

limt→0
1
‖t‖

[
F (x0, ω2(t)) + Pβt

]
= 0. (17)

Indeed, let the number ε > 0 be arbitrarily given. Since the functions

(σ, τ) ∈ I × L 7−→ φ(σ, τ, x0(τ), vj) ∈ W (j ∈ {1, . . . , n})

and

(σ, τ) ∈ I × L 7−→ φ(σ, τ, x0(τ), u0(τ)) ∈ W

are continuous on the compact set I × L, they are uniformly continuous on this set.

Thus there exists a number δ > 0 such that for all j ∈ {1, . . . , n}, all σ ∈ I, and all

τ ∈ L satisfying |τ − τj | < δ the following inequalities hold:

‖φ(σ, τ, x0(τ), vj)− φ(σ, τj , x0(τj), vj)‖ < ε/(2n);

‖φ(σ, τ, x0(τ), u0(τ))− φ(σ, τj , x0(τj), u0(τj))‖ < ε/(2n).

These inequalities imply

‖φ(σ, τ, x0(τ), u0(τ))− φ(σ, τ, x0(τ), vj) + βj(σ)‖ < ε/n (18)

for all j ∈ {1, . . . , n}, all σ ∈ I, and all τ ∈ L satisfying |τ − τj | < δ.
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Now, let t ∈ Bn
+(r0) \ {0} be any point such that ‖t‖ < δ/n. Then we have

‖F (x0, ω2(t))(σ) + (Pβt)(σ)‖

=
∥∥∥ n∑

j=1

∫
Lj

[
φ(σ, τ, x0(τ), u0(τ))− φ(σ, τ, x0(τ), vj) + βj(σ)

]
dτ

∥∥∥
≤ t1B1(σ) + . . . + tnBn(σ) (19)

for every σ ∈ I, where

Bj(σ) = max
{
‖φ(σ, τ, x0(τ), u0(τ))− φ(σ, τ, x0(τ), vj) + βj(σ)‖

∣∣ τ ∈ Lj

}
for j ∈ {1, . . . , n}. As before, now take into consideration that if τ ∈ Lj for some

index j ∈ {1, . . . , n}, then τ lies in L and satisfies (16). Consequently, (18) implies

Bj(σ) < ε/n for all j ∈ {1, . . . , n} and all σ ∈ I.

In view of this result, we get from (19) that

‖F (x0, ω2(t))(σ) + (Pβt)(σ)‖ < ε (t1 + . . . + tn)/n ≤ ε ‖t‖

for all σ ∈ I. From this it follows that

‖F (x0, ω2(t)) + Pβt‖ < ε ‖t‖,

and hence ∥∥ 1
‖t‖

[
F (x0, ω2(t)) + Pβt

]∥∥ < ε.

Thus (17) is true, as claimed.

From (17) we obtain

limt→0
1
‖t‖

[
ω0(t) +

n∑
j=1

tjA
−1βj

]
= 0, (20)

where

ω0(t) = A−1F (x0, ω2(t)) for all t ∈ Bn
+(r0).

Obviously, (20) yields

limt→0
1
‖t‖

[
d1f(x0, u0)ω0(t) +

n∑
j=1

tj d1f(x0, u0) ◦A−1βj
]

= 0. (21)

Finally, note that the point Pt defined by

Pt = t1d
1 + . . . + tndn for all t = (t1, . . . , tn) ∈ Rn,
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in our case can be written under the form

Pt = Pαt +
n∑

j=1

tj d1f(x0, u0) ◦A−1βj .

Accordingly, we conclude from (13) and (21) that

limt→0
1
‖t‖

[
f(x0, ω2(t))− f(x0, u0)− Pt− d1f(x0, u0)ω0(t)

]
= 0.

Summing up, all the hypotheses of Theorem 1 are fulfilled. By applying this

theorem, it follows that there is a vector

λ∗ = (λ∗1, λ
∗
2, λ

∗
3) ∈ K∗

1 ×K∗
2 ×K∗

3 \ {(01, 02, 03)}

satisfying the inequality

〈d(τ, v), λ∗〉 ≤ 0 whenever (τ, v) ∈ I0 × V (22)

as well as the equality (3).

From (22) we obtain (2). Indeed, to see this, we fix any τ ∈ I0. Since we

have

A−1φ(·, τ, x0(τ), v) = h(·; τ, v) for all v ∈ V,

it follows that

d1f(x0, u0) ◦A−1φ(·, τ, x0(τ), v) =

T∫
0

d2ϕ(σ, x0(σ), u0(σ))h(σ; τ, v) dσ.

In view of this result, H(τ, ·) can be rewritten as follows:

H(τ, v) = 〈ϕ(τ, x0(τ), v) + d1f(x0, u0) ◦A−1φ(·, τ, x0(τ), v), λ∗〉

for every v ∈ V . Therefore we have

H(τ, v)−H(τ, u0(τ)) = 〈d(τ, v), λ∗〉 for all v ∈ V.

In virtue of (22) it follows that

H(τ, v) ≤ H(τ, u0(τ)) for all v ∈ V.

Consequently, the equality (2) holds, which completes the proof.
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