APPPROXIMATION OF BIVARIATE FUNCTIONS BY MEANS OF THE OPERATORS $S_{m, n}^{\alpha, \beta ; a, b}$

DIMITRIE D. STANCU, LUCIA A. CĂBULEA, AND DANIELA POP

Dedicated to Professor D.D. Stancu on his $75^{\text {th }}$ birthday

Abstract

By starting from the Steffensen theta operator $\theta^{\alpha, \beta}$, defined at (2.1), one constructs the bivariate operator given at (2.2), which depends on the parameters α, β, a, b. In the case $\beta=b=0$ one obtains the Stancu operators $S_{m, n}^{\alpha ; a}$, investigated anterior in the paper [10]. In the case $\alpha=$ $a=0$ we get a bivariate operator of Cheney-Sharma. For the remainder of the approximation formula (3.1) we present three representations: (3.2), (3.3) and (3.4). In the final part of the paper we give estimations of the order of approximation of a bivariate function f by means of the operators introduced at (2.2).

1. Introduction

It is known that the omega operators Ω, considered in 1902 by Jensen [3], include the shift operator E^{a}, defined by $\left(E^{a} f\right)(x)=f(x+a)$, the central mean operator μ, defined by

$$
\left(\mu_{h} f\right)(x)=\frac{1}{2}\left[f\left(x+\frac{h}{2}\right)+f\left(x-\frac{h}{2}\right)\right]
$$

and the integration operator.
An operator T which commutes with all shift operators is called a shift invariant operator, that is $T E^{a}=E^{a} T$.

A special case of an omega operator is represented by the theta operator θ, introduced in 1927 in his book [11] by J.F. Steffensen. Such an operator is sometime called delta operator and is denoted by Q in the book of F.B. Hildebrand [2],

2000 Mathematics Subject Classification. 41A10, 41A25, 41A36, 41A63, 41A80
Key words and phrases. Bernstein operators, umbral calculus, remainders, order of approximation.
published in 1956. This last term was used very often by specialists in umbral calculus: G.-C. Rota [6], S. Roman [5] and others.

A theta operator θ is a shift-invariant operator for which θe_{1} is a constant different from zero, where $e_{1}(t)=t$.

Typical examples of theta operators are represented by the forward, backward and central differences operators $\Delta_{h}, \nabla_{h}, \delta_{h}$, as well as by the prederivative operator $D_{h}=\Delta_{h} / h$. We consider that D_{0} is the derivative operator D.

Another, very interesting example is represented by the Abel operator $A_{a}=$ $D E^{a}=E^{a} D$, which in the case of $p_{m}(x ; a)=x(x-m a)^{m-1}$ leads to the formula:

$$
A_{a} p_{m}(x ; a)=m x(x-(m-1) a)^{m-2} .
$$

It is known that a θ operator can be expressed as a power series in the derivative operator.

One can see that: (i) for every theta operator θ we have $\theta c=0$, where c is a constant; (ii) if p_{m} is a polynomial of degree m, then θp_{m} is of degree $m-1$. This is the reason that the θ operators are called reductive operators.

A sequence of polynomials $\left(p_{m}\right)$ is called by I.M. Sheffer [7] and Gian-Carlo Rota [6], as well by his collaborators, the sequence of basic polynomials if we have: $p_{0}(x)=1, p_{m}(0)=0(m \geq 1), \theta p_{m}=m p_{m-1}$. These polynomials were called by Steffensen [12] poweroids, considering that they represent an extension of the mathematical notion of power.

It is easy to see that: (i) if $\left(p_{m}\right)$ is a basic sequence of polynomials for a theta operator, then it is a basic sequence; (ii) if $\left(p_{m}\right)$ is a sequence of basic polynomials, then it is a basic sequence for a theta operator.

By induction can be proved that every theta operator has a unique sequence of basic polynomials associated with it.
J.F. Steffensen [12] observed that the property of the polynomial sequence $e_{m}(x)=x^{m}$ to be of binomial type, can be extended to any sequence of basic polynomials associated to a theta operator.

Illustrative examples: (i) if θ is the derivative operator D, then $p_{m}(x)=x^{m}$; (ii) if θ is the prederivative operator $D_{h}=\Delta_{h} / h$, then we obtain the factorial power:

$$
p_{m}(x)=x^{[m, h]}=x(x-h) \ldots(x-(m-1) h) .
$$

APPPROXIMATION OF BIVARIATE FUNCTIONS BY MEANS OF THE OPERATORS $S_{m, n}^{\alpha, \beta ; a, b}$
2. Use of the Steffensen theta operator $\theta^{\alpha, \beta}$ for construction the approximating operators $S_{m, n}^{\alpha, \beta ; a, b}$

Now let us consider the theta operator of Steffensen [12]:

$$
\begin{equation*}
\theta^{\alpha, \beta}=\frac{1}{\alpha}\left[1-E^{-\alpha}\right] E^{\beta} \tag{2.1}
\end{equation*}
$$

where α and β are nonnegative parameters.
In this case the basic polynomials are

$$
p_{m}(x ; \alpha, \beta)=p_{m}^{\alpha, \beta}(x)=x(x+\alpha+m \beta)^{[m-1,-\alpha]}=\frac{x}{x+m \beta}(x+m \beta)^{[m,-\alpha]} .
$$

These are polynomials of binomial type.
By using them we can give a generalized Abel-Jensen combinatorial formula

$$
\begin{gathered}
(x+y)(x+y+m \beta)^{[m-1,-\alpha]}= \\
=\sum_{k=0}^{m}\binom{m}{k} x(x+\alpha+k \beta)^{[k-1,-\alpha]} y(y+\alpha+(m-k) \beta)^{[m-1-k,-\alpha]} .
\end{gathered}
$$

Selecting $y=1-x$ we can write the identity

$$
\begin{gathered}
(1+\alpha+m \beta)^{[m-1,-\alpha]}= \\
=\sum_{k=0}^{m}\binom{m}{k} x(x+\alpha+k \beta)^{[k-1,-\alpha]}(1-x)(1-x+\alpha+(m-k) \beta)^{[m-1-k,-\alpha]} .
\end{gathered}
$$

We introduce the polynomials $p_{m, k}^{\alpha, \beta}(x)$, defined by the relation

$$
\begin{gathered}
(1+\alpha+m \beta)^{[m-1,-\alpha]} p_{m, k}^{\alpha, \beta}(x)= \\
=\sum_{k=0}^{m}\binom{m}{k} x(x+\alpha+k \beta)^{[k-1,-\alpha]}(1-x)(1-x+\alpha+(m-k) \beta)^{[m-1-k,-\alpha]}
\end{gathered}
$$

Let f be a real-valued bivariate function defined on the square $D=[0,1] \times$ $[0,1]$.

We define the bivariate operator $S_{m, n}^{\alpha, \beta ; a, b}$ by means of the formula

$$
\begin{equation*}
\left(S_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)=\sum_{k=0}^{m} \sum_{j=0}^{n} p_{m, k}^{\alpha, \beta}(x) q_{n, j}^{a, b}(y) f\left(\frac{i}{m}, \frac{j}{n}\right) \tag{2.2}
\end{equation*}
$$

where

$$
(1+a+n b)^{[n-1,-a]} q_{n, j}^{a, b}(y)=\binom{n}{j} y(y+a+j b)^{[j-1,-a]}(1-y)(1-y+a+(n-j) b)^{[n-1-j,-a]}
$$

Now we present two special cases of this operator:
(i) In the case $\beta=b=0$ we have

$$
\left(S_{m, n}^{\alpha ; a} f\right)(x, y)=\sum_{k=0}^{m} \sum_{j=0}^{n} p_{m, k}^{\alpha}(x) q_{n, j}^{a}(y) f\left(\frac{i}{m}, \frac{j}{n}\right),
$$

where

$$
\begin{aligned}
p_{m, k}^{\alpha}(x) & =\binom{m}{k} x^{k,-\alpha}(1-x)^{[m-k,-\alpha]} / 1^{[m,-\alpha]} \\
q_{n, j}^{a}(y) & =\binom{n}{j} y^{[j,-\alpha]}(1-y)^{[n-j,-a]} / 1^{[n,-a]}
\end{aligned}
$$

The approximation properties of this operator have been studied in the paper [10].
(ii) If $\alpha=a=0$ we obtain

$$
\left(S_{m, n} f\right)(x, y ; \beta, b)=\sum_{k=0}^{m} \sum_{j=0}^{n} p_{m, k}(x ; \beta) q_{n, j}(y ; b) f\left(\frac{i}{m}, \frac{j}{n}\right),
$$

where

$$
p_{m, k}(x ; \beta)=\frac{\binom{m}{k} x(x+k \beta)^{k-1}(1-x+(m-k) \beta)^{m-k-1}}{(1+m \beta)^{m-1}}
$$

and

$$
q_{n, j}(y ; b)=\frac{\binom{n}{j} y(y+j b)^{j-1}(1-y+(n-j) b)^{n-j-1}}{(1+n b)^{n-1}}
$$

This operator represents an extension to two variables of the second operator of Cheney-Sharma [1].

We can see that

$$
\begin{aligned}
& \left(S_{m, n} e_{0,0}\right)(x, y)=1, \quad\left(S_{m, n} e_{1,0}\right)(x, y)=x \\
& \left(S_{m, n} e_{0,1}\right)(x, y)=y, \quad\left(S_{m, n} e_{1,1}\right)(x, y)=x y
\end{aligned}
$$

For $e_{2,0}(x, y)=x^{2}$ and $e_{0,2}(x, y)=y^{2}$ we have

$$
\begin{gathered}
\left(S_{m, n} e_{2,0}\right)(x, y)=\left(S_{m} e_{2}\right)(x) \\
\left(S_{m, n} e_{0,2}\right)(x, y)=\left(S_{n} e_{2}\right)(y)
\end{gathered}
$$

and we can write [1]:

$$
\lim _{m \rightarrow \infty}\left(S_{m} e_{2}\right)(x)=x^{2}, \quad \lim _{n \rightarrow \infty}\left(S_{n} e_{2}\right)(y)=y^{2}
$$

uniformly on the interval $[0,1]$.
According to the bivariate criterion of Bohman-Korovkin, we can state

APPPROXIMATION OF BIVARIATE FUNCTIONS BY MEANS OF THE OPERATORS $S_{m, n}^{\alpha, \beta ; a, b}$
Theorem 2.1. If $f \in C(D)$ and $\alpha=\alpha(m) \rightarrow 0, m \beta(m) \rightarrow 0$ for $m \rightarrow \infty$, while $b=b(n) \rightarrow 0$ and $n \beta(n) \rightarrow 0$ when $n \rightarrow \infty$, then we have

$$
\lim _{m, n \rightarrow \infty}\left(S_{m, n} f\right)(x, y)=f(x, y)
$$

uniformly on the square D.

3. Evaluation of the remainder

Since the approximation formula

$$
\begin{equation*}
f(x, y)=\left(S_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)+\left(R_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y) \tag{3.1}
\end{equation*}
$$

has the degree of exactness $(1,1)$, by applying an extension of the Peano theorem (see [8]) we are able to find an integral representation of the remainder.

We now formulate
Theorem 3.1. If $f \in C^{2,2}(D)$, then we can give the following integral representation for the remainder of formula (3.1):

$$
\begin{gather*}
\left(R_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)= \tag{3.2}\\
=\int_{0}^{1} G_{m}^{\alpha, \beta}(t ; x) f^{(2,0)}(t, y) d t+\int_{0}^{1} H_{n}^{a, b}(z, y) f^{(0,2)}(x, z) d z- \\
-\int_{0}^{1} \int_{0}^{1} G_{m}^{\alpha, \beta}(t ; x) H_{n}^{a, b}(z, y) f^{(2,2)}(t, z) d t d z
\end{gather*}
$$

where

$$
\begin{aligned}
& G_{m}^{\alpha, \beta}(t, x)=\left(R_{m, n}^{\alpha, \beta ; a, b} \varphi_{x}\right)(t) \\
& H_{n}^{a, b}(z, y)=\left(R_{m, n}^{\alpha, \beta ; a, b} \psi_{y}\right)(z),
\end{aligned}
$$

with

$$
\varphi_{x}(t)=\frac{1}{2}[x-t+|x-t|], \quad \psi_{y}(z)=\frac{1}{2}[y-z+|y-z|]
$$

and the use of the notation

$$
f^{(n, s)}(u, v)=\frac{\partial^{r+s} f(u, v)}{\partial u^{r} \partial v^{s}} \quad(r, s=0,1,2) .
$$

Proof. Formula (3.2) can be obtained if we use a representation of PeanoMilne type, given in the paper [8], for the remainder of a bivariate linear approximation formula having a certain degree of exactness.

If we assume that $x \in\left[\frac{r-1}{m}, \frac{r}{m}\right]$, we can give for the Peano kernel $G_{m}^{\alpha, \beta}(t, x)$ the following expression

$$
G_{m}^{\alpha, \beta}(t ; x)=\left\{\begin{array}{cl}
-\sum_{k=0}^{i=1} p_{m, k}^{\alpha, \beta}(x)\left(t-\frac{k}{m}\right) & \text { if } \quad t \in\left[\frac{i-1}{m}, \frac{i}{m}\right] \\
-\sum_{k=0}^{r-1} p_{m, k}^{\alpha, \beta}(x)\left(t-\frac{k}{m}\right) & \text { if } \quad t \in\left[\frac{r-1}{m}, x\right] \\
-\sum_{k=}^{m} p_{m, k}^{\alpha, \beta}(x)\left(\frac{k}{m}-t\right) & \text { if } \quad t \in\left[x, \frac{r}{m}\right] \\
-\sum_{k=i}^{m} p_{m, k}^{\alpha, \beta}\left(\frac{k}{m}-t\right) & \text { if } \quad t \in\left[\frac{i-1}{m}, \frac{i}{m}\right] \\
& (r \leq i \leq m)
\end{array}\right.
$$

The dual Peano kernel $H_{n}^{a, b}(z, y)$ has a similar expression.
If we take into account that on the square D we have $G_{m}^{\alpha, \beta}(t, x) \leq 0$ and $H_{n}^{a, b}(z, y) \leq 0$, we can apply the first law of the mean to the integrals and we find that

$$
\begin{gathered}
\left(R_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)= \\
=f^{(2,0)}(\xi, y) \int_{0}^{1} G_{m}^{\alpha, \beta}(t, x) d t+f^{(0,2)}(x, \eta) \int_{0}^{1} H_{n}^{a, b}(z, y) d z- \\
-f^{(2,2)}(\xi, \eta)\left[\int_{0}^{1} G_{m}^{\alpha, \beta}(t, x) d t\right]\left[\int_{0}^{1} H_{n}^{a, b}(z, y) d z\right],
\end{gathered}
$$

where ξ and η are certain points from the interval $(0,1)$.
It is easy to see that we have

$$
\begin{aligned}
\int_{0}^{1} G_{m}^{\alpha, \beta}(t, x) d t & =\frac{1}{2}\left(R_{m}^{\alpha, \beta} e_{2,0}\right)(x), \\
\int_{0}^{1} H_{n}^{a, b}(z, y) d z & =\frac{1}{2}\left(R_{n}^{a, b} e_{0,2}\right)(y),
\end{aligned}
$$

where $R_{m}^{\alpha, \beta}$ and $R_{n}^{a, b}$ are the univariate remainders:

$$
R_{m}^{\alpha, \beta}=I-S_{m}^{\alpha, \beta}, \quad R_{n}^{a, b}=I-S_{n}^{a, b} .
$$

Now we can state the following
appproximation of bivariate functions by means of the operators $S_{m, n}^{\alpha, \beta ; a, b}$
Corollary 3.1. If $f \in C^{2,2}(D)$, then the remainder of the approximation formula (3.1) can be represented under the following Cauchy form

$$
\begin{gather*}
\left(R_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)= \tag{3.3}\\
=\frac{1}{2}\left(R_{m}^{\alpha, \beta} e_{2}\right)(x) f^{(2,0)}(\xi, y)+\frac{1}{2}\left(R_{n}^{a, b} e_{2}\right) f^{(0,2)}(x, \eta)- \\
-\frac{1}{4}\left(R_{m}^{\alpha, \beta} e_{2}\right)(x)\left(R_{n}^{a, b} e_{2}\right)(y) f^{(2,2)}(\xi, \eta)
\end{gather*}
$$

Because $\left(S_{m}^{\alpha, \beta} f\right)(x)$ and $\left(S_{n}^{a, b} f\right)(y)$ are interpolatory at both sides of the interval $[0,1]$, we can conclude that $\left(R_{m}^{\alpha, \beta} e_{2}\right)(x)$ contains the factor $x(x-1)$, while $\left(R_{n}^{a, b} e_{2}\right)(y)$ has the factor $y(y-1)$.

Since $R_{m}^{\alpha, \beta} e_{0}=0, R_{n}^{a, b} e_{0}=0$ and the remainder is different from zero for any convex function f of the first order, we can apply a criterion of T. Popoviciu [4] and we find that the remainder is of simple form. Consequently we can state the following

Theorem 3.2. If the second-order divided differences of the function f are bounded on the square D, we can give an expression of the remainder of the formula (3.1) in terms of divided differences

$$
\begin{align*}
& \left(R_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)=\left(R_{m}^{\alpha, \beta} e_{2,0}\right)(x)\left[x_{m, 1}, x_{m, 2}, x_{m, 3} ; f(t, y)\right]= \\
& \quad+\left(R_{n}^{a, b} e_{0,2}\right)(y)\left[y_{n, 1}, y_{n, 2}, y_{n, 3} ; f(x, z)\right]- \\
& -\left(R_{m}^{\alpha, \beta} e_{2,0}\right)(x)\left(R_{n}^{a, b} e_{0,2}\right)(y)\left[\begin{array}{c}
x_{m, 1}, x_{m, 2}, x_{m, 3} \\
y_{n, 1}, y_{n, 2}, y_{n, 3}
\end{array} ; f(t, z)\right] \tag{3.4}
\end{align*}
$$

where $x_{m, 1}, x_{m, 2}, x_{m, 3}, y_{n, 1}, y_{n, 2}, y_{n, 3}$ are certain points in the interval $[0,1]$.
If we apply the mean-value theorem to the divided differences, we arrive at the Corollary 3.1.

4. Estimation of the order of approximation

We will use the bivariate modulus of continuity

$$
\omega\left(f ; \delta_{1}, \delta_{2}\right)=\sup \left\{\left|f(x, y)-f\left(x^{\prime}, y^{\prime}\right)\right|:\left|x-x^{\prime}\right| \leq \delta_{1},\left|y-y^{\prime}\right| \leq \delta_{2}\right\}
$$

where (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are points of the square D and $\delta_{1}, \delta_{2} \in \mathbb{R}_{+}$.

Because the constants are reproduced by our operator and $p_{m, k}^{\alpha, \beta}(x) \geq 0$, $q_{n, j}^{a, b}(y) \geq 0$, when $x, y \in[0,1]$, we can write

$$
\begin{gathered}
\left|f(x, y)-\left(S_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)\right| \leq \\
\leq \sum_{k=0}^{m} \sum_{j=0}^{n} p_{m, k}^{\alpha, \beta}(x) q_{n, j}^{a, b}(y)\left|f(x, y)-f\left(\frac{k}{m}, \frac{j}{n}\right)\right|
\end{gathered}
$$

By using a basic property of the modulus of continuity, we can write

$$
\begin{gathered}
\left|f(x, y)-\left(S_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)\right| \leq \\
\leq\left[1+\frac{1}{\delta_{1}^{2}} \sum_{k=0}^{m} p_{m, k}^{\alpha, \beta}(x)\left(x-\frac{k}{m}\right)^{2}+\frac{1}{\delta_{2}^{2}} \sum_{j=0}^{n} q_{n, j}^{a, b}(y)\left(y-\frac{j}{n}\right)^{2}\right] \omega\left(f ; \delta_{1}, \delta_{2}\right)
\end{gathered}
$$

Since our partial operators are interpolatory in 0 and 1, we can write

$$
\sum_{k=0}^{m} p_{m, k}^{\alpha, \beta}(x)\left(x-\frac{k}{m}\right)^{2}=\left(S_{m}^{\alpha, \beta} e_{2}\right)(x)-x^{2}=-\left(R_{m}^{\alpha, \beta} e_{2}\right)(x)=\frac{x(1-x)}{m} A_{m}^{\alpha, \beta}
$$

By selecting

$$
\delta_{1}=c \sqrt{\frac{x(1-x)}{m}}, \quad \delta_{2}=d \sqrt{\frac{y(1-y)}{n}} \quad(c>0, d>0)
$$

we get

$$
\begin{gathered}
\left|f(x, y)-\left(S_{m, n}^{\alpha, \beta ; a, b} f\right)(x, y)\right| \leq \\
\leq\left[1+\frac{1}{c^{2}} A_{m}^{\alpha, \beta}+\frac{1}{a^{2}} B_{n}^{a, b}\right] \omega\left(f ; c \sqrt{\frac{x(1-x)}{m}}, d \sqrt{\frac{y(1-y)}{n}}\right)
\end{gathered}
$$

If we choose $c=d=2$ and take into consideration that $t(1-t) \leq \frac{1}{4}$ on $[0,1]$, we can state

Theorem 4.1. The order of approximation of the function $f \in C(D)$ is evaluated by the following inequality

$$
\left\|f-S_{m, n}^{\alpha, \beta ; a, b} f\right\| \leq\left[1+\frac{1}{4}\left(A_{m}^{\alpha, \beta}+B_{n}^{a, b}\right)\right] \omega\left(f ; \frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}}\right)
$$

where $A_{m}^{\alpha, \beta}=o\left(\frac{1}{m}\right), B_{n}^{a, b}=o\left(\frac{1}{n}\right)$.
In the particular case $\alpha=\beta=a=b=0$, we obtain the inequality

$$
\left\|f-B_{m, n} f\right\| \leq \frac{3}{2} \omega\left(f ; \frac{1}{\sqrt{m}}, \frac{1}{\sqrt{n}}\right)
$$

corresponding to the approximation by the bidimensional Bernstein polynomial $B_{m, n}$.

APPPROXIMATION OF BIVARIATE FUNCTIONS BY MEANS OF THE OPERATORS $S_{m, n}^{\alpha, \beta ; a, b}$

References

[1] Cheney, E.W. and Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma 5(1964), 77-84.
[2] Hildebrand, F.B., Introduction to Numerical Analysis, McGraw-Hill, New York, 1956.
[3] Jensen, L.W., Sur une identité d'Abel et sur d'autres formules analogues, Acta Mathematica, 26(1902), 307-318.
[4] Popoviciu, T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse, Mathematica 1(24)(1959), 95-142.
[5] Roman, S., The Umbral Calculus, Academic Press, Orlando, Florida, 1984
[6] Rota, G.-C., Finite Operator Calculus, Academic Press, New York, 1975.
[7] Sheffer, I.M., Some properties of polynomial sets of type zero, Duke Math. J. 5(1939), 590-622.
[8] Stancu, D.D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal. Ser. B, 1(1964), 137-163
[9] Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl. 13(1968), 1173-1194.
[10] Stancu, D.D., Aproximarea functiilor de două şi mai multe variabile printr-o clasă de polinoame de tip Bernstein, Stud. Cerc. Mat. Buc., 22(1970), 335-345.
[11] Steffensen, J.F., Interpolation, Williams, Baltimore, 1927.
12] Steffensen, J.F., The poweroid, an extension of the mathematical notion of power, Acta Math. 73(1941), 333-336.
"Babes-Bolyai" University, Faculty of Mathematics and Informatics, Str. Kogălniceanu No.1, 3400 Cluj-Napoca, Romania

Universitatea "1 Decembrie 1918", Facultatea de Ştiinţe, Alba Iulia, Romania

Liceul Pedagogic, Deva, Romania

