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APPPROXIMATION OF BIVARIATE FUNCTIONS BY MEANS
OF THE OPERATORS Sα,β;a,b

m,n

DIMITRIE D. STANCU, LUCIA A. CĂBULEA, AND DANIELA POP

Dedicated to Professor D.D. Stancu on his 75th birthday

Abstract. By starting from the Steffensen theta operator θα,β , defined at

(2.1), one constructs the bivariate operator given at (2.2), which depends

on the parameters α, β, a, b. In the case β = b = 0 one obtains the Stancu

operators Sα;a
m,n, investigated anterior in the paper [10]. In the case α =

a = 0 we get a bivariate operator of Cheney-Sharma. For the remainder of

the approximation formula (3.1) we present three representations: (3.2),

(3.3) and (3.4). In the final part of the paper we give estimations of the

order of approximation of a bivariate function f by means of the operators

introduced at (2.2).

1. Introduction

It is known that the omega operators Ω, considered in 1902 by Jensen [3],

include the shift operator Ea, defined by (Eaf)(x) = f(x+ a), the central mean

operator µ, defined by

(µhf)(x) =
1
2

[
f

(
x+

h

2

)
+ f

(
x− h

2

)]
and the integration operator.

An operator T which commutes with all shift operators is called a shift

invariant operator, that is TEa = EaT .

A special case of an omega operator is represented by the theta operator θ,

introduced in 1927 in his book [11] by J.F. Steffensen. Such an operator is sometime

called delta operator and is denoted by Q in the book of F.B. Hildebrand [2],
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published in 1956. This last term was used very often by specialists in umbral

calculus: G.-C. Rota [6], S. Roman [5] and others.

A theta operator θ is a shift-invariant operator for which θe1 is a con-

stant different from zero, where e1(t) = t.

Typical examples of theta operators are represented by the forward, back-

ward and central differences operators ∆h,∇h, δh, as well as by the prederivative

operator Dh = ∆h/h. We consider that D0 is the derivative operator D.

Another, very interesting example is represented by the Abel operator Aa =

DEa = EaD, which in the case of pm(x; a) = x(x−ma)m−1 leads to the formula:

Aapm(x; a) = mx(x− (m− 1)a)m−2.

It is known that a θ operator can be expressed as a power series in the

derivative operator.

One can see that: (i) for every theta operator θ we have θc = 0, where c is a

constant; (ii) if pm is a polynomial of degree m, then θpm is of degree m− 1. This is

the reason that the θ operators are called reductive operators.

A sequence of polynomials (pm) is called by I.M. Sheffer [7] and Gian-Carlo

Rota [6], as well by his collaborators, the sequence of basic polynomials if we have:

p0(x) = 1, pm(0) = 0 (m ≥ 1), θpm = mpm−1. These polynomials were called

by Steffensen [12] poweroids, considering that they represent an extension of the

mathematical notion of power.

It is easy to see that: (i) if (pm) is a basic sequence of polynomials for a theta

operator, then it is a basic sequence; (ii) if (pm) is a sequence of basic polynomials,

then it is a basic sequence for a theta operator.

By induction can be proved that every theta operator has a unique sequence

of basic polynomials associated with it.

J.F. Steffensen [12] observed that the property of the polynomial sequence

em(x) = xm to be of binomial type, can be extended to any sequence of basic poly-

nomials associated to a theta operator.

Illustrative examples: (i) if θ is the derivative operator D, then pm(x) = xm;

(ii) if θ is the prederivative operator Dh = ∆h/h, then we obtain the factorial power:

pm(x) = x[m,h] = x(x− h) . . . (x− (m− 1)h).
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2. Use of the Steffensen theta operator θα,β for construction the approxi-

mating operators Sα,β;a,b
m,n

Now let us consider the theta operator of Steffensen [12]:

θα,β =
1
α

[1− E−α]Eβ , (2.1)

where α and β are nonnegative parameters.

In this case the basic polynomials are

pm(x;α, β) = pα,β
m (x) = x(x+ α+mβ)[m−1,−α] =

x

x+mβ
(x+mβ)[m,−α].

These are polynomials of binomial type.

By using them we can give a generalized Abel-Jensen combinatorial formula

(x+ y)(x+ y +mβ)[m−1,−α] =

=
m∑

k=0

(
m

k

)
x(x+ α+ kβ)[k−1,−α]y(y + α+ (m− k)β)[m−1−k,−α].

Selecting y = 1− x we can write the identity

(1 + α+mβ)[m−1,−α] =

=
m∑

k=0

(
m

k

)
x(x+ α+ kβ)[k−1,−α](1− x)(1− x+ α+ (m− k)β)[m−1−k,−α].

We introduce the polynomials pα,β
m,k(x), defined by the relation

(1 + α+mβ)[m−1,−α]pα,β
m,k(x) =

=
m∑

k=0

(
m

k

)
x(x+ α+ kβ)[k−1,−α](1− x)(1− x+ α+ (m− k)β)[m−1−k,−α].

Let f be a real-valued bivariate function defined on the square D = [0, 1] ×

[0, 1].

We define the bivariate operator Sα,β;a,b
m,n by means of the formula

(Sα,β;a,b
m,n f)(x, y) =

m∑
k=0

n∑
j=0

pα,β
m,k(x)qa,b

n,j(y)f
(
i

m
,
j

n

)
, (2.2)

where

(1+a+nb)[n−1,−a]qa,b
n,j(y) =

(
n

j

)
y(y+a+jb)[j−1,−a](1−y)(1−y+a+(n−j)b)[n−1−j,−a].

Now we present two special cases of this operator:
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(i) In the case β = b = 0 we have

(Sα;a
m,nf)(x, y) =

m∑
k=0

n∑
j=0

pα
m,k(x)qa

n,j(y)f
(
i

m
,
j

n

)
,

where

pα
m,k(x) =

(
m

k

)
xk,−α(1− x)[m−k,−α]/1[m,−α],

qa
n,j(y) =

(
n

j

)
y[j,−α](1− y)[n−j,−a]/1[n,−a].

The approximation properties of this operator have been studied in the paper

[10].

(ii) If α = a = 0 we obtain

(Sm,nf)(x, y;β, b) =
m∑

k=0

n∑
j=0

pm,k(x;β)qn,j(y; b)f
(
i

m
,
j

n

)
,

where

pm,k(x;β) =

(
m

k

)
x(x+ kβ)k−1(1− x+ (m− k)β)m−k−1

(1 +mβ)m−1

and

qn,j(y; b) =

(
n

j

)
y(y + jb)j−1(1− y + (n− j)b)n−j−1

(1 + nb)n−1
.

This operator represents an extension to two variables of the second

operator of Cheney-Sharma [1].

We can see that

(Sm,ne0,0)(x, y) = 1, (Sm,ne1,0)(x, y) = x,

(Sm,ne0,1)(x, y) = y, (Sm,ne1,1)(x, y) = xy.

For e2,0(x, y) = x2 and e0,2(x, y) = y2 we have

(Sm,ne2,0)(x, y) = (Sme2)(x),

(Sm,ne0,2)(x, y) = (Sne2)(y)

and we can write [1]:

lim
m→∞

(Sme2)(x) = x2, lim
n→∞

(Sne2)(y) = y2,

uniformly on the interval [0, 1].

According to the bivariate criterion of Bohman-Korovkin, we can state
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Theorem 2.1. If f ∈ C(D) and α = α(m) → 0, mβ(m) → 0 for m → ∞,

while b = b(n) → 0 and nβ(n) → 0 when n→∞, then we have

lim
m,n→∞

(Sm,nf)(x, y) = f(x, y),

uniformly on the square D.

3. Evaluation of the remainder

Since the approximation formula

f(x, y) = (Sα,β;a,b
m,n f)(x, y) + (Rα,β;a,b

m,n f)(x, y) (3.1)

has the degree of exactness (1,1), by applying an extension of the Peano theorem (see

[8]) we are able to find an integral representation of the remainder.

We now formulate

Theorem 3.1. If f ∈ C2,2(D), then we can give the following integral

representation for the remainder of formula (3.1):

(Rα,β;a,b
m,n f)(x, y) = (3.2)

=
∫ 1

0

Gα,β
m (t;x)f (2,0)(t, y)dt+

∫ 1

0

Ha,b
n (z, y)f (0,2)(x, z)dz−

−
∫ 1

0

∫ 1

0

Gα,β
m (t;x)Ha,b

n (z, y)f (2,2)(t, z)dtdz,

where

Gα,β
m (t, x) = (Rα,β;a,b

m,n ϕx)(t),

Ha,b
n (z, y) = (Rα,β;a,b

m,n ψy)(z),

with

ϕx(t) =
1
2
[x− t+ |x− t|], ψy(z) =

1
2
[y − z + |y − z|]

and the use of the notation

f (n,s)(u, v) =
∂r+sf(u, v)
∂ur∂vs

(r, s = 0, 1, 2).

Proof. Formula (3.2) can be obtained if we use a representation of Peano-

Milne type, given in the paper [8], for the remainder of a bivariate linear approxima-

tion formula having a certain degree of exactness.
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If we assume that x ∈
[
r − 1
m

,
r

m

]
, we can give for the Peano kernel Gα,β

m (t, x)

the following expression

Gα,β
m (t;x) =



−
i=1∑
k=0

pα,β
m,k(x)

(
t− k

m

)
if t ∈

[
i− 1
m

,
i

m

]
(1 ≤ i ≤ r − 1)

−
r−1∑
k=0

pα,β
m,k(x)

(
t− k

m

)
if t ∈

[
r − 1
m

,x

]

−
m∑
k=

pα,β
m,k(x)

(
k

m
− t

)
if t ∈

[
x,

r

m

]

−
m∑

k=i

pα,β
m,k

(
k

m
− t

)
if t ∈

[
i− 1
m

,
i

m

]
(r ≤ i ≤ m)

The dual Peano kernel Ha,b
n (z, y) has a similar expression.

If we take into account that on the square D we have Gα,β
m (t, x) ≤ 0 and

Ha,b
n (z, y) ≤ 0, we can apply the first law of the mean to the integrals and we find

that

(Rα,β;a,b
m,n f)(x, y) =

= f (2,0)(ξ, y)
∫ 1

0

Gα,β
m (t, x)dt+ f (0,2)(x, η)

∫ 1

0

Ha,b
n (z, y)dz−

−f (2,2)(ξ, η)
[∫ 1

0

Gα,β
m (t, x)dt

] [∫ 1

0

Ha,b
n (z, y)dz

]
,

where ξ and η are certain points from the interval (0, 1).

It is easy to see that we have∫ 1

0

Gα,β
m (t, x)dt =

1
2
(Rα,β

m e2,0)(x),

∫ 1

0

Ha,b
n (z, y)dz =

1
2
(Ra,b

n e0,2)(y),

where Rα,β
m and Ra,b

n are the univariate remainders:

Rα,β
m = I − Sα,β

m , Ra,b
n = I − Sa,b

n .

Now we can state the following
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Corollary 3.1. If f ∈ C2,2(D), then the remainder of the approximation

formula (3.1) can be represented under the following Cauchy form

(Rα,β;a,b
m,n f)(x, y) = (3.3)

=
1
2
(Rα,β

m e2)(x)f (2,0)(ξ, y) +
1
2
(Ra,b

n e2)f (0,2)(x, η)−

−1
4
(Rα,β

m e2)(x)(Ra,b
n e2)(y)f (2,2)(ξ, η).

Because (Sα,β
m f)(x) and (Sa,b

n f)(y) are interpolatory at both sides of the

interval [0, 1], we can conclude that (Rα,β
m e2)(x) contains the factor x(x − 1), while

(Ra,b
n e2)(y) has the factor y(y − 1).

Since Rα,β
m e0 = 0, Ra,b

n e0 = 0 and the remainder is different from zero for any

convex function f of the first order, we can apply a criterion of T. Popoviciu [4] and

we find that the remainder is of simple form. Consequently we can state the following

Theorem 3.2. If the second-order divided differences of the function f are

bounded on the square D, we can give an expression of the remainder of the formula

(3.1) in terms of divided differences

(Rα,β;a,b
m,n f)(x, y) = (Rα,β

m e2,0)(x)[xm,1, xm,2, xm,3; f(t, y)] =

+(Ra,b
n e0,2)(y)[yn,1, yn,2, yn,3; f(x, z)]−

−(Rα,β
m e2,0)(x)(Ra,b

n e0,2)(y)

 xm,1, xm,2, xm,3

yn,1, yn,2, yn,3

; f(t, z)

 , (3.4)

where xm,1, xm,2, xm,3, yn,1, yn,2, yn,3 are certain points in the interval [0, 1].

If we apply the mean-value theorem to the divided differences, we arrive at

the Corollary 3.1.

4. Estimation of the order of approximation

We will use the bivariate modulus of continuity

ω(f ; δ1, δ2) = sup{|f(x, y)− f(x′, y′)| : |x− x′| ≤ δ1, |y − y′| ≤ δ2},

where (x, y) and (x′, y′) are points of the square D and δ1, δ2 ∈ R+.

111



DIMITRIE D. STANCU, LUCIA A. CĂBULEA, AND DANIELA POP

Because the constants are reproduced by our operator and pα,β
m,k(x) ≥ 0,

qa,b
n,j(y) ≥ 0, when x, y ∈ [0, 1], we can write

|f(x, y)− (Sα,β;a,b
m,n f)(x, y)| ≤

≤
m∑

k=0

n∑
j=0

pα,β
m,k(x)qa,b

n,j(y)
∣∣∣∣f(x, y)− f

(
k

m
,
j

n

)∣∣∣∣ .
By using a basic property of the modulus of continuity, we can write

|f(x, y)− (Sα,β;a,b
m,n f)(x, y)| ≤

≤

1 +
1
δ21

m∑
k=0

pα,β
m,k(x)

(
x− k

m

)2

+
1
δ22

n∑
j=0

qa,b
n,j(y)

(
y − j

n

)2
ω(f ; δ1, δ2).

Since our partial operators are interpolatory in 0 and 1, we can write
m∑

k=0

pα,β
m,k(x)

(
x− k

m

)2

= (Sα,β
m e2)(x)− x2 = −(Rα,β

m e2)(x) =
x(1− x)

m
Aα,β

m .

By selecting

δ1 = c

√
x(1− x)

m
, δ2 = d

√
y(1− y)

n
(c > 0, d > 0),

we get

|f(x, y)− (Sα,β;a,b
m,n f)(x, y)| ≤

≤
[
1 +

1
c2
Aα,β

m +
1
a2
Ba,b

n

]
ω

(
f ; c

√
x(1− x)

m
, d

√
y(1− y)

n

)
.

If we choose c = d = 2 and take into consideration that t(1− t) ≤ 1
4

on [0, 1],

we can state

Theorem 4.1. The order of approximation of the function f ∈ C(D) is

evaluated by the following inequality

‖f − Sα,β;a,b
m,n f‖ ≤

[
1 +

1
4
(Aα,β

m +Ba,b
n )
]
ω

(
f ;

1√
m
,

1√
n

)
,

where Aα,β
m = o

(
1
m

)
, Ba,b

n = o

(
1
n

)
.

In the particular case α = β = a = b = 0, we obtain the inequality

‖f −Bm,nf‖ ≤
3
2
ω

(
f ;

1√
m
,

1√
n

)
,

corresponding to the approximation by the bidimensional Bernstein polynomial Bm,n.
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