STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLVII, Number 4, December 2002

ITERATES OF STANCU OPERATORS, VIA CONTRACTION PRINCIPLE

IOAN A. RUS

Dedicated to Professor D.D. Stancu on his 75th birthday

Abstract. In this note we prove that some Stancu operators are weakly Picard operators.

Let $\alpha, \beta \in R, 0 \leq \alpha \leq \beta$ and let $n \in N^*$. We consider the Stancu operators ([7], [2])

$$P_{n,\alpha,\beta}: C[0,1] \to C[0,1]$$

 $f \mapsto P_{n,\alpha,\beta}(f)$

where

$$P_{n,\alpha,\beta}(f)(x) := \sum_{k=0}^{n} f\left(\frac{k+\alpha}{n+\beta}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$
 (1)

Let $P_{n,\alpha,\beta}^m$ be the m^{th} iterate of the operator $P_{n,\alpha,\beta}$. We have **Theorem 1.** Let $n \in N^*$ and $\beta > 0$. Then for all $f \in C[0, 1]$,

$$P^m_{n,0,\beta}(f)(x) \to f(0) \text{ as } m \to \infty,$$

uniformly with respect to $x \in \left[0, \frac{n}{n+\beta}\right]$.

Proof. Consider the Banach space $\left(C\left[0, \frac{n}{n+\beta}\right], \|\cdot\|_{C}\right)$ where $\|\cdot\|_{C}$ is the Chebyshev norm. Let

$$X_{\gamma} := \left\{ f \in C\left[0, \frac{n}{n+\beta}\right] \mid f(0) = \gamma \right\}, \quad \gamma \in R.$$

We remark that

(a) X_{γ} is a closed subset of $C\left[0, \frac{n}{n+\beta}\right], \gamma \in R;$ (b) X_{γ} is an invariant subset of $P_{n,0,\beta}$ for all $\beta > 0, n \in N^*, \gamma \in R;$

Received by the editors: 06.02.2002.

2000 Mathematics Subject Classification. 41A10, 47H10.

Key words and phrases. Stancu operators, iteration operators, contraction principle, weakly Picard operators.

IOAN A. RUS

(c)
$$C\left[0, \frac{n}{n+\beta}\right] = \bigcup_{\gamma \in R} X_{\gamma}$$
 is a partition of $C\left[0, \frac{n}{n+\beta}\right]$.
Now we prove that

$$P_{n,0,\beta}: X_{\gamma} \to X_{\gamma}$$

is a contraction, for all $n \in N^*$, $\beta > 0$ and $\gamma \in R$.

Let $f, g \in X_{\gamma}$. From (1) we have

$$|P_{n,0,\beta}(f)(x) - P_{n,0,\beta}(g)(x)| = |P_{n,0,\beta}(f-g)(x)| \le \le \left(\sum_{k=1}^n \binom{n}{k} x^k (1-x)^{n-k}\right) \|f-g\|_C = = (1-(1-x)^n) \|f-g\|_C \le \left(1-\left(1-\frac{n}{n+\beta}\right)^n\right) \|f-g\|_C$$

From this we have that

$$||P_{n,0,\beta}(f) - P_{n,0,\beta}(g)||_C \le \left(1 - \left(1 - \frac{n}{n+\beta}\right)^n\right) ||f - g||_C$$

for all $f, g \in X_{\gamma}$.

We remark that $1 - \left(1 - \frac{n}{n+\beta}\right)^n < 1$. On the other hand the constant function $\gamma \in X_{\gamma}$ and is a fixed point of $P_{n,0,\beta}$.

Let $f \in C\left[0, \frac{n}{n+\beta}\right]$. Then $f \in X_{f(0)}$ and from the contraction principle ([5]) it follows that

$$P_{n,0,\beta}^m(f)(x) \to f(0) \text{ as } m \to \infty.$$

Theorem 2. Let $n \in N^*$ and $\alpha > 0$. Then for all $f \in C[0, 1]$,

$$P^m_{n,\alpha,\alpha}(f)(x) \to f(1) \text{ as } m \to \infty,$$

uniformly with respect to $x \in \left[\frac{\alpha}{n+\alpha}, 1\right]$. **Proof.** Let $X_{\gamma} := \left\{ f \in C\left[\frac{\alpha}{n+\alpha}, 1\right] \mid f(1) = \gamma \right\}, \gamma \in R$. Then (a) X_{γ} is a closed subset of $C\left[\frac{\alpha}{n+\alpha}, 1\right]$, for all $\gamma \in R$; (b) X_{γ} is an invariant subset of the operator $P_{n,\alpha,\alpha}$, for all $\gamma \in R$, $\alpha > 0$ and

$$n \in N^*$$

(c) $C\left[\frac{\alpha}{n+\alpha},1\right] = \bigcup_{\gamma \in R} X_{\gamma}$ is a partition of $C\left[\frac{\alpha}{n+\alpha},1\right]$. Let us prove that

$$P_{n,\alpha,\alpha}|_{X_{\gamma}}: X_{\gamma} \to X_{\gamma}$$

102

is a contraction, for all $n \in N^*$, $\alpha > 0$ and $\gamma \in R$.

Let $f, g \in X_{\gamma}$. From (1) we have

$$\|P_{n,\alpha,\alpha}(f) - P_{n,\alpha,\alpha}(g)\|_C \le \left(1 - \left(\frac{\alpha}{n+\alpha}\right)^n\right)\|f - g\|_C.$$

On the other hand the constant function γ is a fixed point of $P_{n,\alpha,\alpha}$ and $\gamma \in X_{\gamma}$.

Now the proof follows from the contraction principle.

Remark 1. For the case $\alpha = \beta = 0$, see [4] and [6].

Remark 2. Let (X, d) be a complete metric space. By definition an operator $A: X \to X$ is weakly Picard operator (briefly, WPO) if the sequences $(A^m(x))_{m \in N}$ converges, for all $x \in X$, and the limit (which may depend on x) is a fixed point of A.

For an WPO we consider the operator A^{∞} defined by

$$A^{\infty}: X \to X, \quad A^{\infty}(x) := \lim_{m \to \infty} A^m(x).$$

In the terms of WPOs we can formulate the Theorem 1 and 2 as follow

Theorem 1'. Let $n \in N^*$ and $\beta > 0$. Then the Stancu operators $P_{n,0,\beta}$ are WPOs on $C\left[0, \frac{n}{n+\beta}\right]$. **Theorem 2'.** Let $n \in N^*$ and $\alpha > 0$. Then the Stancu operators $P_{n,\alpha,\alpha}$ are

Theorem 2'. Let $n \in N^*$ and $\alpha > 0$. Then the Stancu operators $P_{n,\alpha,\alpha}$ are WPOs on $C\left[\frac{\alpha}{n+\alpha}, 1\right]$. **Remark 3.** The applications of the contraction principle to study the iter-

Remark 3. The applications of the contraction principle to study the iterations of other approximation operators ([1]-[3]) will be presented elsewhere.

References

- J.A. Adell, F.G. Badia, J. de la Cal, On the iterates on some Bernstein-type operators, J. Math. Anal. Appl., 209(1997), 529-541.
- [2] O. Agratini, Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000.
- [3] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory, 3(1970), 310-339.
- [4] R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21(1967), 511-520.
- [5] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [6] I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl. (to appear).
- [7] D.D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Univ. Babeş-Bolyai, 14(1969), 2, 31-45.

IOAN A. RUS

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, BABEŞ-BOLYAI UNIVERSITY, 3400 CLUJ-NAPOCA, ROMANIA *E-mail address*: iarus@math.ubbcluj.ro