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RELATION BETWEEN THE AMOUNT OF INFORMATION AND
THE LIKELIHOOD FUNCTION

ION MIHOC AND CRISTINA IOANA FĂTU

Dedicated to Professor D.D. Stancu on his 75th birthday

Abstract. The objective of this paper is to give some properties for the

Fisher information measure and as well as some relations and informational

characterizations.

1. Introduction

The notion of information plays a central role both in the life of the person

and of society, as well as in all kinds of scientific research. The notion of information

is so universal, it penetrates our everyday life so much that from this point of view,

it can be compared only with the notion of energy [5],[6].

The information theory is an important branch of probability theory and it

has very much applications in mathematical statistics. The notion of information

plays a central role in the fundamental statistical works of R.A.Fisher. Thus, e.g.,

Fisher characterized a sufficient statistical function by the fact that it exhausts all

the information on the estimated parameter, contained by the sample.

Let X be a random variable on the probability space (Ω,K, P ). A statistical

problem arises when the distribution of X is not known and we want to draw some

inference concerning the unknown distribution of X on the basis of a limited number

of observations on X. A general situation may be described as follows: The functional

form of the distribution function is known and merely the values of a finite number

of parameters,involved in the distribution function, are unknown; i.e., the probability

density function of the random variable X is known except for the value of a finite

number of parameters. In general, the parameters θ1, θ2, ..., θk will not be subject to
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any a priori restrictions; i.e., they may take any values. However, the parameters may

in some cases be restricted to certain intervals. In the next we shell restrict ourselves

to the case of a single parameter θ.

2. Fisher’s information measure

Let X be a continuous random variable and its probability density function

f(x; θ) depends on a parameter θ which values in a specified parameter space Dθ, Dθ

⊆ R.Thus we are confronted, not with one distribution of probability, but with a

family of distributions. To each value of θ, θ ∈ Dθ,there corresponds one member of

the family. A family of probability density functions will be denoted by the symbol

{f(x; θ); θ ∈ Dθ} .Any member of this family of probability density functions will be

denoted by the symbol f(x; θ), θ ∈ Dθ.

Let Sn(X) = (X1, X2, ..., Xn) denote a random sample from a distribution

that has a probability density function which is one member (but which member we

do not known) of the family {f(x; θ); θ ∈ Dθ} of the probability density functions.

That is, our sample arises from a distribution that has the probability distribution

f(x; θ), θ ∈ Dθ.Our problem is that of defining a statistic T = T (X1, X2, ..., Xn), so

that if x1, x2, ..., xn are the observed experimental values of X1X2, ..., Xn,then the

number t = t(x1, x2, ..., xn) will be a good point estimate of θ.

In the next we suppose that the parameter θ is unknown and we estimate a

specified function of θ, g(θ) with the help of statistic T = T (X1, X2, ..., Xn) which is

based on a random sample Sn(X) = (X1, X2, ..., Xn), where Xi are independent and

identically distributed (i.i.d.) random variable with density f(x; θ), θ ∈ Dθ.

A well known means of measuring the quality of the statistic

T = T (X1, X2, ..., Xn)

is to use the inequality of Cramér-Rao which states that, under certain regularity

conditions for f(x; θ) (more particularly, it requires the possibility of differentiating

under the integral sign) any unbiased estimator of g(θ) has variance which satisfies

the following inequality [4]
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V arT ≥ [g
′
(θ)]2

n.IX(θ)
= (2.1)

=
[g

′
(θ)]2

In(θ)
, (2.1a)

where

IX(θ) =
∫

Ω

(
∂ ln f(x; θ)

∂θ

)2

f(x; θ)dx = (2.2)

=
∫

Ω

1
f(x; θ)

(
∂f(x; θ)

∂θ

)2

dx, (2.3)

and

In(θ) = E

[(
∂ lnL(x1, x2, ..., xn; θ)

∂θ

)2
]

= (2.4)

=
∫

Ω

...

∫
Ω

(
∂L(x1, x2, ..., xn; θ)

∂θ

)2

L(x1, x2, ..., xn; θ)dx1...dxn = (2.5)

= nE

[(
∂ ln f(x; θ)

∂θ

)2
]

= n

∫
Ω

(
∂ ln f(x; θ)

∂θ

)2

f(x; θ)dx, (2.6)

f(x; θ) = f(xi; θ), i = 1, n, (2.7)

L(x1, x2, ..., xn; θ) =
n∏

i=1

f(xi; θ) (2.8)

is the joint probability density function of X1, X2, ..., Xn.

This joint probability density function of X1, X2, ..., Xn may be regarded as

a function of θ and it is called the likelihood function of the random sample Sn(X) =

(X1X2, ..., Xn).

The quantity IX(θ) is known as Fisher
′
s information measure and it mea-

sures the information about g(θ) which is contained in an observation of X.Also, the

quantity In(θ) = n.IX(θ) measures the information about g(θ) contained in a random

sample Sn(X) = (X1X2, ..., Xn),than then Xi, i = 1, n are independent and identi-

cally distributed random variables with density f(x; θ), θ ∈ Dθ. An unbiased estimator

of g(θ) that achieves this minimum from (2.1) is known as an efficient estimator.
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3. Some properties of Fisher’s information measure

Let f(x; θ), θ ∈ Dθ be a positive probability density function in the interval

[a, b] depending on the continuous parameter θ in a continuously differentiable way.

Definition 1. [6], [3]. The gain of information when a distribution with

probability density function f(x; θ0) is replaced by another one with probability den-

sity function f(x; θ1) has the form

I[f(x; θ1)‖f(x; θ0)] = I(θ1‖θ0) = (3.1)

=

b∫
a

f(x; θ1) log2

f(x; θ1)
f(x; θ0)

dx. (3.2)

Theorem 1. Let X be a continuous random variable with probability density

function f(x; θ), θ ∈ Dθ. Then we have the following relation

k
d2I(θ1‖θ0)

dθ2
1

∣∣∣∣
θ1=θ0

= IF [f(x; θ0)], (3.3)

where

IF [f(x; θ0)] =

b∫
a

(
∂ ln f(x; θ0)

∂θ0

)2

f(x; θ0)dx, (3.4)

k = ln 2. (3.6)

Proof. Indeed, if we have in view the form (3.1) of the gain of information

and we compute the derivative, we obtain

dI(θ1‖θ0)
dθ1

=
d

dθ1

 b∫
a

f(x; θ1) log2

f(x; θ1)
f(x; θ0)

dx

 =

=

b∫
a

(
df(x; θ1)

dθ1
log2

f(x; θ1)
f(x; θ0)

+ f(x; θ1)
d

dθ1
log2

f(x; θ1)
f(x; θ0)

)
dx =

=
1
k

b∫
a

(
d ln f(x; θ1)

dθ1
ln

f(x; θ1)
f(x; θ0)

+
df(x; θ1)

dθ1

)
dx =

=
1
k

b∫
a

(
1 + ln

f(x; θ1)
f(x; θ0)

)
df(x; θ1)

dθ1
dx,
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respectively,

dI(θ1‖θ0)
dθ1

=
1
k

b∫
a

(
1 + ln

f(x; θ1)
f(x; θ0)

)
df(x; θ1)

dθ1
dx. (3.7)

Now, if we compute the second derivative of I(θ1‖θ0) , we get

d2I(θ1‖θ0)
dθ2

1

=
1
k

b∫
a

[
1

f(x; θ1)

(
df(x; θ1)

dθ1

)2

+

+
(

1 + ln
f(x; θ1)
f(x; θ0)

)
d2f(x; θ1)

dθ2
1

]
dx, (3.8)

and, hence, if we consider θ1 = θ0,we obtain

d2I(θ1‖θ0)
dθ2

1

∣∣∣∣
θ1=θ0

=
1
k

b∫
a

1
f(x; θ0)

(
df(x; θ0)

dθ0

)2

dx +
1
k

b∫
a

d2f(x; θ0)
dθ2

0

dx =

=
1
k

IF [f(x; θ0)], (3.9)

because from the relation

b∫
a

f(x; θ0)dx = 1, (3.10)

we obtain

b∫
a

df(x; θ)
dθ0

dx = 0,

b∫
a

d2f(x; θ)
dθ2

0

dx = 0. (3.11)

Remark 1. From this theorem it follows that the gain of information can

be considered as a generating-function of the Fisher information measure [2].

Theorem 2. Let X be a continuous random variables and f(x; θ) its prob-

ability density function which depends on a parameter θ with values in the specified

parameter space Dθ and , more f(x; θ) is absolutely continuous in θ. If θ is a local

parameter for X, i.e.,

f(x; θ) = f1(x− θ), θ ∈ Dθ, (3.12)
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then

IF [f(x; θ)] = IF [f1(x− θ)], (3.13)

where

IF [f(x; θ)] =
∫
R

[
1

f(x; θ)
∂f(x; θ)

∂θ

]2

f(x; θ)dx, (3.14)

IF [f1(x− θ)] =
∫
R

[
1

f1(x− θ)
∂f1(x− θ)

∂θ

]2

f1(x− θ)dx, (3.15)

are Fisher’s information measures.

Proof. Indeed, from (3.12) and (3.14), we obtain

IF [f(x; θ)] =

∞∫
−∞

[
1

f(x; θ)
∂f(x; θ)

∂θ

]2

f(x; θ)dx =

=

∞∫
−∞

[
1

f1(x− θ)
∂f1(x− θ)

∂θ

]2

f1(x− θ)dx =

=

∞∫
−∞

[
−f

′

1(x− θ)
f1(x− θ)

]2

f1(x− θ)dx =

=

∞∫
−∞

[
f

′

1(u)
f1(u)

]2

f1(u)du =

= IF [f1(u)],

if we have in view the change of variables

u = x− θ. (3.16)

Corollary 3. If the parameter θ is a scale parameter for X with center m

as follows

f(x; θ) = e−θf2[(x−m)e−θ],−∞ < θ < ∞, (3.17)

then

IF [f(x; θ)] = IF (f2), (3.18)

when

IF (f2) =

∞∫
−∞

[
1− x

f ′2(x)
f2(x)

]2

f2(x)dx, (3.19)

constantly in θ and m,-∞ < θ,m < ∞.
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Proof. From (3.17), we obtain

∂f(x; θ)
∂θ

=
∂

∂θ

{
e−θf2[(x−m)e−θ]

}
=

= −f(x; θ)− (x−m)e−2θf ′2[(x−m)e−θ], (3.20)

where

f ′2(v) =
df2(v)

dv
, v = (x−m)e−θ. (3.21)

Then

IF [f(x; θ)] =

∞∫
−∞

[
1

f(x; θ)
∂f(x; θ)

∂θ

]2

f(x; θ)dx =

=

∞∫
−∞

[
−f(x; θ)− (x−m)e−2θf ′2[(x−m)e−θ]

f(x; θ)

]2

f(x; θ)dx =

=

∞∫
−∞

{
−1− (x−m)e−2θf ′2[(x−m)e−θ]

f(x; θ)

}2

f(x; θ)dx. (3.22)

If we make the following change of variables

v = (x−m)e−θ, (3.23)

then we obtain

IF [f(x; θ)] =

∞∫
−∞

[
−1− v

f ′2(v)
f2(v)

]2

f2(v)dv, (3.24)

because we have

{
−1− (x−m)e−2θf ′2[(x−m)e−θ]

f(x; θ)

}2

f(x; θ)dx =
[
−1− v

f ′2(v)
f2(v)

]2

f2(v)dv. (3.25)
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4. Application

Let X be a continuous random variable which follows a normal distribution,

that is, its probability density function is defined by

f(x;m,σ2) =
1√
2πσ

exp

{
−1

2

(
x−m

σ

)2
}

, x ∈ R, (4.1)

where σ > 0 and m ∈ R are the two parameters of the distribution, namely, m is a

location parameter and σ2 is a scale parameter.

Then for the function

g(x;m,σ2) = − ln f(x;m,σ2) = (4.2)

= ln
√

2π +
1
2

lnσ2 +
1
2

(
x−m

σ

)2

, (4.3)

we obtain

∂g(x;m,σ2)
∂x

=
x−m

σ
, (4.4)

∂2g(x;m,σ2)
∂x2

=
1
σ2

> 0,∀x ∈ R, (4.5)

and from here it follows that the probability density (4.1) is a strongly unimodal func-

tion and more it is an absolute continuous function, if we have in view the following

remark.

Remark 2. [1] Let X be a continuous random variable on the probability

space (Ω,K, P ) and f(x) , x ∈ (a, b), a < b, (a, b) ⊂ R its probability density function.

If the function g,defined as

g(x) = − ln f(x), x ∈ (a, b) (4.6)

is a convex function, than f is called strongly unimodal.

Such strongly unimodal probability density function is absolutely continuous

within (a, b) and more

g′(x) = −f ′(x)
f(x)

, (f(x) 6= o, x ∈ (a, b)) (4.7)
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is a non-decreasing function.

Also, we say that X is absolutely continuous random variable if its probability

density f(x) is an absolutely continuous function.

Then, according to the relation (2.2), when θ = m, we obtain

IF (x; θ) = IF (x;m) =
1
σ2

. (4.8)

Now, we consider the relation

f(x; θ) = e−θf2[(x−m)e−θ],−∞ < θ < +∞ (4.9)

and if

eθ = σ, (4.10)

then

e−θ =
1
σ

, θ = ln σ (4.11)

and from (4.9), we obtain

f(x; θ) = e−θf(v) =
1√
2πσ

exp

{
−1

2

(
x−m

σ

)2
}

= f(x;m,σ2), (4.12)

where

v =
x−m

σ
. (4.13)

Also, according to the relation (2.2), when θ = σ2,we obtain

IF [f(x; θ)] = IF [f(x;σ2)] =
1

2σ4
. (4.14)
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[6] Rényi, A., Probability Theory, Akadémiai Kiado, Budapest, 1970.

Faculty of Mathematics and Computer Sciences,
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