FIXED POINTS OF R-CONTRACTIONS

ANTAL BEGE

Dedicated to Professor D.D. Stancu on his 75th birthday

Abstract. Let X be a set and $R = (R_n)_{n \ge 0}$, $R_n \subset X \times X$ a sequence of binary relations on X. The operator $f : X \longrightarrow X$ is R-contraction if

$$(x,y) \in R_n \Longrightarrow (f(x), f(y)) \in R_{n+1}.$$

The first theorem concerning R-contraction is due to Eilenberg [2]. Further I. A. Rus [7] and Grudzinski [3] generalize this concept. We prove some results which generalize the theorems in [7] and [3] under certain conditions.

1. Introduction

Let X be a set, $f: X \longrightarrow X$ an operator and F_f be a fixed point set of f:

$$F_f := \{ x \in X \mid f(x) = x \}.$$

We introduce the following notations:

$$\Delta(X) := \{ (x, x) \mid x \in X \},\$$

$$f^0 = 1_X, \ f^1 = f, \ f^n(x) := f(f^{n-1}(x)), \quad n \ge 2$$

Let X be a nonempty set, $R_n \subset X \times X$ a sequence of symmetric binary relations on X. Throughout this paper we suppose that:

a)

$$X \times X = R_0 \supset R_1 \supset \ldots \supset R_n \supset \ldots$$

b)

$$\bigcap_{n=0}^{\infty} R_n = \Delta(x) = \{(x,x) \, | \, x \in X\}.$$

2000 Mathematics Subject Classification. 06A10, 47H10. Key words and phrases. R-contraction, fixed point.

Received by the editors: 01.09.2002.

ANTAL BEGE

Firstly Eilenberg [2] proved the discrete version of Banach fixed point theorem. Later I. A. Rus [7] introduced the concept of R-contractions:

Definition 1. The operator $f: X \longrightarrow X$ is R-contraction if

$$(x,y) \in R_n \Longrightarrow (f(x), f(y)) \in R_{n+1}.$$

I. A. Rus [7], [6], [8] and indepently I. A. Grudzinsky [3] proved fixed point theorems for R-contractions (see Bege [1]).

In this paper we generalize the concept of R-contractions and we prove some fixed point theorems for this contractions.

2. Generalized R-contractions

In this section we introduce the concept of generalized R-contraction and give some examples.

Definition 2. Let $X \neq \emptyset$, $R_n \subset X \times X$, $n \in \mathbb{N}$. We say that $f: X \longrightarrow X$ generalized **R-contraction of the type** d_i if \mathbf{d}_1) $(x, f(x)) \in R_n$, $(y, f(y)) \in R_n$

$$\Rightarrow (f(x), f(y)) \in R_{n+1}$$

d₂) $(x, y) \in R_n, (x, f(x)) \in R_n, (y, f(x)) \in R_n$

$$\Rightarrow (f(x), f(y)) \in R_{n+1}$$

d₃) $(x, y) \in R_n$, $(x, f(y)) \in R_n$

$$\Rightarrow (f(x), f(y)) \in R_{n+1}$$

 \mathbf{d}_4)

$$(x, f(x)) \in R_n \Rightarrow (f(x), f^2(x)) \in R_{n+1}$$

We remark that if an operator is R-contraction then it is a generalized d_4 contraction.

In the following part of this section we present some examples concerning R-contractions and generalized contractions.

FIXED POINTS OF R-CONTRACTIONS

Example 1 (S. Reich [5])

Let (X, d) be a metric space and $a, b, c \in \mathbb{R}_+$, a + b + c < 1 such that

$$d\left(f(x), f(y)\right) \le a \cdot d\left(x, y\right) + b \cdot d\left(x, f(x)\right) + c \cdot d\left(y, f(y)\right), \quad \forall x, y \in X.$$

If

$$R_n = \left\{ (x, y) \in X \times X \mid d(x, y) \le \frac{a+b}{1-c} \cdot (a+b+c)^n \cdot \delta(X) \right\}$$
$$Y = \left\{ x \in X \mid d(x, f(x)) \le \frac{a+b}{1-c} \cdot \delta(X) \right\} \neq \emptyset$$

then R_n satisfies the conditions (a) and (b) and f generalized contraction of the type d_2 .

Example 2 (R. Kannan [4])

Let (X, d) be a metric space, and $f : X \longrightarrow X$ one operator for which exist $a \in \mathbb{R}$, $a < \frac{1}{2}$, such that:

$$d(f(x), f(y)) \le a \cdot [d(x, f(x)) + d(y, f(y))], \quad \forall x, y \in X.$$

 \mathbf{If}

$$R_n = \left\{ (x, y) \in X \times X \mid d(x, y) \le \frac{a}{1 - a} \cdot (2a)^n \cdot \delta(X) \right\},$$
$$Y = \left\{ x \in X \mid d(x, f(x)) \le \frac{a}{1 - a} \cdot \delta(X) \right\} \neq \emptyset,$$

then R_n satisfies the conditions a) si b) and f generalized R-contraction of the type d_1 .

3. Main results

Theorem 3. Let X be a nonempty set, $R_n \subset X \times X$ a sequence of symmetrical binary relations on X, satisfying the conditions **a**) **b**) and

c) If $(x_n)_{n\geq 0}$ is a sequence in X such that $(x_n, x_{n+k}) \in R_n$, $\forall n, k \geq 0$, then there exist unique $x \in X$ satisfying the condition $(x_n, x) \in R_n$, $\forall n \geq 0$.

Let $f : X \longrightarrow X$ be a generalized R-contraction of type d_3 . Then f has an unique fixed point.

Proof.

Let $x_0 \in X$, $x_n = f(x_{n-1})$, $\forall n \ge 1$.

ANTAL BEGE

From the form of R_0 and definition 2 we have:

$$(x_0, x_1) \in R_0, \ (x_0, x_2) \in R_0 \Longrightarrow (x_1, x_2) = (f(x_0), f(x_1)) \in R_1,$$

 $(x_0, x_2) \in R_0, \ (x_0, x_3) \in R_0 \Longrightarrow (x_1, x_3) = (f(x_0), f(x_2)) \in R_1.$

From mathematical induction follows that: $(x_1, x_{n+1}) \in R_1, \ \forall n \ge 0.$ But

$$(x_1, x_n) \in R_1, \ (x_1, x_{n+1}) \in R_1 \Longrightarrow (x_2, x_{n+1}) \in R_2, \quad \forall n \ge 1$$

and generally

$$(x_k, x_{k+n}) \in R_k, \quad \forall k \ge 0, \forall n \ge 0.$$

Condition \mathbf{c}_1) implies the existence of unique $x^* \in X$ such that $(x^*, x_n) \in R_n, \forall n \ge 0$. But

$$(x^*, x_n) \in R_n, \ (x^*, x_{n+1}) \in R_{n+1} \subset R_n \Longrightarrow (f(x^*), x_{n+1}) \in R_{n+1}, \ \forall n \ge 0.$$

Because x^* is unique, $x^* = f(x^*)$.

If we have $y^* \in X$, for which $y^* = f(y^*)$, then

$$(x^*, y^*) = (x^*, f(y^*)) \in R_0 \Longrightarrow (f(x^*), f(y^*)) = (x^*, y^*) \in R_1$$

Similarly $(x^*, y^*) \in R_n$ for all n.

From **b**) we have $x^* = y^*$.

Corollary 4. ([7], Theorem 2.1) If $f : X \longrightarrow X$ is a *R*-contraction, and $R_n \subset X \times X$, $n \in N$, a sequence of binary symmetrical relations, satisfying the conditions **a**) **b**) and **c**), then:

$$F_f = \{x^*\}$$

and

$$(f^n(x_0), x^*) \in R_n, \quad \forall x_0 \in X, \ n \in N.$$

Theorem 5. Let X be a nonempty set and $R_n \subset X \times X$, $n \in N$ a sequence of symmetrical binary relations on X, satisfying the conditions **a**), **b**),

 $\mathbf{c}_1)$

If $(x_n)_{n\geq 0}$ is a sequence in X such that $(x_n, x_{n+k}) \in R_n$ for all $n, k \in N$ then there 22 exist unique $x \in X$ for which $(x_n, x) \in R_n, \forall n \in N$.

If $f : X \longrightarrow X$ is a generalized *R*-contraction of type \mathbf{d}_1) and satisfies the following condition:

e)

For every $x_0 \in X$

$$(f^{n}(x_{0}), x) \in R_{n} \Longrightarrow (f^{n+1}(x_{0}), f(x)) \in R_{n+1} \quad (n \in N).$$

Then f has an unique fixed point.

Proof.

In same way (see the proof of theorem 1) we have that if $x_0 \in X$, $x_n = f(x_{n-1})$, $\forall n \ge 1$ then:

$$(x_k, x_{k+n}) \in R_k, \ \forall k \ge 0, \ \forall n \ge 0.$$

The condition \mathbf{c}_1 implies the existence of the unique $x^* \in X$ such that

 $(x^*, x_n) \in R_n, \ \forall n \ge 0.$

But from e) :

$$(x_n, x^*) = (f^n(x_0), x^*) \in R_n \Longrightarrow (f^{n+1}(x_0), f(x^*)) = (x_{n+1}, f(x^*)) \in R_{n+1}.$$

We have $(x_0, f(x^*)) \in R_0$ so $(x_n, f(x^*)) \in R_n$ for all n. The uniqueness of x^* implies $x^* = f(x^*)$.

In the next we prove the uniqueness of the fixed point:

Let $x^*, y^* \in F_f$. From **b**) $(x^*, f(x^*)) \in R_n$ and $(y^*, f(y^*)) \in R_n$ for all $n \ge 0$. This implies that $(x^*, y^*) \in R_n$ (f generalized R-contraction of type \mathbf{d}_1)). So $x^* = y^*$.

Theorem 6. Let X be a nonempty set and $R_n \subset X \times X$, $n \in N$ a sequence of symmetrical binary relations on X, satisfying the conditions **a**), **b**),

 $\mathbf{c}_2)$

If $(x_n)_{n\geq 0}$ is a sequence in X such that $(x_n, x_{n+k}) \in R_n$ for all $n, k \in N$ then there exist $x \in X$ (not necessary unique) for which $(x_n, x) \in R_n, \forall n \in N$.

f) For all $x, y, z \in X$, $n \in N$

$$(x,y) \in R_{n+k}, \quad (y,z) \in R_{n+k} \Longrightarrow (x,z) \in R_n.$$

If $f: X \longrightarrow X$ is a generalized *R*-contraction of type \mathbf{d}_3) then $F_f = \{x^*\}$.

23

ANTAL BEGE

Proof.

We consider the iterares of f in x_0 : $x_n = f(x_{n-1})$, $\forall n \ge 1$. From the first part of the proof of Theorem 1, there exist $x^* \in X$ such that

$$(x^*, x_{n+k}) \in R_n \quad \forall n \ge 0.$$

f generalized R-contraction of type d_3) which implies:

$$(x^*, x_{n+2k}) \in R_{n+k}, \ (x^*, x_{n+2k+1}) \in R_{n+k+1} \subset R_{n+k} \Longrightarrow$$
$$\Longrightarrow (f(x^*), x_{n+2k+1}) \in R_{n+k+1} \subset R_{n+k}.$$

From condition **f**):

$$(x^*, x_{n+2k+1}) \in R_{n+k}, \quad (f(x^*), x_{n+2k+1}) \in R_{n+k} \Longrightarrow (x^*, f(x^*)) \in R_n,$$

 $(x^*, f(x^*)) \in \bigcap_{n \in N} R_n = \Delta(x)$

which implies $x^* = f(x^*)$.

The proof of uniqueness is same with the proof in Theorem 1.

Corollary 7. (Grudzinski [3]) Let X be a nonempty set and $R_n \subset X \times X$, $n \in N$ a sequence of reflexive and symmetrical binary relations on X, satisfying the conditions **a**), **b**), **c**₂), **f**). Let $f : X \longrightarrow X$ be R-contraction. Then f has an unique fixed point.

References

- A. Bege, Discrete fixed point theory and applications (Romanian), Presa Univ. Clujeană, 2002.
- [2] J. Dugundji, A. Granas, Fixed point theory, Vol. 1, P. W. N., Warsawa, 1982.
- [3] W. Grudzinski, On the discrete Banach principle, Zeszyty Nauk. Politech. Lodz Mat., 26 (1994), 81–88.
- [4] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.
- [5] S. Reich, Some remarks concerning contraction mappings, Canad Math. Bull., 14 (1971), 121–124.
- [6] I. A. Rus, Discrete fixed point theorems, Studia Univ. Babeş-Bolyai, Math., 33 (1988), 61–64.
- [7] I. A. Rus, R-contractions, Studia Univ. Babeş-Bolyai, Math., 34 (1989), 58-62.
- [8] I. A. Rus, A. Petruşel, G. Petruşel, Fixed point theory 1950-2000, Romanian contributions, House of the Book of Science, Cluj-Napoca, 2002.

FACULTY OF MATHEMATICS, DEPARTMENT OF APPLIED MATHEMATICS, UNIVERSITY "BABEŞ-BOLYAI" CLUJ-NAPOCA, STR. KOGĂLNICEANU NR. 1, 3400 CLUJ-NAPOCA, ROMANIA *E-mail address*: bege@math.ubbcluj.ro