FIXED POINTS OF R-CONTRACTIONS

ANTAL BEGE
Dedicated to Professor D.D. Stancu on his $75^{t h}$ birthday

Abstract

Let X be a set and $R=\left(R_{n}\right)_{n \geq 0}, R_{n} \subset X \times X$ a sequence of binary relations on X. The operator $f: X \longrightarrow X$ is R-contraction if $$
(x, y) \in R_{n} \Longrightarrow(f(x), f(y)) \in R_{n+1} .
$$

The first theorem concerning R-contraction is due to Eilenberg [2]. Further I. A. Rus [7] and Grudzinski [3] generalize this concept. We prove some results which generalize the theorems in [7] and [3] under certain conditions.

1. Introduction

Let X be a set, $f: X \longrightarrow X$ an operator and F_{f} be a fixed point set of f :

$$
F_{f}:=\{x \in X \mid f(x)=x\} .
$$

We introduce the following notations:

$$
\begin{gathered}
\Delta(X):=\{(x, x) \mid x \in X\} \\
f^{0}=1_{X}, f^{1}=f, f^{n}(x):=f\left(f^{n-1}(x)\right), \quad n \geq 2
\end{gathered}
$$

Let X be a nonempty set, $R_{n} \subset X \times X$ a sequence of symmetric binary relations on X. Throughout this paper we suppose that:
a)

$$
X \times X=R_{0} \supset R_{1} \supset \ldots \supset R_{n} \supset \ldots
$$

b)

$$
\bigcap_{n=0}^{\infty} R_{n}=\Delta(x)=\{(x, x) \mid x \in X\} .
$$

Firstly Eilenberg [2] proved the discrete version of Banach fixed point theorem. Later I. A. Rus [7] introduced the concept of R-contractions:

Definition 1. The operator $f: X \longrightarrow X$ is R-contraction if

$$
(x, y) \in R_{n} \Longrightarrow(f(x), f(y)) \in R_{n+1}
$$

I. A. Rus [7], [6], [8] and indepently I. A. Grudzinsky [3] proved fixed point theorems for R-contractions (see Bege [1]).

In this paper we generalize the concept of R -contractions and we prove some fixed point theorems for this contractions.

2. Generalized R-contractions

In this section we introduce the concept of generalized R-contraction and give some examples.

Definition 2. Let $X \neq \emptyset, R_{n} \subset X \times X, \quad n \in \mathbb{N}$. We say that
$f: X \longrightarrow X$ generalized R-contraction of the type d_{i} if
$\left.\mathbf{d}_{1}\right)(x, f(x)) \in R_{n}, \quad(y, f(y)) \in R_{n}$

$$
\Rightarrow(f(x), f(y)) \in R_{n+1}
$$

$\left.\mathbf{d}_{2}\right)(x, y) \in R_{n},(x, f(x)) \in R_{n}, \quad(y, f(x)) \in R_{n}$

$$
\Rightarrow(f(x), f(y)) \in R_{n+1}
$$

$\left.\mathbf{d}_{3}\right)(x, y) \in R_{n}, \quad(x, f(y)) \in R_{n}$

$$
\Rightarrow(f(x), f(y)) \in R_{n+1}
$$

d_{4})

$$
(x, f(x)) \in R_{n} \Rightarrow\left(f(x), f^{2}(x)\right) \in R_{n+1}
$$

We remark that if an operator is R -contraction then it is a generalized d_{4} contraction.

In the following part of this section we present some examples concerning R -contractions and generalized contractions.

Example 1 (S. Reich [5])
Let (X, d) be a metric space and $a, b, c \in \mathbb{R}_{+}, a+b+c<1$ such that

$$
d(f(x), f(y)) \leq a \cdot d(x, y)+b \cdot d(x, f(x))+c \cdot d(y, f(y)), \quad \forall x, y \in X
$$

If

$$
\begin{gathered}
R_{n}=\left\{(x, y) \in X \times X \left\lvert\, d(x, y) \leq \frac{a+b}{1-c} \cdot(a+b+c)^{n} \cdot \delta(X)\right.\right\} \\
Y=\left\{x \in X \left\lvert\, d(x, f(x)) \leq \frac{a+b}{1-c} \cdot \delta(X)\right.\right\} \neq \emptyset
\end{gathered}
$$

then R_{n} satisfies the conditions (a) and (b) and f generalized contraction of the type d_{2}.

Example 2 (R. Kannan [4])
Let (X, d) be a metric space, and $f: X \longrightarrow X$ one operator for which exist $a \in$ $\mathbb{R}, a<\frac{1}{2}$, such that:

$$
d(f(x), f(y)) \leq a \cdot[d(x, f(x))+d(y, f(y))], \quad \forall x, y \in X
$$

If

$$
\begin{gathered}
R_{n}=\left\{(x, y) \in X \times X \left\lvert\, d(x, y) \leq \frac{a}{1-a} \cdot(2 a)^{n} \cdot \delta(X)\right.\right\}, \\
Y=\left\{x \in X \left\lvert\, d(x, f(x)) \leq \frac{a}{1-a} \cdot \delta(X)\right.\right\} \neq \emptyset
\end{gathered}
$$

then R_{n} satisfies the conditions a) şi b) and f generalized R-contraction of the type d_{1}.

3. Main results

Theorem 3. Let X be a nonempty set, $R_{n} \subset X \times X$ a sequence of symmetrical binary relations on X, satisfying the conditions a) b) and
c) If $\left(x_{n}\right)_{n \geq 0}$ is a sequence in X such that $\left(x_{n}, x_{n+k}\right) \in R_{n}, \quad \forall n, k \geq 0$, then there exist unique $x \in X$ satisfying the condition $\left(x_{n}, x\right) \in R_{n}, \quad \forall n \geq 0$.
Let $f: X \longrightarrow X$ be a generalized R-contraction of type d_{3}. Then f has an unique fixed point.

Proof.

Let $x_{0} \in X, x_{n}=f\left(x_{n-1}\right), \forall n \geq 1$.

From the form of R_{0} and definition 2 we have:

$$
\begin{aligned}
& \left(x_{0}, x_{1}\right) \in R_{0}, \quad\left(x_{0}, x_{2}\right) \in R_{0} \Longrightarrow\left(x_{1}, x_{2}\right)=\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \in R_{1}, \\
& \left(x_{0}, x_{2}\right) \in R_{0}, \quad\left(x_{0}, x_{3}\right) \in R_{0} \Longrightarrow\left(x_{1}, x_{3}\right)=\left(f\left(x_{0}\right), f\left(x_{2}\right)\right) \in R_{1} .
\end{aligned}
$$

From mathematical induction follows that: $\left(x_{1}, x_{n+1}\right) \in R_{1}, \forall n \geq 0$.
But

$$
\left(x_{1}, x_{n}\right) \in R_{1},\left(x_{1}, x_{n+1}\right) \in R_{1} \Longrightarrow\left(x_{2}, x_{n+1}\right) \in R_{2}, \quad \forall n \geq 1
$$

and generally

$$
\left(x_{k}, x_{k+n}\right) \in R_{k}, \quad \forall k \geq 0, \forall n \geq 0 .
$$

Condition \mathbf{c}_{1}) implies the existence of unique $x^{*} \in X$ such that $\left(x^{*}, x_{n}\right) \in R_{n}, \forall n \geq 0$.
But

$$
\left(x^{*}, x_{n}\right) \in R_{n},\left(x^{*}, x_{n+1}\right) \in R_{n+1} \subset R_{n} \Longrightarrow\left(f\left(x^{*}\right), x_{n+1}\right) \in R_{n+1}, \forall n \geq 0 .
$$

Because x^{*} is unique, $x^{*}=f\left(x^{*}\right)$.
If we have $y^{*} \in X$, for which $y^{*}=f\left(y^{*}\right)$, then

$$
\left(x^{*}, y^{*}\right)=\left(x^{*}, f\left(y^{*}\right)\right) \in R_{0} \Longrightarrow\left(f\left(x^{*}\right), f\left(y^{*}\right)\right)=\left(x^{*}, y^{*}\right) \in R_{1}
$$

Similarly $\left(x^{*}, y^{*}\right) \in R_{n}$ for all n.
From b) we have $x^{*}=y^{*}$.

Corollary 4. ([7], Theorem 2.1) If $f: X \longrightarrow X$ is a R-contraction, and $R_{n} \subset X \times X, n \in N$, a sequence of binary symmetrical relations, satisfying the conditions a) b) and \mathbf{c}), then:

$$
F_{f}=\left\{x^{*}\right\}
$$

and

$$
\left(f^{n}\left(x_{0}\right), x^{*}\right) \in R_{n}, \quad \forall x_{0} \in X, n \in N .
$$

Theorem 5. Let X be a nonempty set and $R_{n} \subset X \times X, n \in N$ a sequence of symmetrical binary relations on X, satisfying the conditions \mathbf{a}), \mathbf{b}),
\mathbf{c}_{1})
If $\left(x_{n}\right)_{n \geq 0}$ is a sequence in X such that $\left(x_{n}, x_{n+k}\right) \in R_{n}$ for all $n, k \in N$ then there
exist unique $x \in X$ for which $\left(x_{n}, x\right) \in R_{n}, \forall n \in N$.
If $f: X \longrightarrow X$ is a generalized R-contraction of type \mathbf{d}_{1}) and satisfies the following condition:
e)

For every $x_{0} \in X$

$$
\left(f^{n}\left(x_{0}\right), x\right) \in R_{n} \Longrightarrow\left(f^{n+1}\left(x_{0}\right), f(x)\right) \in R_{n+1} \quad(n \in N) .
$$

Then f has an unique fixed point.

Proof.

In same way (see the proof of theorem 1) we have that if $x_{0} \in X, x_{n}=f\left(x_{n-1}\right)$, $\forall n \geq 1$ then:

$$
\left(x_{k}, x_{k+n}\right) \in R_{k}, \forall k \geq 0, \forall n \geq 0
$$

The condition \mathbf{c}_{1}) implies the existence of the unique $x^{*} \in X$ such that $\left(x^{*}, x_{n}\right) \in R_{n}, \forall n \geq 0$.

But from e) :

$$
\left(x_{n}, x^{*}\right)=\left(f^{n}\left(x_{0}\right), x^{*}\right) \in R_{n} \Longrightarrow\left(f^{n+1}\left(x_{0}\right), f\left(x^{*}\right)\right)=\left(x_{n+1}, f\left(x^{*}\right)\right) \in R_{n+1} .
$$

We have $\left(x_{0}, f\left(x^{*}\right)\right) \in R_{0}$ so $\left(x_{n}, f\left(x^{*}\right)\right) \in R_{n}$ for all n. The uniqueness of x^{*} implies $x^{*}=f\left(x^{*}\right)$.

In the next we prove the uniqueness of the fixed point:
Let $x^{*}, y^{*} \in F_{f}$. From b) $\quad\left(x^{*}, f\left(x^{*}\right)\right) \in R_{n}$ and $\left(y^{*}, f\left(y^{*}\right)\right) \in R_{n}$ for all $n \geq 0$. This implies that $\left(x^{*}, y^{*}\right) \in R_{n}\left(f\right.$ generalized R-contraction of type $\left.\left.\mathbf{d}_{1}\right)\right)$. So $x^{*}=y^{*}$.

Theorem 6. Let X be a nonempty set and $R_{n} \subset X \times X, n \in N$ a sequence of symmetrical binary relations on X, satisfying the conditions \mathbf{a}), \mathbf{b}),
\mathbf{c}_{2})
If $\left(x_{n}\right)_{n \geq 0}$ is a sequence in X such that $\left(x_{n}, x_{n+k}\right) \in R_{n}$ for all $n, k \in N$ then there exist $x \in X$ (not necessary unique) for which $\left(x_{n}, x\right) \in R_{n}, \forall n \in N$.
f) For all $x, y, z \in X, n \in N$

$$
(x, y) \in R_{n+k}, \quad(y, z) \in R_{n+k} \Longrightarrow(x, z) \in R_{n} .
$$

If $f: X \longrightarrow X$ is a generalized R-contraction of type \mathbf{d}_{3}) then $F_{f}=\left\{x^{*}\right\}$.

Proof.

We consider the iterares of f in $x_{0}: \quad x_{n}=f\left(x_{n-1}\right), \quad \forall n \geq 1$.
From the first part of the proof of Theorem 1 , there exist $x^{*} \in X$ such that

$$
\left(x^{*}, x_{n+k}\right) \in R_{n} \quad \forall n \geq 0 .
$$

f generalized R-contraction of type \mathbf{d}_{3}) which implies:

$$
\begin{gathered}
\left(x^{*}, x_{n+2 k}\right) \in R_{n+k},\left(x^{*}, x_{n+2 k+1}\right) \in R_{n+k+1} \subset R_{n+k} \Longrightarrow \\
\Longrightarrow\left(f\left(x^{*}\right), x_{n+2 k+1}\right) \in R_{n+k+1} \subset R_{n+k} .
\end{gathered}
$$

From condition \mathbf{f}):

$$
\begin{gathered}
\left(x^{*}, x_{n+2 k+1}\right) \in R_{n+k}, \quad\left(f\left(x^{*}\right), x_{n+2 k+1}\right) \in R_{n+k} \Longrightarrow\left(x^{*}, f\left(x^{*}\right)\right) \in R_{n} \\
\left(x^{*}, f\left(x^{*}\right)\right) \in \bigcap_{n \in N} R_{n}=\Delta(x)
\end{gathered}
$$

which implies $x^{*}=f\left(x^{*}\right)$.
The proof of uniqueness is same with the proof in Theorem 1.
Corollary 7. (Grudzinski [3]) Let X be a nonempty set and $R_{n} \subset X \times X$, $n \in N$ a sequence of reflexive and symmetrical binary relations on X, satisfying the conditions \mathbf{a}), b), \mathbf{c}_{2}), f) . Let $f: X \longrightarrow X$ be R-contraction.

Then f has an unique fixed point.

References

[1] A. Bege, Discrete fixed point theory and applications (Romanian), Presa Univ. Clujeană, 2002.
[2] J. Dugundji, A. Granas, Fixed point theory, Vol. 1, P. W. N., Warsawa, 1982.
[3] W. Grudzinski, On the discrete Banach principle, Zeszyty Nauk. Politech. Lodz Mat., 26 (1994), 81-88.
[4] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
[5] S. Reich, Some remarks concerning contraction mappings, Canad Math. Bull., 14 (1971), 121-124.
[6] I. A. Rus, Discrete fixed point theorems, Studia Univ. Babes-Bolyai, Math., 33 (1988), 61-64.
[7] I. A. Rus, R-contractions, Studia Univ. Babes-Bolyai, Math., 34 (1989), 58-62.
[8] I. A. Rus, A. Petruşel, G. Petruşel, Fixed point theory 1950-2000, Romanian contributions, House of the Book of Science, Cluj-Napoca, 2002.

Faculty of Mathematics, Department of Applied Mathematics, University "Babeş-Bolyai" Cluj-Napoca, Str. Kogălniceanu Nr. 1, 3400 Cluj-Napoca, Romania
E-mail address: bege@math.ubbcluj.ro

