APPROXIMATION PROPERTIES OF A BIVARIATE STANCU TYPE OPERATOR

DAN BĂRBOSU

Dedicated to Professor D.D. Stancu on his $75^{\text {th }}$ birthday

Abstract

An extension of Stancu's operator $P_{m}^{(\alpha, \beta)}$ to the case of bivariate functions is presented and some approximation properties of this operator are discussed.

1. Preliminaries

In 1969 (see[8]), D.D. Stancu constructed and studied a linear and positive operator, depending on two positive parameters α and β which satisfy the condition $0 \leq \alpha \leq \beta$. This operator, denoted by $P_{m}^{(\alpha, \beta)}$, associates to any function $f \in C([0,1])$ the polynomial $P_{m}^{(\alpha, \beta)} f$, defined by:

$$
\begin{equation*}
\left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m} p_{m k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1.1}
\end{equation*}
$$

where $p_{m k}(x)$ are the fundamental Bernstein polynomials. In the monograph by F . Altomare and M. Campiti ([1]) this operator is called "the operator of BernsteinStancu".

A first extensions of the operator (1.1) to the case of bivariate functions was given by F. Stancu in her doctoral thesis (see [9]). The aim of the present paper is to extend the operator (1.1) to the case of B-continuous (Bőgel continuous functions). More exactly, we shall present a GBS (Generalized Boolean Sum) operator of Stancu type and some properties of this operator.

[^0]The terminus of "B-continuous function" was introduced by K. Bőgel ([5],[6]). A first result concerning the approximation of this kind of functions is due to E . Dobrescu and I. Matei ([7]).

An important "test function theorem", (the analogous of the well known Korovkin theorem), for the approximation of B-continuous functions by GBS operators was introduced by C. Badea and C. Cottin ([3)]. Approximation properties of the GBS operators were studied by C. Badea, C. Cottin, H.H. Gonska, D. Kacsó and many others.

2. The GBS operator of Stancu type

Let be $I=[0,1]$ and let $I^{2}=[0,1] \times[0,1]$ be the unit square. The space of all B-continuous functions on I^{2} will be denoted by $C_{b}\left(I^{2}\right)$.

Next, we consider four non-negative parameters $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$,satisfying the conditions $0 \leq \alpha_{1} \leq \beta_{1}, 0 \leq \alpha_{2} \leq \beta_{2}$. If $f \in C_{b}\left(I^{2}\right)$, the parametric extensions of the operator $P_{m}^{(\alpha, \beta)}$ are defined respectively by:

$$
\begin{align*}
& \left({ }_{x} P_{m}^{\left(\alpha_{1}, \beta_{1}\right)} f\right)(x, y)=\sum_{k=0}^{m} p_{m k}(x) f\left(\frac{k+\alpha_{1}}{m+\beta_{1}}, y\right), \tag{2.1}\\
& \left({ }_{y} P_{n}^{\left(\alpha_{2}, \beta_{2}\right)} f\right)(x, y)=\sum_{l=0}^{n} p_{n l}(y) f\left(x, \frac{l+\alpha_{2}}{n+\beta_{2}}\right) \tag{2.2}
\end{align*}
$$

It is easy to see that ${ }_{x} P_{m}^{\left(\alpha_{1}, \beta_{1}\right)}$ and ${ }_{y} P_{n}^{\left(\alpha_{2}, \beta_{2}\right)}$ are linear and positive operators, well defined on $C_{b}\left(I^{2}\right)$.

Let $L_{m, n}: C_{b}\left(I^{2}\right) \rightarrow C_{b}\left(I^{2}\right)$ be the tensorial product of ${ }_{x} P_{m}^{\left(\alpha_{1}, \beta_{1}\right)}$ and ${ }_{y} P_{n}^{\left(\alpha_{2}, \beta_{2}\right)}$, i.e.

$$
\begin{equation*}
L_{m, n}={ }_{x} P_{m y}^{\left(\alpha_{1}, \beta_{1}\right)} \circ P_{n}^{\left(\alpha_{2}, \beta_{2}\right)} . \tag{2.3}
\end{equation*}
$$

Then, $L_{m, n}: C_{b}\left(I^{2}\right) \rightarrow C_{b}\left(I^{2}\right)$ associates to any $f \in C_{b}\left(I^{2}\right)$ the bivariate polynomial

APPROXIMATION PROPERTIES OF A BIVARIATE STANCU TYPE OPERATOR

$$
\begin{equation*}
L_{m, n} f(x, y)=\sum_{k=0}^{m} \sum_{l=0}^{n} p_{m k}(x) p_{n, l}(y) f\left(\frac{k+\alpha_{1}}{m+\beta_{1}}, \frac{l+\alpha_{2}}{n+\beta_{2}}\right) \tag{2.4}
\end{equation*}
$$

It is well known (see for example [4] or [10]) that the operator (2.4) has the following properties:

Lemma 2.1. If $e_{i j}: I^{2} \rightarrow \mathbb{R}(i, j \in \mathbb{N}, 0 \leq i+j \leq 2)$ are the test functions the following equalities hold
(i) $\left(L_{m, n} e_{00}\right)(x, y)=1$;
(ii) $\left(L_{m, n} e_{10}\right)(x, y)=x+\frac{\alpha_{1}-\beta_{1} x}{m+\beta_{1}}$;
(iii) $\left(L_{m, n} e_{01}\right)(x, y)=y+\frac{\alpha_{2}-\beta_{2} y}{n+\beta_{2}}$;
(iv) $\quad\left(L_{m, n} e_{20}\right)(x, y)=x^{2}+\frac{m x(1-x)+\left(\alpha_{1}-\beta_{1} x\right)\left(2 m x+\beta_{1} x+\alpha_{1}\right)}{\left(m+\beta_{1}\right)^{2}}$;
(v) $\quad\left(L_{m, n} e_{02}\right)(x, y)=y^{2}+\frac{n y(1-y)+\left(\alpha_{2}-\beta_{2} y\right)\left(2 n y+\beta_{2} y+\alpha_{2}\right)}{\left(m+\beta_{2}\right)^{2}}$;
for any $(x, y) \in I^{2}$.
Lemma 2.2 The operator (2.4) is linear and positive.
Definition 2.1. Let $S_{m, n}: C_{b}\left(I^{2}\right) \rightarrow C_{b}\left(I^{2}\right)$ be the boolean sum of ${ }_{x} P_{m}^{\left(\alpha_{1}, \beta_{1}\right)}$ and ${ }_{y} P_{n}^{\left(\alpha_{2}, \beta_{2}\right)}$, i.e.

$$
\begin{equation*}
S_{m, n}={ }_{x} P_{m}^{\left(\alpha_{1}, \beta_{1}\right)}+{ }_{y} P_{n}^{\left(\alpha_{2}, \beta_{2}\right)}-{ }_{x} P_{m}^{\left(\alpha_{1}, \beta_{1}\right)} \circ_{y} P_{n}^{\left(\alpha_{2}, \beta_{2}\right)} \tag{2.5}
\end{equation*}
$$

The operator $S_{m, n}$ will be called GBS operator of Stancu type.
By direct computation, one obtains:
Lemma 2.3. If $S_{m, n}: C_{b}\left(I^{2}\right) \rightarrow C_{b}\left(I^{2}\right)$ is the GBS operator of Stancu type, then

$$
\begin{align*}
& \left(S_{m, n} f\right)(x, y)= \\
& \sum_{k=0}^{m} \sum_{l=0}^{n} p_{m k}(x) p_{n l}(y) \times\left\{f\left(\frac{k+\alpha_{1}}{m+\beta_{1}}, y\right)\right. \tag{2.6}\\
& \left.+f\left(x, \frac{l+\alpha_{2}}{n+\beta_{2}}, y\right)-f\left(\frac{k+\alpha_{1}}{m+\beta_{1}}, \frac{l+\alpha_{2}}{n+\beta_{2}}\right)\right\}
\end{align*}
$$

for any $f \in C_{b}\left(I^{2}\right)$ and any $(x, y) \in I^{2}$.
Remark 2.1. For $\alpha_{1}=\beta_{1}=\alpha_{2}=\beta_{2}=0$, the GBS operator of Stancu type is reduced to the GBS operator of Bernstein type, which interpolates any function $f \in C_{b}\left(I^{2}\right)$ on the boundary of the unit square I^{2}. If $\alpha_{1}=\beta_{1}=0$ and $\alpha_{2} \neq 0, \beta_{2} \neq 0$, the corresponding operator interpolates any $f \in C_{b}\left(I^{2}\right)$ on the left and respectively
on the right side of the boundary of unit square I^{2}. Others particular cases of the GBS operator of Stancu type can be discussed in a similar way.

Theorem 2.1. For any $f \in C_{b}\left(I^{2}\right)$, the sequence $\left\{S_{m, n} f\right\}_{m, n \in \mathbb{N}}$ converges to f, uniformly on I^{2} as m and n tend to infinity

Proof. Let us to introduce the following notations

$$
\begin{aligned}
u_{m}(x) & =\frac{\alpha_{1}-\beta_{1} x}{m+\beta_{1}} \\
v_{n}(y) & =\frac{\alpha_{2}-\beta_{2} y}{n+\beta_{2}} \\
w_{m}, n(x, y) & =x^{2}+y^{2}+\frac{m x(1-x)+\left(\alpha_{1}-\beta_{1} x\right)\left(2 m x+\beta_{1}+\alpha_{1}\right)}{\left(m+\beta_{1}\right)^{2}} \\
& +\frac{n y(1-y)+\left(\alpha_{2}-\beta_{2} y\right)\left(2 n y+\beta_{2}+\alpha_{2}\right)}{\left(n+\beta_{2}\right)^{2}}
\end{aligned}
$$

Then the results contained in Lemma 2.1 can be written in the form

$$
\begin{aligned}
& \left(L_{m, n} e_{00}\right)(x, y)=1 \\
& \left(L_{m, n} e_{10}\right)(x, y)=x+u_{m}(x) \\
& \left(L_{m, n} e_{01}\right)(x, y)=y+v_{n}(y) \\
& \left(L_{m, n}\left(e_{20}+e_{02}\right)\right)(x, y)=x^{2}+y^{2}+w_{m, n}(x, y), \text { for any }(x, y) \in I^{2} .
\end{aligned}
$$

Because the sequences $\left\{u_{m}(x)\right\}_{m \in \mathbb{N}},\left\{v_{n}(x)\right\}_{n \in \mathbb{N}}$ and $\left\{w_{m, n}(x)\right\}_{m, n \in \mathbb{N}}$ tend to zero, uniformly on I^{2} as m and n tend to infinity, we can apply the Korovkin type theorem for the approximation of B-continuous functions due C.Badea, I.Badea and H.H.Gonska (see [2]. Applying this theorem, it follows that $S_{m, n} f$ tend to f, uniformly on I^{2}, for any $f \in C_{b}\left(I^{2}\right)$ as m and n tend to infinity.

Next the approximation order of any function $f \in C_{b}\left(I^{2}\right)$ by $S_{m, n} f$ will be established, using the mixed modulus of smoothness (see [3]). We need the following result, due to C. Badea and C. Cottin [see [3]).

Theorem 2.2. Let X and Y be compact real intervals. Furthermore, let $L: C_{b}(X, Y) \rightarrow C_{b}(X, Y)$ be a positive linear operator and U the associated $G B S$ operator. Then, for all $f \in C_{b}(X, Y),(x, y) \in X \times Y$ and $\delta_{1}, \delta_{2}>0$ the inequality

$$
\begin{align*}
& |(f-U f)(x, y)| \leq|f(x, y)| \cdot \mid 1-L(x ; x, y \mid+ \\
& \left\{L(1 ; x, y)+\frac{1}{\delta_{1}} \sqrt{L\left((x-o)^{2} ; x, y\right)}++\frac{1}{\delta_{2}} \sqrt{L\left((y-*)^{2} ; x, y\right)}+\right. \tag{2.7}\\
& \left.+\frac{1}{\delta_{1} \delta_{2}} \sqrt{L\left((x-\circ)^{2}(y-*)^{2} ; x, y\right)}\right\} \omega_{\text {mixed }}\left(\delta_{1}, \delta_{2}\right)
\end{align*}
$$

APPROXIMATION PROPERTIES OF A BIVARIATE STANCU TYPE OPERATOR
holds.
Lemma 2.4. The bivariate operator of Stancu verifies the following equalities:
(i) $L_{m, n}\left((x-0)^{2} ; x, y\right)=\frac{m x(1-x)+\left(\alpha_{1}-\beta_{1} x\right)^{2}}{\left(m+\beta_{1}\right)^{2}}$;
(ii) $L_{m, n}\left((y-*)^{2} ; x, y\right)=\frac{n y(1-y)+\left(\alpha_{2}-\beta_{2} y\right)^{2}}{\left(n+\beta_{2}\right)^{2}}$;
(iii) $L_{m, n}\left((x-0)^{2}(y-*)^{2}=\frac{1}{\left(m+\beta_{1}\right)^{2}\left(n+\beta_{2}\right)^{2}} \times\right.$
$\left\{m x(1-x)+\left(\alpha_{1}-\beta_{1} x\right)^{2}\right\} \times\left\{n y(1-y)+\left(\alpha_{2}-\beta_{2} y\right)^{2}\right\}$.
Proof. The equalities follow from the linearity of $L_{m n}$ and Lemma 2.1.
Theorem 2.3. The $G B S$ operators of Stancu $S_{m n}$ verify the inequality:

$$
\begin{align*}
& \left|S_{m, n} f(x, y)-f(x, y)\right| \leq \\
& \left\{\frac{1}{\delta 1} \cdot \frac{1}{m+\beta_{1}} \sqrt{\frac{m}{4}+\left(\alpha_{1}-\beta_{1} x\right)^{2}}+\frac{1}{\delta_{2}} \sqrt{\frac{n}{4}+\left(\alpha_{2}-\beta_{2} y\right)^{2}}+\right. \tag{2.8}\\
& \left.+\frac{1}{\delta_{1} \delta_{2}} \cdot \frac{1}{\left(m+\beta_{1}\right)\left(n+\beta_{2}\right)} \sqrt{\left\{\frac{m}{4}+\left(\alpha_{1}-\beta_{1} x\right)^{2}\right\}\left\{\frac{n}{4}+\left(\alpha_{2}-\beta_{2} y\right)^{2}\right\}}\right\} \times \\
& \times \omega_{\text {mixed }}\left(\delta_{1} \delta_{2}\right),
\end{align*}
$$

for any $\delta_{1}, \delta_{2}>0$ and any $(x, y) \in I^{2}$.
Proof. We apply the Lemma 2.4 and the inequalities $x(1-x) \leq \frac{1}{4}, y(1-y) \leq$ $\frac{1}{4}$ for $\operatorname{any}(x, y) \in I^{2}$.

Remark 2.2. The inequality (2.8) give us the order of the local approximation of f by $S_{m, n} f$.

The order of the global approximation of $f \in C_{b}\left(I^{2}\right)$ by $S_{m, n} f$ is expressed in

Theorem 2.4. The GBS operator of Stancu verify the following inequality:

$$
\begin{equation*}
\left|S_{m, n} f(x, y)-f(x, y)\right| \leq \frac{9}{4} \omega_{\text {mixed }}\left(\frac{\sqrt{m+4 \alpha_{1}^{2}}}{m+\beta_{1}}, \frac{\sqrt{n+4 \alpha_{2}^{2}}}{n+\beta_{2}}\right) \tag{2.9}
\end{equation*}
$$

Proof. Taking into account that $\left(\alpha_{1}-\beta_{1} x\right)^{2} \leq \alpha_{1}^{2}$ and $\left(\alpha_{2}-\beta_{2} y\right)^{2} \leq \alpha_{1}^{2}$ for any $(x, y) \in I^{2}$, from Theorem 2.3, we get:

$$
\begin{aligned}
& \left|S_{m, n} f(x, y)-f(x, y)\right| \leq \\
& \left\{\frac{1}{2 \delta_{1}} \frac{\sqrt{m+4 \alpha_{1}^{2}}}{m+\beta_{1}}+\frac{1}{2 \delta_{2}} \frac{\sqrt{n+4 \alpha_{2}^{2}}}{n+\beta_{2}}+\frac{\sqrt{\left(m+4 \alpha_{1}^{2}\right)\left(n+4 \alpha_{2}^{2}\right)}}{4 \delta_{1} \delta_{2}\left(m+\beta_{1}\right)\left(m+\beta_{2}\right)}\right\} \omega_{\text {mixed }}\left(\delta_{1} \delta_{2}\right) .
\end{aligned}
$$

Choosing then

$$
\delta_{1}=\frac{\sqrt{m+4 \alpha_{1}^{2}}}{m+\beta_{1}} ; \quad \delta_{2}=\frac{\sqrt{n+4 \alpha_{2}^{2}}}{n+\beta_{2}} ;
$$

it follows (2.9) and the proof ends \square
Remark 2.3. The inequality (2.9) can be more rafinated, taking into account of the values of α_{1}, α_{2} with respect β_{1} and β_{2}.

References

[1] Altomare, F., Campiti, M., Korovkin -type Approximation Theory and its Application, de Gruyter Series Studies in Mathematics, Vol.17, Walter de Gruyter \&Co, Berlin, New-York, 1994.
[2] Badea, C., Badea, I., Gonska, H.H., A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math. Soc. 34(1986), 53-64.
[3] Badea, C., Cottin., Korovkin-type theorems for Generalided Boolean Sum Operators, Colloquia Mathematica Societatis Janos Bolyai, 58, Approximation Theory, Kecskemet(Hungary)(1990), 51-68.
[4] Barbosu, D., A Voronovskaia-type theorem for the bivariate operator of Stancu (submitted).
[5] Bőgel, K., Mehrdimensionale Differentiation von Funktionen mehrer Veränderlicher, J. Reine Angew. Math.170(1934), 197-217.
[6] Bőgel, K., Ubër die mehrdimensionale Differentiation Integration und beschrankte Variation, J. Reine Angew. Math.173(1935), 5-29.
[7] Dobrescu, E., Matei, I., Aproximarea prin polinoame de tip Bernstein a functiilor bidimensional continue, Anal. Univ. Timişoara, Seria Stiinţe matematice fizice, Vol. IV(1966), 85-90.
[8] Stancu, D.D., Asupra unei generalizări a polinoamelor lui Bernstein, Studia Universitatis Babes-Bolyai, 14(1969), 31-45(in Romanian).
[9] Stancu, D. D., Coman, Gh., Agratini, O., Trâmbiţaş, R., Analiză numerică şi teoria aproximării, Vol. I, Presa Universitară Clujeană, 2001.
[10] Stancu, F., Aproximarea funcţilor de două şi mai multe variabile cu ajutorul operatorilor liniari pozitivi, Ph. D. Thesis, Cluj-Napoca (1984) (in Romanian).

Department of Mathematics and Computer Science,
North University of Baia Mare, Victoriei 76, 4800 Baia Mare, Romania E-mail address: dbarbosu@univer.ubm.ro

[^0]: Received by the editors: 17.09 .2002 .
 2000 Mathematics Subject Classification. 41A10, 41A36, 41A63, 41A80
 Key words and phrases. Stancu's operators, Korovkin theorem, bivariate function, modulus of smoothness, Voronovskaia theorem.

