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ON APPROXIMATION PROPERTIES OF STANCU’S OPERATORS

ZOLTÁN FINTA

Dedicated to Professor D.D. Stancu on his 75th birthday

Abstract. The purpose of the paper is to present pointwise and uniform

approximation theorems for some Stancu’s operators using the classical

moduli of smoothness and the second modulus of smoothness of Ditzian -

Totik.

1. Introduction

One of the most studied operator (see e.g. the bibliography of [1]) is

Bα
n : C[0, 1] → C[0, 1],

Bα
n (f, x) =

n∑
k=0

wn,k(x, α) · f
(

k

n

)
, n = 1, 2, . . . , x ∈ [0, 1], α ≥ 0, (1)

where

wn,k(x, α) =

 n

k

 ·
∏k−1

i=0 (x + iα)
∏n−k−1

j=0 (1− x + jα)
(1 + α)(1 + 2α) . . . (1 + (n− 1)α)

(2)

and α is a parameter which may depend only on the natural number n. This positive

linear polynomial operator was introduced by D. D. Stancu in [15]. In the case α = 0,

Bα
n is the Bernstein operator Bn given by

Bn(f, x) =
n∑

k=0

 n

k

xk(1− x)n−k · f
(

k

n

)
. (3)

The Stancu - Kantorovich polynomial operator was defined in [14] as follows:

Kα
n : Lp[0, 1] → Lp[0, 1], 1 ≤ p ≤ ∞,

Kα
n (f, x) = (n + 1)

n∑
k=0

wn,k(x, α) ·
∫ k+1

n+1

k
n+1

f(u) du, n = 1, 2, . . . , x ∈ [0, 1] (4)
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and α and wn,k(x, α) have the same meaning as above. For α = 0, Kα
n is the Kan-

torovich operator Kn given by

Kn(f, x) = (n + 1)
n∑

k=0

 n

k

 xk(1− x)n−k

∫ k+1
n+1

k
n+1

f(u) du. (5)

The spaces Lp[0, 1], 1 ≤ p ≤ ∞, are endowed with the norm

‖f‖p =
{∫ 1

0

|f(x)|p dx

}1/p

, 1 ≤ p < ∞.

For p = ∞ we consider C[0, 1] instead of L∞[0, 1] with

‖f‖ = ‖f‖∞ = sup {|f(x)| : x ∈ [0, 1]} .

The corresponding operator to Bernstein operator on the positive semiaxis is

the so - called Szász - Mirakjan operator defined by Sn : CB [0,∞) → CB [0,∞),

Sn(f, x) = e−nx
∞∑

k=0

(nx)k

k!
· f
(

k

n

)
, n = 1, 2, . . . , x ∈ [0,∞), (6)

where CB [0,∞) denotes the set of all bounded and continuous functions on [0,∞)

endowed with the norm

‖f‖∗ = sup {|f(x)| : x ∈ [0,∞)} .

The operator Sn was generalized by Stancu in [16], obtaining Sβ
n operators

Sβ
n(f, x) = (1+nβ)−x/β ·

∞∑
k=0

(
β +

1
n

)−k

· x(x + β) . . . (x + (k − 1)β)
k!

· f
(

k

n

)
, (7)

where β > 0 is a parameter depending on the natural number n.

Furthermore, in the paper [17], Stancu has introduced a generalization of the

well - known Baskakov operator Vn : CB [0,∞) → CB [0,∞),

Vn(f, x) =
∞∑

k=0

 n + k − 1

k

xk(1 + x)−n−k · f
(

k

n

)
, n = 1, 2, . . . , x ∈ [0,∞), (8)

defined by

V γ
n (f, x) =

∞∑
k=0

vn,k(x, γ) · f
(

k

n

)
, (9)

where

vn,k(x, γ) =

 n + k − 1

k

 ·
∏k−1

i=0 (x + iγ)
∏n−1

j=0 (1 + jγ)∏n+k−1
r=0 (1 + x + rγ)

(10)
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and γ ≥ 0 depends on the natural number n.

The purpose of this paper is to establish pointwise and uniform approximation

properties for the operators (1) − (2), (4), (7) and (9) − (10). On the other hand

the paper will be a survey of some results given by the author regarding the above

mentioned Stancu’s operators.

To establish these results we shall use the following notations:

ω(g, t)p = sup
0<h≤t

{∫ 1

0

|g(x + h)− g(x)|p dx

}1/p

,

g ∈ Lp[0, 1], 1 ≤ p < ∞, x, x + h ∈ [0, 1];

ω2(g, t) = sup
0<h≤t

sup
x,x±h∈I

|g(x + h)− 2g(x) + g(x− h)|,

g ∈ C(I), I = [0, 1] or I = [0,∞);

ωϕ
2 (g, t) = sup

0<h≤t
sup

x±hϕ(x)∈I

|g(x + hϕ(x))− 2g(x) + g(x− hϕ(x))|,

g ∈ C[0, 1] and ϕ(x) =
√

x(1− x),

g ∈ CB [0,∞) and ϕ(x) =
√

x or

g ∈ CB [0,∞) and ϕ(x) =
√

x(1 + x);

ωϕ
2 (g, t)p = sup

0<h≤t

{∫ 1

0

|g(x + hϕ(x))− 2g(x) + g(x− hϕ(x))|p dx

}1/p

,

g ∈ Lp[0, 1], 1 ≤ p < ∞, x± hϕ(x) ∈ [0, 1]

and ϕ(x) =
√

x(1− x), x ∈ [0, 1];

ωφ
2 (g, t) = sup

0<h≤t
sup

x±hφ(x)∈[0,∞)

|g(x + hφ(x))− 2g(x) + g(x− hφ(x))|,

g ∈ CB [0,∞) and φ : [0,∞) → < is an admissible

step - weight function ( see [3] ).

Here we mention that throughout this paper C and C0 denote absolute con-

stants and not necessarily the same at each occurrence.
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2. Theorems

In [5, Theorem 1] we have proved the following

Theorem 1. For f ∈ C[0, 1] and x ∈ [0, 1] we have

|Bα
n (f, x)− f(x)| ≤ C ω2

(
f,

√
1 + nα

n(1 + α)
· x(1− x)

)
.

Remark 1. We can obtain the estimate of Theorem 1 with C = 2 using [13,

p. 255, Theorem 2.1 ].

Furthermore, by [6, p. 100, Theorem 1 ], we have

Theorem 2. Let f ∈ C[0, 1] and α = α(n) = o(n−1), α n ≤ 1, n = 1, 2, . . . .

Then

|Bα
n (f, x)− f(x)| ≤ C · x(1− x)

n
, x ∈ [0, 1], n = 1, 2, . . .

holds exactly when ω2 (f, h) ≤ C h2, h > 0.

Using [2, p. 79, Theorem A] or [6, p. 100, Theorem 3 ], we get

Theorem 3. For f ∈ C[0, 1] and ϕ(x) =
√

x(1− x), x ∈ [0, 1] we have

‖Bα
n (f)− f‖ ≤ C ωϕ

2

(
f,

√
1 + nα

n(1 + α)

)
.

The next result requires the following lemma ( see [12, p. 317, ( 2.1 )] or

[19] ):

Lemma 1. Let f ∈ C[0, 1] and ϕ(x) =
√

x(1− x), x ∈ [0, 1]. Then

1
n
‖ϕ2(Bn(f))′′‖ ≤ C0 ‖Bn(f)− f‖,

where C0 is an absolute constant.

Then our result is ( see [7, p. 2, Theorem 3 ] ) :

Theorem 4. Let f ∈ C[0, 1], ϕ(x) =
√

x(1− x), x ∈ [0, 1] and α = α(n),

2 C0 α n ≤ 1, n = 1, 2, . . . , where C0 denotes the absolute constant of Lemma 1 above.

Then there exists an absolute constant C > 0 such that

C−1 ‖Bn(f)− f‖ ≤ ‖Bα
n (f)− f‖ ≤ C ‖Bn(f)− f‖

and

C−1 ωϕ
2 (f, n−1/2) ≤ ‖Bα

n (f)− f‖ ≤ C ωϕ
2 (f, n−1/2).
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Hence, in view of [3, p. 177, ( 9.3.3 ) ], we obtain immediately

Corollary 1. Let f ∈ C[0, 1], ϕ(x) =
√

x(1− x), x ∈ [0, 1], α = α(n) with

2 C0 α n ≤ 1, n = 1, 2, . . . and 0 < δ < 2. Then

‖Bα
n (f)− f‖ = O(n−δ/2) iff ωϕ

2 (f, h) = O(hδ), h > 0.

The following results will be in connection with the operator Kα
n . More

precisely, we have ( see [8, Theorem 1, Lemma 2 and Theorem 3] ) :

Theorem 5. Let f ∈ Lp[0, 1], 1 ≤ p ≤ ∞ and ϕ(x) =
√

x(1− x), x ∈ [0, 1].

Then there exists C > 0 such that

(i) ‖Kα
n (f)− f‖p ≤ C

{
ωϕ

2 (f, n−1/2)p + n−1 ‖f‖p

}
,

where α = α(n) = O(n−1) and 1 < p ≤ ∞;

(ii) ‖Kα
n (f)− f‖1 ≤ C

{
ωϕ

2 (f, n−1/2)1 + n−1 ‖f‖1
}

,

where α = α(n) = O(n−4).

For the converse result we need a lemma :

Lemma 2. For f ∈ Lp[0, 1], 1 < p ≤ ∞ and ϕ(x) =
√

x(1− x), x ∈ [0, 1]

we have
1
n
‖ϕ2(Kn(f))′′‖p ≤ C0 ‖Kn(f)− f‖p,

where C0 is an absolute constant.

Remark 2. The above Lemma does not hold for p = 1 (see [8, Remark 2]).

Our result is

Theorem 6. Let f ∈ Lp[0, 1], 1 < p ≤ ∞, ϕ(x) =
√

x(1− x), x ∈ [0, 1] and

α = α(n), p/(p − 1) C0 α n ≤ δ < 1, n = 1, 2, . . . , where C0 denotes the absolute

constant of Lemma 2. Then

(1− δ) ‖Kn(f)− f‖p ≤ ‖Kα
n (f)− f‖p ≤ (1 + δ) ‖Kn(f)− f‖p

and there exists an absolute constant C > 0 such that

C−1
[
ωϕ

2 (f, n−1/2)p + ω(f, n−1)p

]
≤ ‖Kα

n (f)−f‖p ≤ C
[
ωϕ

2 (f, n−1/2)p + ω(f, n−1)p

]
.
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In what follows we give the theorems concerning to the operator Sβ
n using [9,

p. 62, Theorem 1] and [10] :

Theorem 7. For f ∈ C[0,∞) and x ∈ [0,∞) we have

|Sβ
n(f, x)− f(x)| ≤ 2 ω2

(
f,

√(
β +

1
n

)
x

2

)
.

Theorem 8. Let f ∈ CB [0,∞) and ϕ(x) =
√

x, x ∈ [0,∞). Then

‖Sβ
n(f)− f‖∗ ≤ C ωϕ

2

(
f,

√
1
n

+ β

)
.

Theorem 9. Let f ∈ CB [0,∞), ϕ(x) =
√

x, x ∈ [0,∞) and β = β(n),

2 C0 β n ≤ δ < 1, n = 1, 2, . . . , where C0 denotes the absolute constant of Lemma 3

below. Then

(1− δ) ‖Sn(f)− f‖∗ ≤ ‖Sβ
n(f)− f‖∗ ≤ (1 + δ) ‖Sn(f)− f‖∗

and there exists an absolute constant C > 0 such that

C−1 ωϕ
2 (f, n−1/2) ≤ ‖Sβ

n(f)− f‖∗ ≤ C ωϕ
2 (f, n−1/2).

Lemma 3. [19] Let f ∈ CB [0,∞) and ϕ(x) =
√

x, x ∈ [0,∞). Then

1
n
‖ϕ2(Sn(f))′′‖∗ ≤ C0 ‖Sn(f)− f‖∗,

where C0 is an absolute constant.

Finally, we give the results about the operator V γ
n . This operator is linear,

positive and bounded, but it does not preserve the linear functions. Therefore we

consider the following two cases :

a)

Lγ
n(f, x) = a0(n) · V γ

n0
(f, x) + a1(n) · V γ

n1
(f, x), (11)

where

n = n0 < n1 ≤ A n, |a0(n)|+ |a1(n)| ≤ A,

a0(n) + a1(n) = 1, a0(n) · n−1
0 + a1(n) · n−1

1 = 0
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and γ = γ(n) ≤ B/(4n), n = 1, 2, . . . , 0 < B < 1. Here A and B are given

absolute constants. Following [11] ( see also [4] ), we have

Theorem 10. Let Lγ
n : CB [0,∞) → CB [0,∞) be given by ( 11 ), ϕ(x) =√

x(1 + x), x ∈ [0,∞) and φ : [0,∞) → < be an admissible step - weight function of

the Ditzian - Totik modulus and γ = γ(n) ≤ B/(4n), n = 1, 2, . . . , 0 < B < 1. Then

|Lβ
n(f, x)− f(x)| ≤ C ωφ

2

(
f, n−1/2 · ϕ(x)

φ(x)

)
, x ∈ [0,∞).

In particular, we obtain a local estimation of the approximation error for

φ = 1 :

|Lβ
n(f, x)− f(x)| ≤ C ωφ

2

(
f,

√
x(1 + x)

n

)
and we get a uniform ( global ) estimation of the approximation error for φ = ϕ :

‖Lβ
n(f)− f‖∗ ≤ C ωϕ

2 (f, n−1/2).

b)

Ṽ γ
n (f, x) =

∞∑
k=0

ṽn,k(x, γ) · f
(

k

n

)
, (12)

where

ṽn,k(x, γ) =

 n + k − 1

k

 ·
∏k−1

i=0 (x + iγ) ·
∏n

j=1 (1 + jγ)∏n+k
r=1 (1 + x + rγ)

(13)

( see also [18] ). By [10], we have

Theorem 11. For Ṽ γ
n : CB [0,∞) → CB [0,∞) given by ( 12 ) - ( 13 ),

f ∈ CB [0,∞), ϕ(x) =
√

x(1 + x), x ∈ [0,∞) and 0 < γ < 1 we have

‖Ṽ γ
n (f)− f‖∗ ≤ C ωϕ

2

(
f,

√
1
n

+
γ

1− γ

)
.

Theorem 12. Let f ∈ CB [0,∞), ϕ(x) =
√

x(1 + x), x ∈ [0,∞) and γ =

γ(n), 2 C0 · (γ/(1 − γ)) · n ≤ δ < 1, n = 1, 2, . . . , where C0 denotes the absolute

constant of Lemma 4 below. Then

(1− δ) ‖Vn(f)− f‖∗ ≤ ‖Ṽ γ
n (f)− f‖∗ ≤ (1 + δ) ‖Vn(f)− f‖∗
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and there exists an absolute constant C > 0 such that

C−1 ωϕ
2 (f, n−1/2) ≤ ‖Ṽ γ

n (f)− f‖∗ ≤ C ωϕ
2 (f, n−1/2).

Lemma 4. [19] Let f ∈ CB [0,∞) and ϕ(x) =
√

x(1 + x), x ∈ [0,∞).

Then

1
n
‖ϕ2(Vn(f))′′‖∗ ≤ C0 ‖Vn(f)− f‖∗,

where C0 is an absolute constant.
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