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CRITICAL SETS OF 1-DIMENSIONAL MANIFOLDS

LIANA ŢOPAN

Abstract. In this paper we give characterizations for the critical sets of

the 1-dimensional manifolds. Given a non-empty set K ⊂ M , with M a

smooth manifold of dimension 1, is K the set of critical points for some

smooth function f : M → R?

1. Introduction

Let M be a smooth 1-dimensional manifold and f : M → R a smooth func-

tion. The point p ∈ M is a critical point of f if, for some chart (U,ϕ) around p,

ϕ(p) is a critical point of the function f ◦ ϕ−1 : ϕ(U) → R, i.e. rangϕ(p)f ◦ ϕ−1 = 0,

or (f ◦ ϕ−1)′(ϕ(p)) = 0. Otherwise, p will be a regular point of f . The set of all

critical points of f is called the critical set of f and will be denoted by C(f). The

number y0 ∈ R is a critical value of f if it is the image of a critical point and a regular

value if it is the image of a regular point. The set of critical values of f is called the

bifurcation set of f and is denoted by B(f). A set C ⊂ M is called critical if it is the

critical set of some smooth function f : C → R; C = C(f). C is properly critical if f

can be chosen to be proper.

If M = R, the atlas which gives the structure of M has one single chart

(R, 1R). In this case, x ∈ C(f) if and only if f ′(x) = 0. The following theorem

[To-An] characterizes the critical sets of R.

Theorem 1.1. C ⊂ R is critical if and only if C is closed.

It follows that any finite union of closed bounded intervals (some of them

might be degenerated to a point), together with two closed unbounded intervals, one
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of them to −∞ and the other to +∞, is a critical set. Also, any Cantor (real) set,

beeing closed, will be critical.

For the case M = R, there are no other requirements for the set C to be crit-

ical, except to be closed. This is, in fact, the minimal condition for a set to be critical

(it is easy to see that any critical set is closed). If we impose some supplementary

conditions on C, it will become properly critical.

Theorem 1.2. Let C be a subset of R. If C is compact, C is properly

critical.

Proof. C being compact, it is closed, so critical. C is bounded, and there is

some r > 0 with C ⊂ (−r, r). Choose R > r. Let g : R → R be a smooth positive

function which satisfies

1. g(x) = 1, ∀ x ∈ (−r, r)

2. g(x) = 0, ∀ x ∈ (−∞,−R) ∪ (R,+∞)

3. 0 ≤ g(x) ≤ 1, ∀ x ∈ R. (see [To-An]).

A theorem of Whitney provides that any closed subset of R is the set of the

zeros of a smooth positive real function (see [An-To]) and let f : R → R have this

property : C = f−1(0). Define h : R → R, by

h(x) = f(x)g(x) + e|x|(1− g(x)).

h is smooth on R \ {0}. For x ∈ (−r, r), since g(x) = 1, then h(x) = f(x) and h is

smooth on (−r, r), which is an open neighborhood of 0. It follows that h is smooth

on the entire R.

It is easy to verify that h−1(0) = C. For x0 ∈ C, since x0 ∈ (−r, r), then

g(x0) = 1 and h(x0) = f(x0) = 0. For h(x0) = 0, since f(x) ≥ 0, e|x| > 0 and

0 ≤ g(x) ≤ 1 for all x, then f(x0)g(x0) = e|x0|(1 − g(x0)) = 0, so f(x0) = 0 and

g(x0) = 1, which means that x0 ∈ f−1(0) = C.

Let H : R → R be the function given by H(x) =
x∫
0

h(t)dt. Obviously, C(H) =

C. To prove that H is a proper function, it is enough to verify that |H(x)| → ∞ as

|x| → ∞ (see [Ra]).
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For x > R, we have

H(x) =

x∫
0

h(t)dt =

R∫
0

h(t)dt +

x∫
R

h(t)dt =

R∫
0

h(t)dt +

x∫
R

etdt =

=

R∫
0

h(t)dt + ex − eR = ex +

R∫
0

h(t)dt− eR

so lim
x→∞

H(x) = ∞.

For x < −R, we have

H(x) = −
0∫

x

h(t)dt = −
−R∫
x

h(t)dt−
0∫

−R

h(t)dt =

= −
0∫

−R

h(t)dt−
0∫

−R

e−tdt = −
0∫

−R

h(t)dt + eR − e−x

so lim
x→−∞

H(x) = −∞.

It follows that C is the critical set of the smooth and proper function H, so

C is properly critical. �

The converse of the above theorem is not true. There are smooth proper

functions f : R → R, whose critical sets are not compact. For example, f(x) =

x + sinx, whose critical set is C(f) = {(2k + 1)| k ∈ Z}, discrete and unbounded in

R, so non-compact.
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2. Critical Sets on 1-Dimensional Manifolds

Using the characterization of the connected and compact 1-dimensional man-

ifolds, it follows that it is enough to study the critical sets of the interval [0, 1] on the

real axis and of the circle S1 on the plane.

Let M be a smooth 1-dimensional manifold, connected and compact (with

or without boundary). According to a theorem of Whitney , M can be prop-

erly embedded in R3 ( i.e. there exists an injective and proper immersion

i : M ↪→ R3). Also, there exists f : M → R smooth, which is a Morse function

(f is said to be a Morse function if its critical points are all non-degenerated. The

critical points of a Morse function are, also, isolated in M).

Let S = C(f) ∪ ∂M . As M is of dimension 1, ∂M will be either a smooth

compact 0-manifold without boundary, or the empty set. Anyway, ∂M will be at the

most a finite union of points. Also, from the compactness of M it follows that C(f) is

finite, too, C(f) beeing a discrete subset of a compact. So S is finite and M \S has a

finite number of components L1,. . ., LN , which are smooth 1-dimensional manifolds.

Proposition 2.1. f is a diffeomorphism between each Li and an open

interval of R.

Proof. Let L be one of the manifolds Li. For all x ∈ L, we have

(df)x = (df|L)x 6= 0, so f is a local diffeomorphism on L. Since L is

connected, it follows that f(L) is a connected open set. But f(L) is

contained in the compact f(M), so f(L) is an open interval (a, b).

We prove now that f is injective on L, and then f|L will be a diffeomorphism.

Let p ∈ L and c = f(p) ∈ (a, b). Let Q be the set of all points q ∈ L with the property

that there is an arc γ : [c, d] → L joining q and p, γ(c) = p, γ(d) = q and (f ◦γ)(t) = t,

for all t ∈ [c, d]. Since p ∈ Q, then Q is non-empty.

Q is an open set of L: Let q ∈ Q. There is an arc γ : [c, d] → L such that

γ(c) = p, γ(d) = q and (f ◦ γ)(s) = s, for s in the interval [c, d]. But f beeing a local

diffeomorphism in q, there exists a neighborhood Vq of q for which f|Vq
: Vq → f(Vq)

is a diffeomorphism. We may choose Vq to be an open connected subset of M . Then

f(Vq) = (c′, c′′), with a < c′ < d < c′′ < b. It follows that γ and (f|Vq
)−1 coincide on
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(c′, d] and γ can be extended on [d, c′′) such that it coincides with (f|Vq
)−1. It follows

that any point of Vq can be joined to p, so Vq ⊂ Q and Q is open in L.

Q is closed in L: It is enough to show that L \ Q is open. Let l ∈ L \ Q.

Then l cannot be joined to p with the requiered conditions. As before, there exists a

neighborhood Vl of l with f|Vl
: Vl → f(Vl) diffeomorphism, Vl open and connected

and f(Vl) = (c′, c′′). Suppose there exists a point q ∈ Vl which can be joined to p.

Take Vq ⊂ Q a neighborhood of q. Every point in Vl ∩ Vq can be joined to p, because

of Vq and, the same time, cannot be joined to p, beeing on Vl. So, in fact, no point

of Vl can be joined to q, which means that Vl ⊂ L \Q, and L \Q is open.

Since L is connected, then Q = L. Let p 6= q, p, q ∈ L. We showed that there

is an arc γ : [c, d] → L, with γ(c) = p, γ(d) = q and (f ◦ γ)(t) = t, for all t ∈ [c, d].

We have:

f(p) = f(γ(c)) = (f ◦ γ)(c) = c and

f(q) = f(γ(d)) = (f ◦ γ)(d) = d,

so f(p) 6= f(q), which shows that f is non-injective, so f is a diffeomorphism between

L and the open interval (a, b). �

Since every Li is diffeomorphic to an open interval, then Li \ Li has at the

most two points, ∀ i = 1, N . We can suppose that for all i = 1, N , Li \Li has exactly

two points. Indeed, since Li is diffeomorphic to an open interval, then Li \ Li has

at least one point, and if Li \ Li has exactly one point, it could be only for the case

when N = 1 and M = S1.

A point p ∈ S is either a point of the boundary of M , or the intersection

point of the boundaries of two sets Li and Lj . It cannot be the intersection point of

three sets Li, Lj and Lk, since M is 1-dimensional and the situation below cannot

happen.
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We call L1, . . ., Lk a chain if for all j = 1, k − 1, Lj and Lj+1 have exactly

one single intersection point pj (which belongs to both boudaries). Denote by p0 the

other boundary point of L1 and by pk the other boundary point of Lk. Since we have

a finite number of Li, there is a maximal chain, to which we cannot add an other Li.

Proposition 2.2. If L1, . . ., Lk is a maximal chain, it contains all Li, i =

1, N . If L0 and Lk have an intersection point (which will belong to both boundaries),

then M is diffeomorphic to a circle. Otherwise, M is diffeomorphic to a closed interval

of R.

Proof. Let us suppose that there exists some Li which does not belong to

the maximal chain. We denote it by L. L cannot contain p0 or pk, since the chain

cannot be extended. L contains none of the points pi, i = 1, k − 1, since Li, Li+1 and

L would have a common boundary point. It follows that L does not intersect
k⋃

i=1

Li,

which is a contradiction to the connectivity of M .

We prove now the second part of the proposition. We construct the requiered

diffeomorphisms by using the following lemma:

Lemma 2.3. Let g : [a, b] → R be continuous, smooth on [a, b]\{c} and such

that g′ > 0, for all x ∈ [a, b]\{c}. Then there exists a smooth map ǧ : [a, b] → R which

agrees to g in a neighborhood of the points a and b and whose derivative is positive

on [a, b].

Sketch of the proof: Let g be a smooth non-negative function, which vanishes

outside (a, b), is equal to 1 in a neighbourhood of c and satisfies
b∫

a

g(t)dt = 1. Define
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g̃ : [a, b] → R, by

g̃(x) = g(a) +

x∫
a

[kg(t) + g′(t)(1− g(t))]dt,

with

k = g(b)− g(a)−
b∫

a

g′(t)(1− g(t))dt

a strictly positive constant. �

The restriction of f to any Li is a diffeomorphism. The monotony of f could

change when f passes through a boundary point of Li. To avoid this inconvenient,

we use a technical trick. Let f(pj) = aj . Then f|Lj
is a diffeomorphism between Lj

and the interval (aj−1, aj) (or (aj , aj−1)). For each j = 1, k, choose an affine map

τj : R → R such that τj(aj−1) = j − 1 and τj(aj) = j (the map τj is of the form

t → αt + β, α, β ∈ R). Let fj : Lj → [j − 1, j] be the maps given by fj = τj ◦ f .

If a0 6= ak, the maps fj will agree on every common point of their domains.

We may construct the map F : M → [0, k], having the following properties:

1. F|Lj
= fj

2. F is continuous on M

3. F is a diffeomorphism on M \ {p1, . . . , pk−1}

By using Lemma 2.3, f can be chosen to be a diffeomorphism on M .

If a0 = ak, let gj = exp [i
2π

k
fj ]. We may define now G : M → S1, such that:

1. G|Lj
= gj

2. G is continuous on M

3. G is a diffeomorphism on M \ {p1, . . . , pk−1}

Again, G can be made to be a global diffeomorphism. �

We obtained

Theorem 2.4. (the classification of connected compact 1-manifolds) Any

smooth connected and compact 1-dimensional manifold is diffeomorphic either to S1,

or to the interval [0, 1].

The last theorem provides that it is enough to find the critical sets of S1 and

of [0, 1].
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Theorem 2.5. Let K ⊂ [0, 1]. Then K is critical in [0, 1] if and only if K

is closed in [0, 1].

Proof. Any critical set is closed. Conversely, let K be a closed subset of

[0, 1]. Since [0, 1] is closed in R, then K is closed in R. According to Theorem 1.1,

there is a smooth function f : R → R with C(f) = K. Let g : [0, 1] → R, g = f|[0,1].

g is smooth and C(g) = K. �

Theorem 2.6. Let K ⊂ S1. Then K is critical in S1 if and only if K is

closed in S1.

Proof. If K is critical, K is closed. Conversely, let K be a closed subset of

S1. Suppose that K 6= S1 (S1 is the critical set of any constant function defined on

S1). K is a compact subset of the plane and the only component of its complement is

multiply connected. Using the characterisation of the critical sets of the plane given

by Norton and Pugh [No-Pu], it follows that K is the critical set of a smooth map

f : R2 → R. C(f) = K. Then K will be the critical set of f|S2 : S2 → R. �
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