ON SOME Ω -PURE EXACT SEQUENCES OF MODULES

IULIU CRIVEI

Abstract. Let R be an associative ring with non-zero identity. We shall consider a family Ω of left R-modules of the form R/Rr^n , where $r \in R$ and $n \geq 1$ is a natural number depending on r such that $r^n \neq 0$ for each $r \neq 0$. We shall characterize Ω -pure exact sequences of right Rmodules and absolutely Ω -pure right R-modules. We shall also establish the structure of Ω -pure-projective right R-modules.

1. Introduction

In this paper we denote by R an associative ring with non-zero identity and all R-modules are unital. By Mod-R we denote the category of right R-modules. By a homomorphism we understand an R-homomorphism. The injective hull of an R-module A is denoted by E(A).

Let Ω be a class of left *R*-modules and let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \tag{1}$$

be a short exact sequence of right *R*-modules, where *f* and *g* are homomorphisms. If the tensor product $f \otimes_R 1_D : A \otimes_R D \to B \otimes_R D$ is a monomorphism for every $D \in \Omega$, it is said that the sequence (1) is Ω -pure. If *A* is a submodule of *B*, *f* is the inclusion monomorphism and the sequence (1) is Ω -pure, then *A* is said to be an Ω -pure submodule of *B*.

A right *R*-module *M* is called projective with respect to the sequence (1) if the natural homomorphism $Hom_R(M, B) \to Hom_R(M, C)$ is surjective. A right *R*-module is called injective with respect to the sequence (1) (or with respect to the monomorphism *f*) if the natural homomorphism $Hom_R(B, M) \to Hom_R(A, M)$ is

Received by the editors: 21.05.2002.

²⁰⁰⁰ Mathematics Subject Classification. 16D80.

Key words and phrases. tensor product, Ω -pure submodule, short exact sequence.

surjective. A right *R*-module *P* is said to be Ω -pure-projective if *P* is projective with respect to every Ω -pure short exact sequence of right *R*-modules.

Following Maddox [2], a right R-module M is said to be absolutely pure if M is pure in every right R-module which contains M as a submodule.

If $\Omega = \{R/Rr \mid r \in R\}$, then an Ω -pure exact sequence (1) is called *RD*-pure [5].

Denote by \mathbb{N} the set of natural numbers, by \mathbb{Z} the ring of integers, $R^* = R \setminus \{0\}$, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and by $\mathcal{P}(\mathbb{N}^*)$ the set of all subsets of \mathbb{N}^* .

Let $\varphi : R \to \mathcal{P}(\mathbb{N}^*)$ be a function such that for every $r \in R^*$ and every $n \in \varphi(r), r^n \neq 0$.

In this paper we shall consider the family of left R-modules

$$\Omega = \left\{ R/Rr^n \mid r \in R^* \,, n \in \varphi(r) \right\}.$$

Notice that if the exact sequence (1) is RD-pure, then it is Ω -pure. Also, if $\varphi(r) = \{1\}$ for every $r \in R$, then Ω -purity is the same as RD-purity.

We shall characterize Ω -pure short exact sequences and we shall determine the structure of Ω -pure-projective right *R*-modules. Also, we introduce the notion of absolutely Ω -pure right *R*-module and we establish some properties for such modules.

2. Basic results

We shall recall two results which will be used later in the paper.

Theorem 2.1. [4, Proposition 2.3] Let T be a set of right R-modules which contains a family of generators for Mod-R and let $p^{-1}(T)$ be the class of all short exact sequences in Mod-R with the property that every R-module in T is projective with respect to them. Then:

(i) For every right R-module L there exists a short exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow L \longrightarrow 0$$

in $p^{-1}(T)$ with $M \in T$.

(ii) Every right R-module which is projective with respect to each sequence in p⁻¹(T) is a direct summand of a direct sum of R-modules in T.
 64

Lemma 2.2. [6, Lemma 7.16] Consider the commutative diagram with exact

 $rows \ in \ Mod{\text{-}}R$

The following statements are equivalent:

(i) There exists $\alpha : M_3 \to N_2$ with $g_2 \alpha = \varphi_3$;

(ii) There exists $\beta: M_2 \to N_1$ with $\beta f_1 = \varphi_1$.

Now we can characterize Ω -pure submodules.

Theorem 2.3. Let A be a submodule of a right R-module B. Then the following statements are equivalent:

- (i) A is Ω -pure in B.
- (ii) For every $r \in R^*$ and every $n \in \varphi(r)$,

$$Ar^n = A \cap Br^n$$

(iii) For every $r \in R^*$ and every $n \in \varphi(r)$, $c = br^n \in A$ for some $b \in B$ implies $c = ar^n$ for some $a \in A$.

Proof. (i) \iff (ii) A is Ω -pure in B if and only if for every $r \in R^*$ and every $n \in \varphi(r)$ the sequence of \mathbb{Z} -modules

$$0 \to A \otimes_R R/Rr^n \xrightarrow{f \otimes 1_{R/Rr^n}} B \otimes_R R/Rr^n \xrightarrow{g \otimes 1_{R/Rr^n}} C \otimes_R R/Rr^n \to 0$$
(2)

is exact, where $f: A \to B$ is the inclusion homomorphism. It is known the isomorphism of \mathbb{Z} -modules

$$D \otimes_R R/K \cong D/DK$$
,

where D is a right R-module and K is a left ideal of R. Then the sequence (2) is exact if and only if the sequence of \mathbb{Z} -modules

$$0 \longrightarrow A/Ar^n \xrightarrow{f_1} B/Br^n \xrightarrow{g_1} C/Cr^n \longrightarrow 0$$
(3)

is exact, where $f_1(a + Ar^n) = a + Br^n$ for every $a \in A$. But f_1 is injective if and only if $A \cap Br^n \subseteq Ar^n$. Since the converse inclusion is clear, it follows that A is Ω -pure in B if and only if for every $r \in R^*$ and every $n \in \varphi(r)$, we have $Ar^n = A \cap Br^n$.

65

 $(ii) \implies (iii)$ Assume that (ii) holds. Let $r \in R^*$ and $n \in \varphi(r)$. Then $Ar^n = A \cap Br^n$. Let $c = br^n \in A$ for some $b \in B$. Then $c \in A \cap Br^n = Ar^n$. Hence there exists $a \in A$ such that $c = ar^n$.

 $(iii) \implies (ii)$ Assume that (iii) holds. Let $r \in R^*$ and $n \in \varphi(r)$. Let $c \in A \cap Br^n$. Then there exists $a \in A$ such that $c = ar^n$. Then $c \in Ar^n$. It follows that $A \cap Br^n \subseteq Ar^n$. Therefore, $A \cap Br^n = Ar^n$.

Theorem 2.4. The following statements are equivalent:

(i) The exact sequence (1) of right R-modules is Ω -pure.

(ii) For every $r \in R^*$, for every $n \in \varphi(r)$ and for every commutative diagram of right R-modules:

$$\begin{array}{cccc} A & \stackrel{f}{\longrightarrow} & B \\ & \uparrow & & \uparrow \\ k & & & \uparrow \\ r^{n}R & \stackrel{}{\longrightarrow} & R \end{array} \tag{4}$$

where k and h are homomorphisms and v is the inclusion homomorphism, there exists a homomorphism $w: R \to A$ such that k = wv.

(iii) For every $r \in R^*$ and for every $n \in \varphi(r)$, the right R-module $R/r^n R$ is projective with respect to the exact sequence (1) of right R-modules.

Proof. We may suppose without loss of generality that A is an Ω -pure submodule of B and f is the inclusion homomorphism.

 $(i) \Longrightarrow (ii)$ Assume that (i) holds. Let $r \in R^*$ and $n \in \varphi(r)$. Now consider the commutative diagram (4) of right *R*-modules, where *v* is the inclusion homomorphism. Denote b = h(1) and $c = k(r^n)$. Then

$$c = fk(r^n) = hv(r^n) = h(r^n) = br^n.$$

By Theorem 2.3, there exists $a \in A$ such that $c = ar^n$. Define the homomorphism $w: R \to A$ by w(1) = a. Then

$$wv(r^n) = w(r^n) = ar^n = c = k(r^n),$$

hence k = wv.

 $(ii) \Longrightarrow (i)$ Assume that (ii) holds. Let $r \in R^*$, $n \in \varphi(r)$ and suppose that $c = br^n \in A$ for some $b \in B$. Define the homomorphisms $h : R \to B$ by h(1) = b and 66

 $k: r^n R \to A$ by $k(r^n s) = cs$ for every $s \in R$. If $r^n s = r^n t$ for some $s, t \in R$, then

$$cs - ct = c(s - t) = br^{n}(s - t) = 0$$
,

hence k is well defined. Let $v: r^n R \to R$ be the inclusion homomorphism. We have

$$hv(r^n) = h(r^n) = br^n = c = fk(r^n),$$

that is, hv = fk. Thus we obtain a commutative diagram (4). Hence there exists an homomorphism $w: R \to A$ such that k = wv. Denote a = w(1). Then

$$c = k(r^n) = wv(r^n) = w(r^n) = ar^n.$$

By Theorem 2.3, the exact sequence (1) is Ω -pure.

 $(ii) \Longrightarrow (iii)$ Assume that (ii) holds. Let $r \in R^*$ and $n \in \varphi(r)$. Consider the exact sequence of right *R*-modules

$$0 \longrightarrow r^n R \xrightarrow{v} R \xrightarrow{q} R/r^n R \longrightarrow 0 \tag{5}$$

where v is the inclusion homomorphism and q is the natural projection. Let p: $R/r^n R \to C$ be a homomorphism. Since R is projective, there exists a homomorphism $h : R \to B$ such that gh = pq. We have ghv = pqv = 0, hence there exists a homomorphism $k : r^n R \to A$ such that hv = fk. Hence there exists a homomorphism $w : R \to A$ such that wv = k. Thus we obtain a commutative diagram

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\stackrel{k}{\downarrow} \qquad \stackrel{h}{\downarrow} h \qquad \stackrel{f}{\uparrow} p \qquad (6)$$

$$0 \longrightarrow r^{n}R \xrightarrow{v} R \xrightarrow{q} R/r^{n}R \longrightarrow 0$$

with exact rows. By Lemma 2.2, there exists a homomorphism $u: R/r^n R \to B$ such that p = gu. Therefore $R/r^n R$ is projective with respect to the exact sequence (1).

 $(iii) \Longrightarrow (ii)$ Assume that (iii) holds. Let $r \in R^*$ and $n \in \varphi(r)$. Consider the commutative diagram of right *R*-modules (4), where *v* is the inclusion homomorphism. We construct the exact sequence (5), where *q* is the natural projection. Since ghv = gfk = 0, there exists a homomorphism $p : R/r^n R \to C$ such that pq = gh. Thus we obtain a commutative diagram (6) with exact rows. Since $R/r^n R$ is projective with respect to the sequence (1), there exists a homomorphism $u : R/r^n R \to B$ such that 67

p = gu. By Lemma 2.2, there exists a homomorphism $w : R \to A$ such that k = wv.

By Theorems 2.1 and 2.4, we deduce the following two corollaries, giving the structure of Ω -pure-projective *R*-modules.

Corollary 2.5. For every right R-module L there exists a short exact sequence of right R-modules

$$0 \longrightarrow N \longrightarrow M \longrightarrow L \longrightarrow 0$$

where M is Ω -pure-projective and N is an Ω -pure submodule of M.

Corollary 2.6. Every Ω -pure-projective right R-module is a direct summand of a direct sum of R-modules of the form $R/r^n R$, where $r \in R$ and $n \in \varphi(r)$.

Corollary 2.7. Let $r \in R^*$ and $n \in \varphi(r)$. Then the following statements are equivalent:

(i) The right ideal $r^n R$ is Ω -pure in R.

(ii) The right ideal $r^n R$ is a direct summand of R.

Proof. $(i) \implies (ii)$ Assume that (i) holds. Consider the exact sequence (5) of right *R*-modules. By Theorem 2.4, $R/r^n R$ is projective with respect to the sequence (5). Then the sequence (5) splits, that is, $r^n R$ is a direct summand of *R*.

 $(ii) \Longrightarrow (i)$ Clear. \Box

3. Absolutely Ω -pure modules

We shall give the following definition.

Definition. A right *R*-module *A* is called *absolutely* Ω -*pure* if *A* is Ω -pure in each right *R*-module which contains it as a submodule.

In the sequel we shall denote by $\mathcal A$ the class of absolutely $\Omega\text{-pure right}\;R\text{-}$ modules.

Theorem 3.1. Let A be a right R-module. Then the following statements are equivalent:

(i) $A \in \mathcal{A}$.

(ii) A is Ω -pure in E(A).

68

(iii) For every $r \in R^*$ and $n \in \varphi(r)$, A is injective with respect to the inclusion homomorphism $v : r^n R \to R$.

Proof. $(i) \Longrightarrow (ii)$ Clear.

 $(ii) \Longrightarrow (iii)$ Assume that (ii) holds. Denote B = E(A) and let $r \in R^*$ and $n \in \varphi(r)$. Let $k : r^n R \to A$ be a homomorphism. Since B is injective, there exists a homomorphism $h : R \to B$ such that hv = fk. By Theorem 2.4, there exists a homomorphism $w : R \to A$ such that k = wv. Hence A is injective with respect to v.

 $(iii) \implies (i)$ Assume that (iii) holds. Let $r \in R^*$ and $n \in \varphi(r)$. Let B be a right R-module which contains A as a submodule. Consider the commutative diagram (4) of right R-modules, where f is the inclusion homomorphism. Then there exists a homomorphism $w : R \to A$ such that wv = k, because A is injective with respect to v. By Theorem 2.4, A is Ω -pure in B, that is, A is absolutely Ω -pure.

Remark. Every injective right *R*-module is absolutely Ω -pure.

Corollary 3.2. The class \mathcal{A} is closed under taking direct products and direct summands.

Proof. It follows as for injectivity [3, Proposition 2.2]. \Box

Lemma 3.3. The class A is closed under taking direct sums.

Proof. Let $(A_i)_{i \in I}$ be a family of absolutely Ω -pure right R-modules and let $A = \bigoplus_{i \in I} A_i$. Let $r \in R^*$ and $n \in \varphi(r)$ and let $k : r^n R \to A$ be a homomorphism. Since $k(r^n R)$ is generated by $k(r^n)$, there exists a finite subset $J \subseteq I$ such that $k(r^n R) \subseteq \bigoplus_{i \in J} A_i = D$. By Corollary 3.2, $D \in \mathcal{A}$. Therefore by Theorem 3.1, there exists a homomorphism $q : R \to D$ such that qv = u, where $u : r^n R \to D$ is the homomorphism defined by $u(r^n s) = k(r^n s)$ for every $s \in R$. Let $\alpha : D \to A$ be the inclusion homomorphism. Then $\alpha qv = \alpha u = k$. By Theorem 3.1, $A \in \mathcal{A}$.

Theorem 3.4. Let (1) be a short exact sequence of right R-modules and let $A, C \in \mathcal{A}$. Then $B \in \mathcal{A}$.

Proof. Similar to the proof given for absolutely F/U-pure modules [1, Theorem 2.7].

References

- Crivei, I., Absolutely F/U-pure modules, Studia Univ. "Babeş-Bolyai", Mathematica 44, no.4 (1999), 15-21.
- [2] Maddox, B., Absolutely pure modules, Proc. Amer. Math. Soc., 18 (1967), 207-234.
- [3] Sharpe, D.W., Vámos, P., Injective modules, Cambridge Univ. Press, 1972.

- [4] Stenström, B., Pure submodules, Ark. Math. 7 (1967), 151-171.
- [5] Warfield, R.B. Jr., *Purity and algebraic compactness for modules*, Pacific Journal of Math. 28 (1969), 699-719.
- [6] Wisbauer, R., Foundations of module and ring theory, Gordon and Breach, Reading, 1991.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, R0-3400 CLUJ-NAPOCA, ROMANIA