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X-MAXIMAL SUBGROUPS IN FINITE n-SOLVABLE GROUPS
WITH RESPECT TO A SCHUNCK CLASS X

RODICA COVACI

Abstract. Let m be an arbitrary set of primes and X be a m-Schunck
class, i.e. X is a w-closed Schunck class. The paper establishes an exis-
tence and conjugacy theorem on X-maximal subgroups in finite 7-solvable
groups. For the proof of the main result are used some theorems given
in [4] generalizing Ore’s theorems from [8]. Finally, some applications on

X-projectors in finite m-solvable groups are given.

1. Preliminaries

All groups considered in the paper are finite. We denote by 7 an arbitrary
set of primes and by 7’ the complement to 7 in the set of all primes.

Some definitions will be reminded here:

Definition 1.1. A group G is primitive if G has a stabilizer W, i.e. a
maximal subgroup W of G such that coregW = {1}, where

coregW =n{W9/g € G}.

Definition 1.2. a) A group G is m-solvable if any chief factor of G is either
a solvable m-group or a 7’-group. If 7 is the set of all primes, we obtain the notion of
solvable group.

b) A class X of groups is 7-closed if:
G/On(G)e X =G e X,

where O,/ (G) denotes the largest normal 7’-subgroup of G.
Definition 1.3. a) A class X’ of groups is a homomorph if X is closed under

homomorphism, i.e. if G € X and N is a normal subgroup of G, then G/N € X.

Received by the editors: 15.04.2002.
2000 Mathematics Subject Classification. 20D10.

Key words and phrases. Schunck class, projector, w-solvable group.

53



RODICA COVACI

b) A homomorph X is a Schunck class if X is primitively closed, i.e. if any
group G, all of whose primitive factor groups are in X', is itself in X.

c) We shall call m-homomorph, respectively m-Schunck class, a m-closed ho-
momorph, respectively a m-closed Schunck class.

Definition 1.4. Let X be a class of groups, G a group and H a subgroup of
G.

a) H is an X-mazimal subgroup of G if: (i) H € X; (i) H< H* < G,H* € X
imply H = H*.

b) H is an X-projector of G if for any normal subgroup N of G, HN/N is
X-maximal in G/N.

c) H is an X-covering subgroup of G if: (i) H € X; (i) H < K <G, Ky < K,
K/Ky € X imply K = HKj.

The following results will be used in the paper:

Proposition 1.5. ([1]) A solvable minimal subgroup of a finite group is
abelian.

Proposition 1.6. ([6]) Let G be a group and N a subgroup of G. The
following two conditions are equivalent:

(1) N is normal in G and G/N is primitive;

(2) there is a maximal subgroup W of G such that N = coregW.

2. Ore’s generalized theorems

In [4] are given some theorems generalizing Ore’s theorems from [8]. In order
to be used in the present paper, we remind them:

Theorem 2.1. Let G be a primitive w-solvable group. If G has a minimal
normal subgroup which is a solvable w-group, then G has one and only one minimal
normal subgroup.

Corollary 2.2. If G is a primitive w-solvable group, then G has at most one
minimal normal subgroup which is a solvable w-group.

Corollary 2.3. If a primitive w-solvable group G has a minimal normal
subgroup which is a solvable w-group, then G has no minimal normal subgroups which
are 7' -groups.
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Theorem 2.4. If G is a primitive w-solvable group and N is a minimal
normal subgroup of G which is a solvable m-group, then Cg(N) = N.

Theorem 2.5. Let G be a w-solvable group such that:

(i) there is a minimal subgroup M of G which is a solvable w-group and
Co(M)=M;

(ii) there is a minimal normal subgroup L/M of G/M such that L/M is a
7' -group. Then G is primitive.

Theorem 2.6. If G is a w-solvable group satisfying (i) and (ii) from 2.5.,
then any two stabilizers W1 and Wy of G are conjugate in G.

Theorem 2.7. If G is a primitive w-solvable group, V' < G, such that there
is a minimal normal subgroup M of G which is a solvable m-group and MV = G,

then V is a stabilizer of G.

3. An existence and conjugacy theorem on X-maximal subgroups in finite

m-solvable groups

In preparation for the main theorem we give the following lemma:

Lemma 3.1. If G is a finite group, W is a maximal subgroup of G and
A # {1} is a normal subgroup of G, such that AW = G and ANW = {1}, then A is
a minimal normal subgroup of G.

Proof. We have that A # {1} is a normal subgroup of G. Let now A* # {1}
be a normal subgroup of G, such that A* < A. We shall prove that A* = A. Since

W< AW < AW =G,
it follows that A*W =W or A*W = G. But, if we suppose that A*W = W, we have
A" CANW = {1},

hence the contradiction A* = {1}. So A*W = G. In order to prove that A* = A,
suppose that A* < A. This means that there is an element a € A\ A* C G = A*W.
Then a = a*w, with a* € A*, w € W. It follows that

w=(a*)"tac ANW = {1},

hence w = 1, which implies the contradiction a = a* € A*. So A* = A. O
The main theorem of this paper is the following:
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Theorem 3.2. Let X be a w-Schunck class, G a m-solvable group and A an
abelian normal subgroup of G with G/A € X. Then:

(1) there is a subgroup S of G with S € X and AS = G;

(2) there is an X-mazximal subgroup S of G with AS = G;

(3) if S1 and Sy are X-maximal subgroups of G with AS1 = G = ASs, then
S1 and Sy are conjugate in G.

Proof.

(1) Let

S§={5"/5" <G,AS* =G}.

Since G € S, we have S # ). Considering S ordered by inclusion and applying Zorn’s
lemma, S has a minimal element S. Obviously, AS = G.

We shall prove that S € X.

Put D = SN A. Let us notice that D is a normal subgroup of G. Indeed, if
g € Gand d € D, we have g = as, with a € A, s € S, and so, A being abelian and D

being normal in S,
g tdg = (as)"'d(as) = s~ 'a"'das = s 'a"tads = s7'ds € D.
Let W be a maximal subgroup of S. Then D < W, else DW # W, hence
W< DW <S8
and so DW = S. But this implies
G =AS = ADW = AW,

which means that W € S, in contradiction with the minimality of S in S.
Put N = coresW. We have D < N. Indeed, from D < W it follows that
D =D9 <WY for any g € S, hence D < coresW = N. Then

S/N = (8/D)/(N/D).
But
S/D=S/SNA2 AS/A=G/Aec X.

X being a homomorph, it follows that S/N € X.
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For any primitive factor group S/N of S, we have S/N € X. Indeed, S/N
being primitive, it follows from 1.6. that there is a maximal subgroup W of S such
that N = coresW. But we proved that in this case we have S/N € X. This means
that any primitive factor group S/N of S is in X. The primitive closure of X leads
now to S € X. Thus (1) is proved.

(2) Let now

S*={S/S<G,Se X AS =G}

ordered by inclusion. Because of (1), S* # 0. By Zorn’s lemma, S* has a maximal
element S € §*. Obviously, S < G, S € X, AS = G. We shall prove that S in an
X-maximal subgroup of G. Let § < §* < G, with S* € X. Then S = S*, as the
following considerations show: from AS = G it follows that AS* = G and so S* € §*;
but § < §*, §* € §* imply by the maximality of S that S = S*.

(3) Let S; and S5 be X-maximal subgroups of G with AS; = G = ASy. We
shall prove by induction on |G| that S; and Sy are conjugate in G.

Let us distinguish two cases:

a) G € X. S and S5 being X-maximal subgroups of G, we have S1 = G = S
and so S; and Ss are conjugate in G.

b) G € X. It means that there is a primitive factor group G/N with G/N ¢
X, else the primitive closure of X' leads to the contradiction G € X. We also have
NSy # G and NSy # G. Indeed, if we suppose, for example, that NS; = G, we

obtain
NS/ N=G/N ¢ xXx
and on the other side
NS /N=8,/S1NNeX.
Let us prove that AN/N is minimal normal subgroup of G/N. The factor
group G/N being primitive, we apply 1.6. and there is a minimal subgroup W of G

with N = coregW. We have A € W, because supposing that A < W it follows that
for any g € G, A = A9 < WY, hence

A<n{W9/g € G} = coregW =N
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and
G/A = ASl/A = Sl/AﬂSl cX

and so

G/N =2 (G/A)/(N/A) € X,
in contradiction with G/N ¢ X. Put A1 = ANW. Since W is a maximal subgroup
of G, we have AW =W or AW = G. But AW = W implies A < W, a contradiction.
So AW = G. It is easy to prove that A; is a normal subgroup of G. Indeed, if
g € G=AW and a; € A, put g = aw, with a € A, w € W and, A being abelian

and A; being normal in W, we have:

1 1

g targ = (aw)*lal(aw) =w la 'ajaw = wlara faw = wlajw € A;.

We are now in the hypotheses of lemma 3.1. Indeed, W/A; is a maximal

subgroup of G/A;, A/A; is a normal # {1} subgroup of G/A; satisfying:
AJA,-W/AL =G/A; and AJAL NW/A; = {1}.

Tt follows that A/A; is a minimal normal subgroup of G/A;. From this and from the
isomorphism
AN/N =2 A/A;
we obtain that AN/N is minimal normal subgroup of G/N.
Denote by M = AN. It follows that for i = 1,2, we have

(NS;)M = (NS;)(AN) = G.

Furthermore, N.S;/N is a stabilizer of G/N, for i = 1, 2. In order to prove this,
we use theorem 2.7. In the primitive m-solvable group G/N, we consider NS;/N <
G/N and M/N = AN/N minimal normal subgroup of G/N. Obviously, M/N -
NS;/N = G/N. Tt remains to prove that M/N is a solvable w-group. Being a
minimal normal subgroup of the m-solvable group G/N, M/N is either a solvable

m-group or a 7'-group. If we suppose that M/N is a n’-group, we obtain
M/N < O, (G/N)<G/N

and
(G/N)/Ox(G/N) = ((G/N)/(M/N))/(Ox (G/N)/(M/N)).
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But X being a homomorph, we have
(G/N)/(M/N) =2 G/M 2 G/AN = (G/A)/(AN/A) e X

and

(G/N)/Ox(G/N) € X,
hence by the m-closure of the class X we obtain the contradiction G/N € X. It follows
that M/N is a solvable m-group. Applying 2.7., NS;/N is a stabilizer of G/N.

The next step in our proof is to show that N.S; /N and NSy/N are conjugate
in G/N. For this, we apply theorem 2.6. to the m-solvable group G/N. Indeed, G/N
satisfies the conditions (i) and (ii) from theorem 2.5., as we prove below:

(i) M/N = AN/N is minimal normal subgroup of G/N, such that M/N is a
solvable m-group and Cg/n(M/N) = M/N. The last condition follows from theorem
2.4. applied to the primitive 7-solvable group G/N and its minimal normal subgroup
M/N which is a solvable m-group.

(ii) There is a minimal normal subgroup (L/N)/(M/N) of (G/N)/(M/N),
such that (L/N)/(M/N) is a 7’-group. Indeed, if we suppose the contrary, then any
minimal normal subgroup (L/N)/(M/N) of the m-solvable group (G/N)/(M/N) is
a solvable m-group. But M/N being a solvable m-group, it follows that L/N is also
a solvable m-group. Theorem 2.1. applied to the primitive w-solvable group G/N,
which has the minimal normal subgroup M /N such that M/N is a solvable m-group,
leads to the conclusion that G/N has one and only one minimal subgroup. Since L/N
is a # {1} normal subgroup of G/N, two possibilities can happen:

1) L/N is a minimal normal subgroup of G/N. It follows that M/N =
L/N, in contradiction with the assumption that (L/N)/(M/N) is a minimal normal
subgroup of (G/N)/(M/N).

2) L/N is not a minimal normal subgroup of G/N and so M/N < L/N. But

this also leads to a contradiction, as the following shows:
G/N =M/N-NS;/N < L/N-NS;/N=G/N.

We are now in the hypotheses of theorem 2.6., hence NS;/N and NS5 /N are
conjugate in G/N. It follows that
NSy =(NS2)? =NSY,
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where g € G.
Denote by

G*=NS; =NSj
and by
A*=ANG".

We can now apply the induction for G*, where G* = NS; < G. Indeed, A*

is an abelian normal subgroup of G*, with
G'JA* =G"JANG" =2 AG*/A=ANS|/A=G/Aec X
and S; and S§ are X-maximal subgroups in G*. We also have:
A*S1=(ANG")S1 =S1(ANG") =(S1ANG " =GNG"=G*
and
A*SY = (ANG")SY =S§(ANG") = (SJA)NG* = (SA) NG =GNGE* =G

By the induction, S; and Sy are conjugate in G*. It follows that S; and S are
conjugate in G. O

Remarks. a) Theorem 3.2. was earlier establishes in [2], but the proof was
based on some of R. Baer’s theorems from [1]. In the present paper, we give a new
proof, based on Ore’s generalized theorems given in [4].

b) Particularly, for 7 the set of all primes, we obtain from theorem 3.2. a

theorem given in [6] by W. Gaschiitz.

4. Projectors in finite m-solvable groups

Theorem 3.2 is important for the study of projectors in finite m-solvable
groups, as the following result (given in [3]) shows:

Theorem 4.1. If X is a w-Schunck class, then any two X-projectors of a
mw-solvable group G are conjugate in G.

Proof. By induction on |G|. We remind the proof from [3]:

Let S; and Sy be two X-projectors of G. Let M be a minimal normal sub-
group of G. Put S} = MS; and S; = MS,. Applying the induction for G/M, we
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obtain that S7/M and S5/M are conjugate in G/M, hence ST and S5 are conjugate
in G, i.e. S7 =(53)9, with g € G.

We prove that S; and Sy are conjugate in G, considering the two cases which
are possible for the minimal normal subgroup M of the m-solvable group G:

1) M is a solvable m-group. Then by 1.5., M is abelian. We are now in the

hypotheses of theorem 3.2.: S} is m-solvable, where
S} =MS; =MS§,

M is a normal abelian subgroup of S, with S} /M € X and S; and S§ are X-maximal
subgroups in S}. Applying theorem 3.2., we deduce that S; and SJ are conjugate in
S;. It follows that S; and Sy are conjugate in G.

2) M is a n’-group. Then

M < Ow’(Sf)

and
S1/0x(S7) = (S1/M) /(O (S7)/M) € X,

which imply by the 7-closure of X' that S; € X. Hence by the fact that S; and S§
are X-maximal in S}, we obtain S; = S} = S5. O

The conjugacy theorem 4.1. on projectors can be completed with an existence
theorem. In [5], we proved by means of Ore’s generalized theorems ([4]) the following
result:

Lemma 4.2. Let X be a m-homomorph. X is a Schunck class is and only if
any finite w-solvable group G has X -covering subgroups.

It is well-known that for a homomorph & and a finite group G, any X-covering
subgroup of G is also an X-projector of G. Thus lemma 4.2. leads to the following
existence theorem on projectors:

Theorem 4.3. If X is a w-Schunck class, then any finite w-solvable group
G has X -projectors.

In [3] we proved the following result:

Lemma 4.4. A w-homomorph X with the property that any finite w-solvable
group has X -projectors is a Schunck class.
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Theorem 4.5. Let X be a m-homomorph. X is a Schunck class if and only

if any finite w-solvable group has X -projectors.
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