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X -MAXIMAL SUBGROUPS IN FINITE π-SOLVABLE GROUPS
WITH RESPECT TO A SCHUNCK CLASS X

RODICA COVACI

Abstract. Let π be an arbitrary set of primes and X be a π-Schunck

class, i.e. X is a π-closed Schunck class. The paper establishes an exis-

tence and conjugacy theorem on X -maximal subgroups in finite π-solvable

groups. For the proof of the main result are used some theorems given

in [4] generalizing Ore’s theorems from [8]. Finally, some applications on

X -projectors in finite π-solvable groups are given.

1. Preliminaries

All groups considered in the paper are finite. We denote by π an arbitrary

set of primes and by π′ the complement to π in the set of all primes.

Some definitions will be reminded here:

Definition 1.1. A group G is primitive if G has a stabilizer W , i.e. a

maximal subgroup W of G such that coreGW = {1}, where

coreGW = ∩{W g/g ∈ G}.

Definition 1.2. a) A group G is π-solvable if any chief factor of G is either

a solvable π-group or a π′-group. If π is the set of all primes, we obtain the notion of

solvable group.

b) A class X of groups is π-closed if:

G/Oπ′(G) ∈ X ⇒ G ∈ X ,

where Oπ′(G) denotes the largest normal π′-subgroup of G.

Definition 1.3. a) A class X of groups is a homomorph if X is closed under

homomorphism, i.e. if G ∈ X and N is a normal subgroup of G, then G/N ∈ X .
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b) A homomorph X is a Schunck class if X is primitively closed, i.e. if any

group G, all of whose primitive factor groups are in X , is itself in X .

c) We shall call π-homomorph, respectively π-Schunck class, a π-closed ho-

momorph, respectively a π-closed Schunck class.

Definition 1.4. Let X be a class of groups, G a group and H a subgroup of

G.

a) H is an X -maximal subgroup of G if: (i) H ∈ X ; (ii) H ≤ H∗ ≤ G, H∗ ∈ X

imply H = H∗.

b) H is an X -projector of G if for any normal subgroup N of G, HN/N is

X -maximal in G/N .

c) H is an X -covering subgroup of G if: (i) H ∈ X ; (ii) H ≤ K ≤ G, K0 C K,

K/K0 ∈ X imply K = HK0.

The following results will be used in the paper:

Proposition 1.5. ([1]) A solvable minimal subgroup of a finite group is

abelian.

Proposition 1.6. ([6]) Let G be a group and N a subgroup of G. The

following two conditions are equivalent:

(1) N is normal in G and G/N is primitive;

(2) there is a maximal subgroup W of G such that N = coreGW .

2. Ore’s generalized theorems

In [4] are given some theorems generalizing Ore’s theorems from [8]. In order

to be used in the present paper, we remind them:

Theorem 2.1. Let G be a primitive π-solvable group. If G has a minimal

normal subgroup which is a solvable π-group, then G has one and only one minimal

normal subgroup.

Corollary 2.2. If G is a primitive π-solvable group, then G has at most one

minimal normal subgroup which is a solvable π-group.

Corollary 2.3. If a primitive π-solvable group G has a minimal normal

subgroup which is a solvable π-group, then G has no minimal normal subgroups which

are π′-groups.

54



X -MAXIMAL SUBGROUPS IN FINITE π-SOLVABLE GROUPS

Theorem 2.4. If G is a primitive π-solvable group and N is a minimal

normal subgroup of G which is a solvable π-group, then CG(N) = N .

Theorem 2.5. Let G be a π-solvable group such that:

(i) there is a minimal subgroup M of G which is a solvable π-group and

CG(M) = M ;

(ii) there is a minimal normal subgroup L/M of G/M such that L/M is a

π′-group. Then G is primitive.

Theorem 2.6. If G is a π-solvable group satisfying (i) and (ii) from 2.5.,

then any two stabilizers W1 and W2 of G are conjugate in G.

Theorem 2.7. If G is a primitive π-solvable group, V < G, such that there

is a minimal normal subgroup M of G which is a solvable π-group and MV = G,

then V is a stabilizer of G.

3. An existence and conjugacy theorem on X -maximal subgroups in finite

π-solvable groups

In preparation for the main theorem we give the following lemma:

Lemma 3.1. If G is a finite group, W is a maximal subgroup of G and

A 6= {1} is a normal subgroup of G, such that AW = G and A ∩W = {1}, then A is

a minimal normal subgroup of G.

Proof. We have that A 6= {1} is a normal subgroup of G. Let now A∗ 6= {1}

be a normal subgroup of G, such that A∗ ≤ A. We shall prove that A∗ = A. Since

W ≤ A∗W ≤ AW = G,

it follows that A∗W = W or A∗W = G. But, if we suppose that A∗W = W , we have

A∗ ⊆ A ∩W = {1},

hence the contradiction A∗ = {1}. So A∗W = G. In order to prove that A∗ = A,

suppose that A∗ < A. This means that there is an element a ∈ A \ A∗ ⊆ G = A∗W .

Then a = a∗w, with a∗ ∈ A∗, w ∈ W . It follows that

w = (a∗)−1a ∈ A ∩W = {1},

hence w = 1, which implies the contradiction a = a∗ ∈ A∗. So A∗ = A. �

The main theorem of this paper is the following:

55



RODICA COVACI

Theorem 3.2. Let X be a π-Schunck class, G a π-solvable group and A an

abelian normal subgroup of G with G/A ∈ X . Then:

(1) there is a subgroup S of G with S ∈ X and AS = G;

(2) there is an X -maximal subgroup S of G with AS = G;

(3) if S1 and S2 are X -maximal subgroups of G with AS1 = G = AS2, then

S1 and S2 are conjugate in G.

Proof.

(1) Let

S = {S∗/S∗ ≤ G, AS∗ = G}.

Since G ∈ S, we have S 6= ∅. Considering S ordered by inclusion and applying Zorn’s

lemma, S has a minimal element S. Obviously, AS = G.

We shall prove that S ∈ X .

Put D = S ∩ A. Let us notice that D is a normal subgroup of G. Indeed, if

g ∈ G and d ∈ D, we have g = as, with a ∈ A, s ∈ S, and so, A being abelian and D

being normal in S,

g−1dg = (as)−1d(as) = s−1a−1das = s−1a−1ads = s−1ds ∈ D.

Let W be a maximal subgroup of S. Then D ≤ W , else DW 6= W , hence

W < DW ≤ S

and so DW = S. But this implies

G = AS = ADW = AW,

which means that W ∈ S, in contradiction with the minimality of S in S.

Put N = coreSW . We have D ≤ N . Indeed, from D ≤ W it follows that

D = Dg ≤ W g for any g ∈ S, hence D ≤ coreSW = N . Then

S/N ∼= (S/D)/(N/D).

But

S/D = S/S ∩A ∼= AS/A = G/A ∈ X .

X being a homomorph, it follows that S/N ∈ X .
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For any primitive factor group S/N of S, we have S/N ∈ X . Indeed, S/N

being primitive, it follows from 1.6. that there is a maximal subgroup W of S such

that N = coreSW . But we proved that in this case we have S/N ∈ X . This means

that any primitive factor group S/N of S is in X . The primitive closure of X leads

now to S ∈ X . Thus (1) is proved.

(2) Let now

S∗ = {S/S ≤ G, S ∈ X , AS = G}

ordered by inclusion. Because of (1), S∗ 6= ∅. By Zorn’s lemma, S∗ has a maximal

element S ∈ S∗. Obviously, S ≤ G, S ∈ X , AS = G. We shall prove that S in an

X -maximal subgroup of G. Let S ≤ S∗ ≤ G, with S∗ ∈ X . Then S = S∗, as the

following considerations show: from AS = G it follows that AS∗ = G and so S∗ ∈ S∗;

but S ≤ S∗, S∗ ∈ S∗ imply by the maximality of S that S = S∗.

(3) Let S1 and S2 be X -maximal subgroups of G with AS1 = G = AS2. We

shall prove by induction on |G| that S1 and S2 are conjugate in G.

Let us distinguish two cases:

a) G ∈ X . S1 and S2 being X -maximal subgroups of G, we have S1 = G = S2

and so S1 and S2 are conjugate in G.

b) G 6∈ X . It means that there is a primitive factor group G/N with G/N 6∈

X , else the primitive closure of X leads to the contradiction G ∈ X . We also have

NS1 6= G and NS2 6= G. Indeed, if we suppose, for example, that NS1 = G, we

obtain

NS1/N = G/N 6∈ X

and on the other side

NS1/N ∼= S1/S1 ∩N ∈ X .

Let us prove that AN/N is minimal normal subgroup of G/N . The factor

group G/N being primitive, we apply 1.6. and there is a minimal subgroup W of G

with N = coreGW . We have A 6⊆ W , because supposing that A ≤ W it follows that

for any g ∈ G, A = Ag ≤ W g, hence

A ≤ ∩{W g/g ∈ G} = coreGW = N
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and

G/A = AS1/A ∼= S1/A ∩ S1 ∈ X

and so

G/N ∼= (G/A)/(N/A) ∈ X ,

in contradiction with G/N 6∈ X . Put A1 = A ∩W . Since W is a maximal subgroup

of G, we have AW = W or AW = G. But AW = W implies A ≤ W , a contradiction.

So AW = G. It is easy to prove that A1 is a normal subgroup of G. Indeed, if

g ∈ G = AW and a1 ∈ A1, put g = aw, with a ∈ A, w ∈ W and, A being abelian

and A1 being normal in W , we have:

g−1a1g = (aw)−1a1(aw) = w−1a−1a1aw = w−1a1a
−1aw = w−1a1w ∈ A1.

We are now in the hypotheses of lemma 3.1. Indeed, W/A1 is a maximal

subgroup of G/A1, A/A1 is a normal 6= {1} subgroup of G/A1 satisfying:

A/A1 ·W/A1 = G/A1 and A/A1 ∩W/A1 = {1}.

It follows that A/A1 is a minimal normal subgroup of G/A1. From this and from the

isomorphism

AN/N ∼= A/A1

we obtain that AN/N is minimal normal subgroup of G/N .

Denote by M = AN . It follows that for i = 1, 2, we have

(NSi)M = (NSi)(AN) = G.

Furthermore, NSi/N is a stabilizer of G/N , for i = 1, 2. In order to prove this,

we use theorem 2.7. In the primitive π-solvable group G/N , we consider NSi/N <

G/N and M/N = AN/N minimal normal subgroup of G/N . Obviously, M/N ·

NSi/N = G/N . It remains to prove that M/N is a solvable π-group. Being a

minimal normal subgroup of the π-solvable group G/N , M/N is either a solvable

π-group or a π′-group. If we suppose that M/N is a π′-group, we obtain

M/N ≤ Oπ′(G/N) ≤ G/N

and

(G/N)/Oπ′(G/N) ∼= ((G/N)/(M/N))/(Oπ′(G/N)/(M/N)).
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But X being a homomorph, we have

(G/N)/(M/N) ∼= G/M ∼= G/AN ∼= (G/A)/(AN/A) ∈ X

and

(G/N)/Oπ′(G/N) ∈ X ,

hence by the π-closure of the class X we obtain the contradiction G/N ∈ X . It follows

that M/N is a solvable π-group. Applying 2.7., NSi/N is a stabilizer of G/N .

The next step in our proof is to show that NS1/N and NS2/N are conjugate

in G/N . For this, we apply theorem 2.6. to the π-solvable group G/N . Indeed, G/N

satisfies the conditions (i) and (ii) from theorem 2.5., as we prove below:

(i) M/N = AN/N is minimal normal subgroup of G/N , such that M/N is a

solvable π-group and CG/N (M/N) = M/N . The last condition follows from theorem

2.4. applied to the primitive π-solvable group G/N and its minimal normal subgroup

M/N which is a solvable π-group.

(ii) There is a minimal normal subgroup (L/N)/(M/N) of (G/N)/(M/N),

such that (L/N)/(M/N) is a π′-group. Indeed, if we suppose the contrary, then any

minimal normal subgroup (L/N)/(M/N) of the π-solvable group (G/N)/(M/N) is

a solvable π-group. But M/N being a solvable π-group, it follows that L/N is also

a solvable π-group. Theorem 2.1. applied to the primitive π-solvable group G/N ,

which has the minimal normal subgroup M/N such that M/N is a solvable π-group,

leads to the conclusion that G/N has one and only one minimal subgroup. Since L/N

is a 6= {1} normal subgroup of G/N , two possibilities can happen:

1) L/N is a minimal normal subgroup of G/N . It follows that M/N =

L/N , in contradiction with the assumption that (L/N)/(M/N) is a minimal normal

subgroup of (G/N)/(M/N).

2) L/N is not a minimal normal subgroup of G/N and so M/N < L/N . But

this also leads to a contradiction, as the following shows:

G/N = M/N ·NS1/N < L/N ·NS1/N = G/N.

We are now in the hypotheses of theorem 2.6., hence NS1/N and NS2/N are

conjugate in G/N . It follows that

NS1 = (NS2)g = NSg
2 ,
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where g ∈ G.

Denote by

G∗ = NS1 = NSg
2

and by

A∗ = A ∩G∗.

We can now apply the induction for G∗, where G∗ = NS1 < G. Indeed, A∗

is an abelian normal subgroup of G∗, with

G∗/A∗ = G∗/A ∩G∗ ∼= AG∗/A = ANS1/A = G/A ∈ X

and S1 and Sg
2 are X -maximal subgroups in G∗. We also have:

A∗S1 = (A ∩G∗)S1 = S1(A ∩G∗) = (S1A) ∩G∗ = G ∩G∗ = G∗

and

A∗Sg
2 = (A ∩G∗)Sg

2 = Sg
2 (A ∩G∗) = (Sg

2A) ∩G∗ = (S2A)g ∩G∗ = G ∩G∗ = G∗.

By the induction, S1 and Sg
2 are conjugate in G∗. It follows that S1 and S2 are

conjugate in G. �

Remarks. a) Theorem 3.2. was earlier establishes in [2], but the proof was

based on some of R. Baer’s theorems from [1]. In the present paper, we give a new

proof, based on Ore’s generalized theorems given in [4].

b) Particularly, for π the set of all primes, we obtain from theorem 3.2. a

theorem given in [6] by W. Gaschütz.

4. Projectors in finite π-solvable groups

Theorem 3.2 is important for the study of projectors in finite π-solvable

groups, as the following result (given in [3]) shows:

Theorem 4.1. If X is a π-Schunck class, then any two X -projectors of a

π-solvable group G are conjugate in G.

Proof. By induction on |G|. We remind the proof from [3]:

Let S1 and S2 be two X -projectors of G. Let M be a minimal normal sub-

group of G. Put S∗
1 = MS1 and S∗

2 = MS2. Applying the induction for G/M , we
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obtain that S∗
1/M and S∗

2/M are conjugate in G/M , hence S∗
1 and S∗

2 are conjugate

in G, i.e. S∗
1 = (S∗

2 )g, with g ∈ G.

We prove that S1 and S2 are conjugate in G, considering the two cases which

are possible for the minimal normal subgroup M of the π-solvable group G:

1) M is a solvable π-group. Then by 1.5., M is abelian. We are now in the

hypotheses of theorem 3.2.: S∗
1 is π-solvable, where

S∗
1 = MS1 = MSg

2 ,

M is a normal abelian subgroup of S∗
1 , with S∗

1/M ∈ X and S1 and Sg
2 are X -maximal

subgroups in S∗
1 . Applying theorem 3.2., we deduce that S1 and Sg

2 are conjugate in

S∗
1 . It follows that S1 and S2 are conjugate in G.

2) M is a π′-group. Then

M ≤ Oπ′(S∗
1 )

and

S∗
1/Oπ′(S∗

1 ) ∼= (S∗
1/M)/(Oπ′(S∗

1 )/M) ∈ X ,

which imply by the π-closure of X that S∗
1 ∈ X . Hence by the fact that S1 and Sg

2

are X -maximal in S∗
1 , we obtain S1 = S∗

1 = Sg
2 . �

The conjugacy theorem 4.1. on projectors can be completed with an existence

theorem. In [5], we proved by means of Ore’s generalized theorems ([4]) the following

result:

Lemma 4.2. Let X be a π-homomorph. X is a Schunck class is and only if

any finite π-solvable group G has X -covering subgroups.

It is well-known that for a homomorph X and a finite group G, any X -covering

subgroup of G is also an X -projector of G. Thus lemma 4.2. leads to the following

existence theorem on projectors:

Theorem 4.3. If X is a π-Schunck class, then any finite π-solvable group

G has X -projectors.

In [3] we proved the following result:

Lemma 4.4. A π-homomorph X with the property that any finite π-solvable

group has X -projectors is a Schunck class.
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Theorem 4.5. Let X be a π-homomorph. X is a Schunck class if and only

if any finite π-solvable group has X -projectors.
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