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TWO-VARIABLE VARIATIONAL-HEMIVARIATIONAL
INEQUALITIES

ENDRE BUZOGÁNY, ILDIKÓ ILONA MEZEI, VIORICA VARGA

Abstract. In this paper we guarantee the solution for two-variable

variational-hemivariational inequalities and we give some applications.

1. Introduction

The aim of this paper is to establish a two-variable result concerning the

hemivariational inequalities. These inequalities appear as a generalisation of varia-

tional inequalitis, but they are more general than these ones, having applications in

several branches of mathematics, mechanics, economy engineering.

The paper is organized as follows. In the Section 2 we formulate the prob-

lem and give some notions and results which will be used later. In Section 3 we

establish the main results of this paper, i.e. we guarantee solution for hemivaria-

tional inequality. Finally in Section 4 we give some applications. More preciselly,

we obtain a Brouwer’s type variational inequality, the Schauder fixed point theorem

(and Brouwer fixed point theorem), a hemivariational inequality of Panagiotopoulos-

Fundo-Rădulescu type, and a result concerning the Nash equilibrium theory.

2. Preliminaries

Let X be a Banach space, X∗ its dual. We consider the following hypotheses:

(HT ) T : X → Lp(Ω, Rk) is a linear, continuous operator, where p ∈ [1,∞),

k ≥ 1 and Ω is a bounded open set in RN .

(Hj) j : Ω×Rk → R is a Carathéodory function which is locally Lipschitz with

respect to the second variable and there exist h1 ∈ L
p

p−1 (Ω, R) and h2 ∈ L∞(Ω, R)
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such that

|w| ≤ h1(x) + h2(x)|y|p−1

for a.e. x ∈ Ω, every y ∈ Rk and w ∈ ∂j(x, y), where ∂j(x, y) is the Clarke generalized

gradient of j, see [4], i.e. ∂j(x, y) = {w ∈ Rk : 〈w, z〉 ≤ j0
y(x, y; z), for all z ∈ Rk}

where j0
y(x, y; z) is the partial Clarke derivative of the locally Lipschitz mapping j(x, ·)

at the point y ∈ Rk with respect to the direction z ∈ Rk, where x ∈ Ω, that is

j0
y(x, y, z) = limsup y′→y

t→0+

j (x , y ′ + tz )− j (x , y ′)
t

.

Let K be a subset of X, A : K ×K  X∗, G : K ×X  R two set-valued

mappings with nonempty values. Under hypotheses (HT ) and (Hj) the main problem

of this paper is the following

(P) Find u ∈ K such that, for every v ∈ K

σ(A(u, u), v − u) + G(u, v − u) +
∫

Ω

j0
y(x, Tu(x), T v(x)− Tu(x))dx ⊆ R+.

Here σ(A(w, u), v − u) = sup
x∗∈A(w,u)

〈x∗, v − u〉. The (P) is equivalent with

(P’) Find u ∈ K such that, for every v ∈ K

σ(A(u, u), v − u) + infG(u, v − u) +
∫

Ω

j0
y(x, Tu(x), T v(x)− Tu(x))dx ≥ 0.

The euclidean norm in Rk and the duality pairing between the Banach space

and its dual will be denoted by | · |, resp. 〈·, ·〉.

In order to state existence results for (P), we need some notions and prelim-

inary results.

Definition 2.1. Let K be convex.

(i) A set-valued mapping F : K  X∗ is said to be upper demicontinuous at

x0 ∈ K (udc at x0 ∈ K) if for any h ∈ X, the real-valued function x 7→ σ(F(x), h) =

sup
x∗∈F(x)

〈x∗, h〉 is upper semicontinuous at x0. F is upper demicontinuous on K (udc

on K) if it is udc in every x ∈ K.

(ii) F : K  X∗ is said to be upper demicontinuous from the line segments

in K if the application t 7→ σ(F(tx + (1 − t)y), h) is upper semicontinuous on the

interval [0, 1], ∀x, y ∈ K, h ∈ X.
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(iii) F : K → X∗ is said to be w∗-demicontinuous in u0 if for any sequence

{un} ⊂ K converging to u0 (in the strong topology), the image sequence {F (un)}

converges to F (u0) in the weak∗-topology in X∗.

Remark 2.1. (i) If F(x) = {F (x)}, that is, if F is a single valued map, then

F is udc at u0 ∈ K if and only if the operator F : K → X∗ is w∗-demicontinuous at

u0 ∈ K.

(ii) If F(x) = {F (x)} is hemicontinuous, (see for example [8]), then F is udc

from the line segments in K.

The h 7→ σ(F(x), h) is a lower semicontinuous sublinear function.

Lemma 2.1. [11, Lemma 2.2] Let F : K  X∗ be an udc set-valued map with

bounded values, i.e. sup
x∗∈F(x)

‖x∗‖ < ∞, ∀x ∈ K. Then the function u 7→ σ(F(u), v−u)

is upper semicontinuous, ∀ v ∈ K.

Now, we recall some notions from [1]. Let Y, Z be two metric spaces and a

set-valued map (with nonempty values) F : Y  Z.

Definition 2.2. F is called lower semicontinuous at y ∈ Y (lsc at y) if and

only if for any z ∈ F (y) and for any sequence {yn}, converging to y, there exists a

sequence {zn}, zn ∈ F (yn) converging to z.

It is said to be lower semicontinuous (lsc) if it is lsc at every point y ∈ Y .

Let us consider a function f : Graph(F ) → R. We define the marginal func-

tion g : Y → R∪{+∞} by g(y) = supz∈F (y)f(y, z). We have the Maximum Theorem,

see [1, Theorem 1.4.16, p.48].

Lemma 2.2. If f and F are lower semicontinuous on Y , then the marginal

function is also lower semicontinuous.

Definition 2.3. Let K be a convex subset of X and let Z be a topological

vector space. The set-valued map F : K  Z (with nonempty values) is convex if and

only if ∀ x1, x2 ∈ K, ∀ λ ∈ [0, 1] : λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2).

Remark 2.2. F : K  Z is convex if and only if ∀ xi ∈ K, ∀ λi ≥ 0 such

that
∑n

i=1 λi = 1, n ∈ N∗, we have
∑n

i=1 λiF (xi) ⊆ F (
∑n

i=1 λixi) .

Definition 2.4. The mapping F : K ⊆ X  X∗ is monotone if 〈f1−f2, u−

v〉 ≥ 0, ∀u, v ∈ K, ∀f1 ∈ F (u), f2 ∈ F (v).
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Lemma 2.3.([12, Lemma 1.]) If T and j satisfy the (HT ) and (Hj) respec-

tively and V1, V2 are non-empty subsets of X, then the mapping defined by

(u, v) 7→
∫

Ω

j0
y(x, Tu(x), T v(x))dx, (u, v) ∈ V1 × V2

is upper semicontinuous.

Lemma 2.4. [7] Let X be a Hausdorff topological vector space, K a subset

of X and for each x ∈ K, let S(x) be a closed subset of X, such that

(i) there exists x0 ∈ K such that the set S(x0) is compact;

(ii) S is KKM-mapping, i.e. for each x1, x2, . . . , xn ∈ K, co{x1, x2, . . . , xn} ⊆

∪n
i=1S(xi), where co stands for the convex hull operator.

Then
⋂

x∈K

S(x) 6= ∅.

3. Main results on Existence of Solutions for (P)

We need some additional hypotheses to obtain solution for (P).

(HG) (1) G(u, 0) ⊆ R+, ∀ u ∈ K;

(2) G(u, ·) is convex, ∀u ∈ K;

(3) G(·, ·) is lsc on K ×X;

(4) G(u, ·) is subhomogenous, i.e. tG(u, y) ⊆ G(u, ty), ∀t ∈ [0, 1], u ∈

K, y ∈ X.

(HA) (1) A has bounded values, i.e. sup
x∗∈A(u,v)

‖x∗‖ < ∞, ∀u, v ∈ K;

(2) A(v, ·) : K  X∗ is udc on K, ∀v ∈ K;

(3) A(·, u) : K  X∗ is udc from the line segments in K, ∀u ∈ K.

(4) A(·, u) has the monotonicity property

σ(A(v, u), v − u) ≥ σ(A(u, u), v − u),∀u, v ∈ K.

The main result of this paper is the following

Theorem 3.1. Let K be a convex, closed subset of a Banach space X and

A : K×K  X∗, G : K×X  R, T : X → Lp(Ω, Rk) and j : Ω×Rk → R satisfying

(HA), (HG), (HT ) and (Hj) respectively. In addition, if

(Hcoer) there exists a compact subset K0 of K and u0 ∈ K such that

{σ(A(u, u), u0 − u) + G(u, u0 − u) +
∫

Ω

j0
y(x, Tu(x), Tu0(x)− Tu(x))dx} ∩ R∗− 6= ∅,
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for all u ∈ K \K0. Then (P ) has at least a solution.

Proof. For w ∈ K, let

T1(w) = {u ∈ K : σ(A(u, u), w − u) + inf G(u, w − u)+

+
∫
Ω

j0
y(x, Tu(x), Tw(x)− Tu(x))dx ≥ 0};

T2(w) = {u ∈ K0 : σ(A(w, u), w − u) + inf G(u, w − u)+

+
∫
Ω

j0
y(x, Tu(x), Tw(x)− Tu(x))dx ≥ 0}.

Step 1. T1(u0) ⊆ K0, where u0 is from (Hcoer). Suppose that there exists

u ∈ T1(u0) ⊂ K such that u 6∈ K0. from the definition of T1(u0), we have that

σ(A(u, u), u0 − u) + inf G(u, u0 − u) +
∫

Ω

j0(x, Tu(x), Tu0(x)− Tu(x))dx ≥ 0.

But this contradicts the (Hcoer). Therefore T1(u0) ⊆ K0.

Step 2. We prove that T1 : K  K is KKM-mapping, i.e.

∀w1, ..., wn ∈ K : co{w1, ..., wn} ⊆
n⋃

i=1

T1(wi).

Contrary, we suppose that there exist λ1, . . . , λn ≥ 0,
n∑

i=1

λi = 1 such that w =
n∑

i=1

λiwi 6∈ T1(wi), for i = 1, n. Therefore

σ(A(w,w), wi − w) + inf G(w,wi − w)+

+
∫

Ω

j0(x, Tw(x),−Twi(x)− Tw(x))dx < 0, i = 1, n.

Let I = {i = 1, n : λi 6= 0}. Multiplying the above inequalities by λi for i ∈ I and

using the homogenity of T , we have

σ(A(w,w), λiwi − λiw) + λi inf G(w,wi − w)+

+
∫

Ω

j0(x, Tw(x),−T (λiwi)(x)− T (λiw)(x))dx < 0,∀i ∈ I.

Adding the above relations for i ∈ I and using that h 7→ σ(A(w,w), h) and h 7→

j0(x, Tw(x), h) are subadditive, z 7→ inf G(w, z) is convex for all w ∈ K, T is additive

and (HG)(1) we get

0 ≤ σ(A(w,w),
∑
i∈I

λiwi −
∑
i∈I

λiw) +
∑
i∈I

λi inf G(w,wi − w)+
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+
∫

Ω

j0(x, Tw(x),
∑
i∈I

T (λiwi)(x)−
∑
i∈I

T (λiw)(x))dx < 0,

which is absurd. Therefore, T1 is KKM-mapping.

Step 3. We prove that
⋂

w∈K

T1(w) 6= ∅. Here, T1(w) is the closure of T1(w).

Indeed, from Step 1, we have that T1(u) ⊆ K0. Since K0 is compact, T1(u0) is also

compact. Using the Step 2 and applying Lemma 2.4., we obtain that
⋂

w∈K

T1(w) 6= ∅.

Step 4.
⋂

w∈K

T1(w) =
⋂

w∈K

T2(w).

(a) Let u ∈
⋂

w∈K

T1(w) i.e. σ(A(u, u), w − u) + inf G(u, w − u) +∫
Ω

j0(x, Tu(x), Tw(x)− Tu(x))dx ≥ 0, ∀w ∈ K. From (Hcoer), we have that u ∈ K0.

From the (HA)(4), we can write that

σ(A(w, u), w−u)+ inf G(u, w−u)+
∫
Ω

j0(x, Tu(x), Tw(x)−Tu(x))dx ≥ 0, ∀w ∈ K,

i.e. u ∈
⋂

w∈K

T2(w).

(b) Let u ∈
⋂

w∈K

T2(w), i.e. σ(A(v, u), v − u) + inf G(u, v − u) +∫
Ω

j0(x, Tu(x), T v(x) − Tu(x))dx ≥ 0, ∀v ∈ K. Let v ∈ K be an arbitrary element.

Let vt = tv + (1− t)u, t ∈ [0, 1]. Clearly, vt ∈ K. We have

σ(A(vt, u), vt−u)+inf G(u, vt−u)+
∫

Ω

j0(x, Tu(x), T vt(x)−Tu(x))dx ≥ 0, ∀t ∈ [0, 1].

From the linearity of T , we have that

σ(A(vt, u), t(v − u)) + inf G(u, t(v − u))+

+
∫

Ω

j0(x, Tu(x), t(Tv(x)− Tu(x)))dx ≥ 0, ∀t ∈ [0, 1].

From the (HG) (4) and from the fact that j0
y(x, Tu(x), ·) is positive homogeneous, we

obtain

σ(A(vt, u), v−u)+inf G(u, v−u)+
∫

Ω

j0(x, Tu(x), T v(x)−Tu(x))dx ≥ 0, ∀t ∈ (0, 1].

Using (HA) (3), we have that lim sup
t→0+

σ(A(vt, u), v−u) ≤ σ(A(u, u), v−u). Therefore,

σ(A(u, u), v − u) + inf G(u, v − u) +
∫

Ω

j0(x, Tu(x), T v(x)− Tu(x))dx ≥ 0.

Since v ∈ K was arbitrary, u is a solution for (P). �

Step 5.
⋂

w∈K

T1(w) =
⋂

w∈K

T2(w).
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Clearly,
⋂

w∈K

T2(w) ⊆
⋂

w∈K

T1(w) from Step 4. Conversely, let v ∈
⋂

w∈K

T1(w).

We prove that v ∈
⋂

w∈K

T2(w). Since T1(u0) ⊂ K0, we have that
⋂

w∈K

T1(w) ⊆ K0.

Therefore, v ∈ K0 ∩ T1(w), ∀w ∈ K.

Now, let u ∈ K be a fixed element. Since v ∈ T1(u), there exists a sequence

{vn} from T1(u) such that vn → v. Since vn ∈ T1(u), we have

σ(A(vn, vn), u− vn) + inf G(vn, u− vn) +
∫

Ω

j0(x, Tvn(x), Tu(x)− Tvn(x))dx ≥ 0.

From (HA)(4), we have

σ(A(u, vn), u− vn) + inf G(vn, u− vn) +
∫

Ω

j0(x, Tvn(x), Tu(x)− Tvn(x))dx ≥ 0.

From (HA)(1) and (2), applying Lemma 2.1 we obtain that v 7→ σ(A(u, v), u − v) is

usc, therefore

lim sup
n→∞

σ(A(u, vn), u− vn) ≤ σ(A(u, v), u− v).

From Lemma 2.2 (with F = G, Y := K × X, Z := R, f((y1, y2), z) = −z, where

z ∈ G(y1, y2)) and (HG)(3) we have that v 7→ inf G(v, u− v) is usc, therefore

lim sup
n→∞

inf G(vn, u− vn) ≤ inf G(v, u− v).

Using the Lemma 2.3 we get the following inequality

lim sup
n→∞

∫
Ω

j0(x, Tvn(x), Tu(x)− Tvn(x))dx ≤
∫

Ω

j0(x, Tv(x), Tu(x)− Tv(x))dx.

Summarizing the above relations, we get

σ(A(u, v), u− v) + inf G(v, u− v)+

+
∫

Ω

j0(x, Tv(x), Tu(x)− Tv(x))dx ≥ 0,

i.e. v ∈ T2(u). Since u was arbitrary, we have that v ∈
⋂

u∈K

T2(u).

Step 6. From Steps 3, 4 and 5, we have that
⋂

w∈K

T1(w) 6= ∅, which means

that u is a solution for (P).�

Remark 3.1 If K is compact in the above theorem, the hypothesis (Hcoer)

can be omitted.
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4. Applications

As a first application, we can deduce easily the Schauder fixed point theorem

from Theorem 3.1. on Banach spaces. For the completeness, we give the proof.

Corollary 4.1 Let K be a compact, convex subset of a Banach space X and

f : K → K be a continuous function. Then f has a fixed point.

Proof. Let A ≡ 0, j ≡ 0, T ≡ 0 and G : K ×X  R defined by G(u, v) =

[‖u + v − f(u)‖ − ‖u− f(u)‖,∞).

We verify (HG). Clearly, G(u, 0) = [0,∞) = R+ and v  G(u, v) is convex,

∀ v ∈ K. Since f is continuous, the function (u, x) 7→ ‖u + x− f(u)‖ − ‖u− f(u)‖ is

continuous also. Therefore, it’s easy to prove that (u, x)  G(u, x) is lsc on K ×X.

The subhomogeneity of G(u, ·) for t = 0 and t = 1 is trivial. Otherwise, this follows

from the triangle inequality. Therefore, from Theorem 3.1 it follows that there exists

u0 ∈ K such that

[‖v − f(u0)‖ − ‖u0 − f(u0)‖,∞) = G(u0, v − u0) ⊆ R+, ∀ v ∈ K.

In particular, we have ‖v − f(u0)‖ − ‖u0 − f(u0)‖ ≥ 0, ∀ v ∈ K. Let

v := f(u0). We have −‖u0 − f(u0)‖ ≥ 0, i.e. u0 = f(u0). �

Corollary 4.2 (Brouwer fixed point theorem) Let f : K → K be a continuous

function, K being a compact, convex subset of Rn. Then f has a fixed point.

Corollary 4.3 [12, Theorem 1.] Let K be a compact and convex subset of a

Banach space X and j and T satisfying (Hj) and (HT ) respectively. If the operator

A : K → X∗ is w∗-demicontinuous, then there exists u ∈ K such that

(PPFR) 〈Au, v − u〉+
∫

Ω

j0
y(x, Tu(x), T v(x)− Tu(x))dx ≥ 0, ∀v ∈ K.

Proof. Let A : K × K  X∗ defined by A(v, u) = {A(u)}, ∀u, v ∈ K and

G ≡ 0. Let v ∈ K be fixed. From Remark 2.1, A(v, ·) is udc on K (with bounded

values). Therefore, (HA) holds. Since σ(A(u, u), v − u) = 〈Au, v − u〉, the assertion

follows easily from Theorem 3.1. �

The following result is of Browder’s type, see [2].

Corollary 4.4 Let K be a convex, closed subset of a Banach space, A :

K × K  X∗ be an operator satisfying (HA). Suppose that there exists a compact

subset K0 ⊂ K and u0 ∈ K such that σ(A(u, u), u0 − u) < 0, ∀u ∈ K \ K0. Then
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there exists u ∈ K such that

σ(A(u, u), v − u) ≥ 0, ∀v ∈ K.

Proof. We apply Theorem 3.1 for G ≡ 0, j ≡ 0 and T ≡ 0. �

Remark 4.1 Similar results were obtained by Y-Q. Chen in [3] and by A.

M. Croicu and I. Kolumbán in [5].

Finally let X1 and X2 two Banach spaces, K1 ⊆ X1, K2 ⊆ X2 two nonempty

closed, convex sets. Let Fi : K1 × K2 → X∗
i , i = 1, 2 two operators. Our aim is to

give existence result for the following problem:

Find (u1, u2) ∈ K1 ×K2 such that

(NP ) 〈F1(u1, u2), x− u1〉 ≥ 0, ∀x ∈ K1

〈F2(u1, u2), y − u2〉 ≥ 0, ∀y ∈ K2.

The above problem is originated from the Nash equilibrium points, see [10]

and [9].

Theorem 4.1 Suppose that

(i) for every xi ∈ Ki, i = 1, 2 the mappings F1(·, x2) : K1 → X∗
1 and

F2(x1, ·) : K2 → X∗
2 are monotones and udc on the line segments in K1 respective K2

(in particular hemicontinuous);

(ii) for every xi ∈ Ki, i = 1, 2 the mappings F1(·, x2) : K1 → X∗
1 and

F2(x1, ·) : K2 → X∗
2 are w∗-demicontinuous;

(iii) there exist K0
i ⊆ Ki, i = 1, 2 compact sets and x0

i ∈ K0
i such that for

every (x1, x2) ∈ (K1 ×K2) \ (K0
1 ×K0

2 )

〈F1(x1, x2), x0
1 − x1〉+ 〈F2(x1, x2), x0

2 − x2〉 < 0.

Then (NP ) has at least a solution.

Proof. First let j ≡ 0, G ≡ 0 and T ≡ 0 in Theorem 3.1. Moreover, let

X := X1 ×X2, K := K1 ×K2 and A : K ×K  X∗ be a single-valued map, defined

by

A((x, y), (z, t)) = (F1(x, t), F2(z, y)), ∀(x, y), (z, t) ∈ K.
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ENDRE BUZOGÁNY, ILDIKÓ ILONA MEZEI, VIORICA VARGA

Clearly, A satisfies (HA). Let K0 := K0
1 × K0

2 and u0 := (x0
1, x

0
2) ∈ K0. The

K0 and u0 satisfy the (Hcoer) condition from Theorem 3.1. Therefore, there exists

u = (u1, u2) ∈ K such that 〈A(u, u), w − u〉 ≥ 0, ∀w ∈ K. This is equivalent with

〈F1(u1, u2), w1 − u1〉+ 〈F2(u1, u2), w2 − u2〉 ≥ 0, ∀wi ∈ Ki, i = 1, 2.

Substituting w2 := u2 and w1 := u1 respectively, we obtain that u =

(u1, u2) ∈ K is a solution for (NP ). �

Remark 4.2 If K1 and K2 are compact sets, the hypothesis (iii) from the

above theorem can be omitted.

Remark 4.3 From the above theorem we obtain also the Brouwer fixed point

theorem (see Corollary 4.2) choosing K = K1 = K2 , F1(u1, u2) = −f(u1) + u2 and

F2(u1, u2) = u2 − u1.
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