STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLVII, Number 3, September 2002

MAXIMAL SETS ON A HYPERSPHERE

VASILE POP

Abstract. It is studied the problem of the maximum number of points situated on a hypersphere of radius 1 with the property that the distances between any two points is at least r. It is solved the case $r = \sqrt{2}$.

1. Introduction

The goal of this paper is to find the maximum number of points of hypersphere, such that the distances between every two points is great that a given number. The solution of the problem in the general case is very difficult. we solved the problem in a remarcable particular case.

Let $S_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | x_1^2 + \cdots + x_n^2 = 1\}$ be the unit sphere in \mathbb{R}^n . For every real number $r \in [0, 2]$ we define the natural numbers N(n, r) and $\overline{N}(n, r)$ by: N(n, r) is the maximum number of elements of a set $M \subseteq S_{n-1}$ with the property that the distance d(A, B) between every two points $A, B \in M$ satisfies the relation d(A, B) > r.

 $\overline{N}(n,r)$ is the maximum numbers of elements of a set $M \subseteq S_{n-1}$ with the property $d(A,B) \ge r$ for every $A, B \in M$.

We think that the determination of a general expression for the functions $N, \overline{N} : \mathbb{N}^* \times [0, 2] \to \mathbb{N}$ is not possible. We solve the problem for $r = \sqrt{2}$. The following properties of N and \overline{N} are easy to verify.

- 1. $N(n,r) \leq \overline{N}(n,r);$
- 2. $N(n,r) \le N(n+1,r);$
- 3. $\overline{N}(n,r) \leq \overline{N}(n+1,r);$
- 4. $N(n, r_1) \leq N(n, r_2)$ for $n_1 > n_2$;
- 5. $\overline{N}(n, r_1) \leq \overline{N}(n, r_2)$ for $r_1 > r_2$;
- 6. N(1,r) = 2 for $r \in [0,2)$.

Received by the editors: 05.02.2002.

VASILE POP

7.
$$N(1,2) = 0;$$

8. $\overline{N}(1,r) = 2;$
9. $\overline{N}(2,r) = \left[\frac{\pi}{\arcsin \frac{r}{2}}\right];$
10. $N(2,r) = \overline{N}(2,r), \text{ if } \frac{\pi}{\arcsin \frac{r}{2}} \notin \mathbb{N};$
11. $N(2,r) = \overline{N}(2,r) - 1, \text{ if } \frac{\pi}{\arcsin \frac{r}{2}} \in \mathbb{N};$
12. $N(n,2) = 0, \overline{N}(n,2) = 2.$

Theorem 1. For every natural number $n \ge 1$ we have

$$N(n,\sqrt{2}) = n+1 \text{ and } \overline{N}(n,\sqrt{2}) = 2n.$$

Proof. The distance between the points $X = (x_1, \ldots, x_n)$ and $Y = (y_1, \ldots, y_n)$ is:

$$d^{2}(X,Y) = \sum_{k=1}^{n} (x_{k} - y_{k})^{2}.$$

We have

$$d(X,Y) > \sqrt{2} \Leftrightarrow d^{2}(X,Y) > 2$$

$$\Leftrightarrow \sum_{k=1}^{n} x_{k}^{2} + \sum_{k=1}^{n} y_{k}^{2} + 2 \sum_{k=1}^{n} x_{k} y_{k} > 2$$

$$\Leftrightarrow \sum_{k=1}^{n} x_{k} y_{k} < 0$$
(1)

Taking account of the symmetry of the sphere, we can suppose that

 $A_1 = (-1, 0, \dots, 0).$

For $X = A_1$, condition (1) for implies $y_1 > 0$, $\forall Y \in M_n$. Let $X = (x_1, \overline{X}), Y = (y_1, \overline{Y}) \in M_n \setminus \{A_1\}, \overline{X}, \overline{Y} \in \mathbb{R}^{n-1}$.

We have

$$\sum_{k=1}^{n} x_k y_k < 0 \Rightarrow x_1 y_1 + \sum_{k=1}^{n-1} \overline{x}_k \overline{y}_k < 0 \Leftrightarrow \sum_{k=1}^{n-1} x'_k y'_k < 0,$$

where

$$x'_k = \frac{\overline{x}_k}{\sqrt{\sum \overline{x}_k^2}}, \quad y'_k = \frac{\overline{y}_k}{\sqrt{\sum \overline{y}_k^2}},$$

86

therefore

$$(x'_1, \dots, x'_{n-1}), (y'_1, \dots, y'_{n-1}) \in S_{n-2}$$

and verify condition (1).

If a_n is the search number of points in \mathbb{R}^n , we obtain $a_n \leq 1 + a_{n-1}$ and $a_1 = 2$ implies that $a_n \leq n+1$.

We show that $a_n = n+1$, giving an example of a set M_n with (n+1) elements satisfying the conditions of the problem.

$$A_{1} = (-1, 0, 0, 0, \dots, 0, 0)$$

$$A_{2} = \left(\frac{1}{n}, -c_{1}, 0, 0, \dots, 0, 0\right)$$

$$A_{3} = \left(\frac{1}{n}, \frac{1}{n-1}c_{1}, -c_{2}, 0, \dots, 0, 0\right)$$

$$A_{4} = \left(\frac{1}{n}, \frac{1}{n-1}c_{1}, \frac{1}{n-1}c_{2}, -c_{3}, \dots, 0, 0\right)$$

$$A_{n-1} = \left(\frac{1}{n}, \frac{1}{n-1}c_{1}, \frac{1}{n-2}c_{2}, \frac{1}{n-3}c_{3}, \dots, -c_{n-2}, 0\right)$$

$$A_{n} = \left(\frac{1}{n}, \frac{1}{n-1}c_{1}, \frac{1}{n-2}c_{2}, \frac{1}{n-3}c_{3}, \dots, \frac{1}{2}c_{n-2}, -c_{n-1}\right)$$

$$A_{n+1} = \left(\frac{1}{n}, \frac{1}{n-1}c_{1}, \frac{1}{n-2}c_{2}, \frac{1}{n-3}c_{3}, \dots, \frac{1}{2}c_{n-2}, c_{n-1}\right)$$

where

$$c_k = \sqrt{\left(1 + \frac{1}{n}\right)\left(1 - \frac{1}{n-k+1}\right)}, \quad k = \overline{1, n-1}.$$

We have

$$\sum_{k=1}^{n} x_k y_k = -\frac{1}{n} < 0 \text{ and } \sum_{k=1}^{n} x_k^2 = 1, \ \forall \ X, Y \in \{A_1, \dots, A_{n+1}\}$$

This points are on the unit sphere in \mathbb{R}^n and the distance between any two points are equal to

$$d = \sqrt{2}\sqrt{1 + \frac{1}{n}} > \sqrt{2}.$$

Remark. For n = 2 the points form an equilateral triangle in the unit circle; for n = 3 the four points from a regular tetrahedron and in \mathbb{R}^n the points from an ndimensional regular simplex.

For the function \overline{N} we have $\overline{N}(1,\sqrt{2}) = 2$.

$$(M = \{-1, 1\}, \quad \overline{N} = (2, \sqrt{2}) = 4), \quad (M = \{(-1, 0), (1, 0), (0, -1), (0, 1)\})$$
87

VASILE POP

By induction, intersecting the hypersphere S_n from \mathbb{R}^{n+1} with the hyperplane $x_{n+1} = 0$ we obtain the hypersphere S_n , which contains a maximal set with 2n points and considering the points $(0, \ldots, 0, -1)$ and $(0, \ldots, 0, 1)$ on S_n we obtain a maximal set with 2(n+1) points, hence $\overline{N}(n+1, \sqrt{2}) = 2(n+1)$.

We remark that a maximal set for $\overline{N}(n,\sqrt{2})$ is

$$M = \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1), (-1, 0, \dots, 0), (0, -1, 0, \dots, 0), \dots, (0, \dots, 0, -1)\}$$

with n distances equal with 2 and the rest of $C_{2n}^2 - n = 2n(n-1)$ distances equal with $\sqrt{2}$.

It is known that every real euclidean *n*-dimensional space is isomorphic with \mathbb{R}^n and we can transpose the results by the isomorphism.

If $(V, \langle \cdot, \cdot \rangle)$ is an real euclidean space, by the theorem 1, we have the following consequences.

Proposition 1. If the dimension of V is n, then for any (n+2) vectors with norm 1, there exists two with the distances is at most $\sqrt{2}$.

Proposition 2. If the dimension of V is n, then for any (n + 2) nonzero vectors there exists two vectors with an acute angle

$$\left(d(X,Y) \le \sqrt{2}, \quad \|X\| = \|Y\| = 1 \Leftrightarrow \langle X,Y \rangle \ge 0 \Leftrightarrow \widehat{X,Y} \le \frac{\pi}{2}\right)$$

Proposition 3. If in euclidean space V there exists a set of (n + 1) vectors $\{X_1, \ldots, X_n, X_{n+1}\}$ with the property $\langle X_i, X_j \rangle < 0$, for any $i \neq j$, $i, j = \overline{1, n}$, then the dimension of V is dim $V \geq n$.

2. Applications

Problem 1. Let $n \in \mathbb{N}^*$ be a natural number. Find all $m \in \mathbb{N}^*$ so that there exists a matrix $A \in \mathcal{M}(m, n)(\mathbb{R})$ with the property that all elements of the matrix $A \cdot A^t$, outside the main diagonal to be negative numbers.

Solution. Denote by $L_1, \ldots, L_m \in \mathbb{R}^n$ the lines of matrix A. The element b_{ij} of the matrix $B = A \cdot A^t$ is the inner product $\langle L_i, L_j \rangle$, so the condition is that for $i \neq j$ to have $\langle L_i, L_j \rangle < 0$. From proposition 3 we obtain $m \leq n + 1$. 88 **Problem 2.** If $\{P_1, \ldots, P_n, P_{n+1}\}$ is a set of polynomials with real coefficients so that:

$$\int_0^1 P_i(x)P_j(x)dx < 0, \text{ for any } i \neq j,$$

then at least one polynomial has the degree at least (n-1).

Solution. Denote by V the real vector space generated by the polynomials $P_1, \ldots, P_n, P_{n+1}$, and on V define the inner product

$$\langle f,g \rangle = \int_0^1 f(x)g(x)dx.$$

Using the proposition 3, it result that dim $V \ge n$. If $degP_k < n-1$ for all $k = \overline{1, n+1}$, then V is a subspace in the space of polynomials with degree $\le n-2$, with the dimension (n-1). We obtain the contradiction $n \le n-1$.

Problem 3. Show that the inequalities

$$a_{1}a_{2} + b_{1}b_{2} < 0$$

$$a_{1}a_{3} + b_{1}b_{3} < 0$$

$$a_{1}a_{4} + b_{1}b_{4} < 0$$

$$a_{2}a_{3} + b_{2}b_{3} < 0$$

$$a_{2}a_{4} + b_{2}b_{4} < 0$$

$$a_{3}a_{4} + b_{3}b_{4} < 0$$

does not hold simultaneously.

Solution. In euclidean plane \mathbb{R}^2 consider the points $A_i(a_i, b_i)$, $i = \overline{1, 4}$. The condition $a_i a_j + b_i b_j < 0$ is equivalent with the angle $\widehat{A_i O A_j} > \frac{\pi}{2}$, which is impossible for every $i \neq j$.

Remark. Another remarkable value for r is r = 1. We have not succeed to find $\overline{N}(n, 1)$ but we suppose that $\overline{N}(n, 1) = n(n + 1)$.

References

[1] I. Tomescu, Introduction a la combinatorique, Ed. Tehnică, București, 1972.

[2] I.M. Glaman, Iu.I. Liubici, Analiză liniară pe spații finit dimensionale, Ed. Şt. şi Enciclopedică, Bucureşti, 1980.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, STR. C. DAICOVICIU 15, CLUJ-NAPOCA, ROMANIA