FUNCTIONALS WHICH SATISFY A MAXIMUM PRINCIPLE

CRISTIAN CHIFU-OROS

Abstract

The purpose of this paper is to present some examples of functionals, defined on the solutions of an elliptic equation, which satisfy a maximum principle.

1. Introduction

Let Ω be a domain in \mathbb{R}^{n} with boundary $\partial \Omega$. Let us consider the following differential operator:

$$
\begin{equation*}
L u:=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i, j=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}+c \tag{1}
\end{equation*}
$$

We assume that L satisfies the following maximum principles ([1]):
MP: There is a subset $\Gamma \subset \partial \Omega$ such that, if:

1. $u \in C(\bar{\Omega})$
2. the derivatives of u occurring in L are continuous in $\bar{\Omega} \backslash \Gamma$
3. $L u \geq 0$,in $\bar{\Omega} \backslash \Gamma$

$$
\text { then } \sup _{\bar{\Omega}} \varphi(u)=\sup _{\Gamma} \varphi(u)
$$

Let us consider the following system:

$$
\begin{equation*}
L u_{k}+f_{k}(x, u)=0, k=\overline{1, m}, x \in \Omega \tag{2}
\end{equation*}
$$

Let $\varphi \in C^{2}\left(\mathbb{R}^{m}\right)$. The following result is given in [3] (see also [1]):
Theorem 1.1. Let u be a solution of (2). If:
(i) the hessian of φ is positive semidefinite,
(ii) $-\sum_{k=1}^{m} \frac{\partial \varphi(y)}{\partial y_{k}} f_{k}(x, y)+c(x)\left[\varphi(y)-\sum_{k=1}^{m} \frac{\partial \varphi(y)}{y_{k}} y_{k}\right] \geq 0, \forall y \in \mathbb{R}^{m}$,
then $\sup _{\bar{\Omega}} \varphi(u)=\sup _{\Gamma} \varphi(u)$

Received by the editors: 06.06.2002.

The purpose of this paper is to use the Theorem 1.1 for constructing functionals defined on the solution of system (2), which satisfy a maximum principle.

If $c=0$, then the condition (ii) from Theorem 1.1, becomes:

$$
\begin{aligned}
& -\sum_{k=1}^{m} \frac{\partial \varphi(y)}{y_{k}} f_{k}(x, y) \geq 0, \forall y \in \mathbb{R}^{m} \\
& \sum_{k=1}^{m} \frac{\partial \varphi(y)}{y_{k}} f_{k}(x, y) \leq 0, \forall y \in \mathbb{R}^{m} \\
& \frac{\partial \varphi}{\partial y_{1}} f_{1}+\ldots+\frac{\partial \varphi}{\partial y_{m}} f_{m} \leq 0, \forall y \in \mathbb{R}^{m}
\end{aligned}
$$

We assume $f_{k}(x, y)=f_{k}(y)$, and we can choose φ by solving the partial differential equation:

$$
\begin{equation*}
\frac{d y_{1}}{f_{1}}=\frac{d y_{2}}{f_{2}}=\ldots=\frac{d y_{m}}{f_{m}} \tag{3}
\end{equation*}
$$

in the form $\varphi(y)=k$, where k is a constant.

2. Examples of functionals which satisfies MP

We will consider the system given in [1]

$$
\left\{\begin{array}{l}
\Delta u+f(u, v)=0 \tag{4}\\
\Delta v+g(u, v)=0
\end{array}\right.
$$

1. Let $f(u, v)=-\frac{1}{\beta} v, g(u, v)=\alpha u$. We have:

$$
\left\{\begin{array}{l}
\Delta u-\frac{1}{\beta} v=0 \tag{5}\\
\Delta v+\alpha u=0
\end{array}\right.
$$

The functional corresponding to this system is $\varphi(u, v)=\alpha u^{2}+\beta v^{2}$. Hence, since $\alpha \geq 0, \beta>0, \varphi$ satisfies Theorem 1.1. We have:

Theorem 2.1. If (u,v) is a solution of (5) and $\alpha \geq 0, \beta>0$, then $\alpha u^{2}+\beta v^{2}$ verifies MP.

Remark 2.1. This result represent a generalization of example 1, given in [1].
2. Let $f(u, v)=-\alpha u-\beta v, g(u, v)=\delta u+\gamma v$. We have:

$$
\left\{\begin{array}{l}
\Delta u-\alpha u-\beta v=0 \tag{6}\\
\Delta v+\delta u+\gamma v=0
\end{array}\right.
$$

The equation corresponding to this system is:

$$
\frac{d u}{-\alpha u-\beta v}=\frac{d v}{\delta u+\gamma v}
$$

If $u=z v$, we obtain:

$$
\frac{\gamma z+\delta}{\gamma z^{2}+(\alpha+\delta) z+\beta}=-\frac{1}{v} d v
$$

and if we put $\int \frac{\gamma z+\delta}{\gamma z^{2}+(\alpha+\delta) z+\beta} d z=\ln F(z)$, we will have:

$$
\varphi(u, v)=\Phi\left[v F\left(\frac{u}{v}\right)\right], \Phi \in C^{1}(\mathbb{R})
$$

We can consider $\varphi(u, v)=v F\left(\frac{u}{v}\right)$, but because of F , the properties of such functional are very hard to study.

What we can observe is that if $\alpha=\delta$ we have:

$$
\frac{\gamma z+\alpha}{\gamma z^{2}+2 \alpha z+\beta} d z=-\frac{1}{v} d v
$$

In this way we will obtain:

$$
\varphi(u, v)=\Phi\left(\sqrt{\gamma u^{2}+\alpha u v+\beta v^{2}}\right)
$$

where $\Phi \in C^{1}(\mathbb{R})$.
If we put $\Phi(t)=t^{2}$, then:

$$
\varphi(u, v)=\gamma u^{2}+\alpha u v+\beta v^{2} .
$$

Theorem 2.2. If (u, v) is a solution of (6), and the matrix $\left(\begin{array}{cc}2 \gamma & \alpha \\ \alpha & 2 \beta\end{array}\right)$ is positive semidefinite i.e. $\gamma \geq 0, \alpha^{2} \leq 4 \beta \gamma$, then $\gamma u^{2}+\alpha u v+\beta v^{2}$ verifies $M P$.

Remark 2.2. This result represents a generalization of 1 .
3. In the general case of system (4)

$$
\left\{\begin{array}{l}
\Delta u+f(u, v)=0 \\
\Delta v+g(u, v)=0
\end{array}\right.
$$

the corresponding equation is $\frac{d u}{d v}=\frac{f(u, v)}{g(u, v)}$:

$$
\begin{equation*}
g(u, v) d u-f(u, v) d v=0 . \tag{7}
\end{equation*}
$$

We consider the differential form $\omega=g(u, v) d u-f(u, v) d v . \omega$ is a total differential if:

$$
\begin{equation*}
\frac{\partial g}{\partial v}=-\frac{\partial f}{\partial u} \tag{8}
\end{equation*}
$$

We will choose φ in the form:

$$
\begin{equation*}
\varphi(u, v)=\int_{(0,0)}^{(u, v)} g(u, v) d u-f(u, v) d v+C \tag{9}
\end{equation*}
$$

The conditions of Theorem 1.1, becomes:

$$
\begin{gather*}
g(u, v) \int_{0}^{u} \frac{\partial g(u, v)}{\partial v} d u-f(u, v) \int_{0}^{v} \frac{\partial f(u, v)}{\partial u} d v \leq 0 \tag{10}\\
\frac{\partial g}{\partial u}-\int_{0}^{v} \frac{\partial f^{2}(u, v)}{\partial u^{2}} d v \geq 0 \tag{11}\\
\left(\frac{\partial g}{\partial u}-\int_{0}^{v} \frac{\partial^{2} f(u, v)}{\partial u^{2}} d v\right)\left(\int_{0}^{u} \frac{\partial^{2} g(u, v)}{\partial v^{2}} d u-\frac{\partial f}{\partial v}\right) \geq\left(\frac{\partial g}{\partial v}-\frac{\partial f}{\partial u}\right)^{2} \tag{12}
\end{gather*}
$$

Because of (8) we have:

$$
-\frac{\partial^{2} f}{\partial u^{2}}=\frac{\partial^{2} g}{\partial u \partial v} ; \frac{\partial^{2} g}{\partial v^{2}}=-\frac{\partial^{2} f}{\partial u \partial v} ;-\int_{0}^{v} \frac{\partial^{2} f}{\partial u^{2}} d v=\frac{\partial g}{\partial u} ; \int_{0}^{u} \frac{\partial^{2} g}{\partial v^{2}} d u=-\frac{\partial f}{\partial v}
$$

In these conditions, (10), (11), (12), becomes

$$
\begin{gather*}
0 \leq 0 \\
\frac{\partial g}{\partial u} \geq 0 \tag{13}\\
\left(\frac{\partial g}{\partial v}\right)^{2} \leq-\frac{\partial g}{\partial u} \frac{\partial f}{\partial v} \tag{14}\\
\left(\frac{\partial f}{\partial u}\right)^{2} \leq-\frac{\partial g}{\partial u} \frac{\partial f}{\partial v} \tag{15}
\end{gather*}
$$

It is obvious that (14) or (15) are satisfied if:

$$
\begin{equation*}
\frac{\partial f}{\partial v} \leq 0 \tag{16}
\end{equation*}
$$

Theorem 2.3. In conditions (8), (13), (14/15), (16), if (u,v) is a solution of (4), then (9) verifies MP.

Remark 2.3. If $f(u, v)=f(v), g(u, v)=g(u)$, the conditions from above are: $g^{\prime}(u) \geq 0, f^{\prime}(v) \leq 0$. This case appears in [1].

As an example if $f(u, v)=u-2 v, g(u, v)=2 u-v$, then the conditions of Theorem 2.3 are satisfied and this implies that $(u-v)^{2}$ verifies MP.

Let us consider now the functions from 2, i.e.

$$
\begin{aligned}
& f(u, v)=-\alpha u-\beta v \\
& g(u, v)=\gamma u+\delta v
\end{aligned}
$$

From (8) we have $\delta=\alpha$, and so g is $g(u, v)=\gamma u+\alpha v$.
Conditions (13), (14/15), (16) are: $\gamma \geq 0, \beta \leq 0, \alpha^{2} \leq \beta \gamma$. In conclusion if (u, v) is a solution of (4), with f and g as above, and $\gamma \geq 0, \beta \leq 0, \alpha^{2} \leq \beta \gamma$, then $\frac{1}{2} \gamma u^{2}+2 \alpha u v+\frac{1}{2} \beta v^{2}$ verifies MP.

Remark 2.4. In this way (but choosing another method) we have obtained a functional as in 2 , and the condition are the same.
4. Let us consider the system

$$
\left\{\begin{align*}
-\Delta u & =\lambda f(x, u)-v \tag{17}\\
-\Delta v & =\delta u-\gamma v
\end{align*}\right.
$$

This system appears in [2] and the authors are looking for the existence of a positive solution. We will try to find a functional with the properties from Theorem 1.1.

Let $f(x, u)=f(u)$. We have:

$$
\left\{\begin{align*}
-\Delta u & =\lambda f(u)-v \tag{18}\\
-\Delta v & =\delta u-\gamma v
\end{align*}\right.
$$

We will put $f_{1}(u, v)=\lambda f(u)-v, g_{1}(u, v)=\delta u-\gamma v$, and obtain:

$$
\left\{\begin{array}{l}
\Delta u+f_{1}(u, v)=0 \tag{19}\\
\Delta v+g_{1}(u, v)=0
\end{array}\right.
$$

From (8) we have $-\gamma=-\lambda f^{\prime}(u)$, i.e. $f^{\prime}(u)=\frac{\gamma}{\lambda} u$
(19) becomes:

$$
\left\{\begin{array}{l}
\Delta u+\gamma u-v=0 \tag{20}\\
\Delta v+\delta u-\gamma v=0
\end{array}\right.
$$

The conditions (13), (14/15),(16), are satisfied if $\delta \geq 0, \gamma^{2} \leq \delta$.
So, if $\delta \geq 0, \gamma^{2} \leq \delta$, and (u,v) is a solution of (20), then $\frac{1}{2} \delta u^{2}+2 \gamma u v+\frac{1}{2} v^{2}$, verifies MP.

Remark 2.5. This is a particular case of example given at 3 .

Remark 2.6. If we try to find φ, in the classical way, we'll obtain $\delta u^{2}+$ $2 \gamma u v+v^{2}$, which, in the same conditions, verifies MP.

Remark 2.7. We can try to find a integrating factor for

$$
(\delta u-\gamma v) d u+(v-\lambda f(u)) d v=0
$$

from:

$$
(\delta u-\gamma v) \frac{\partial \mu}{\partial v}-(v-\lambda f(u)) \frac{\partial \mu}{\partial u}+\left(-\gamma+\lambda f^{\prime}(u)\right) \mu=0
$$

Let us consider now the system:

$$
\left\{\begin{array}{l}
\Delta u+f(u, v, w)=0 \tag{21}\\
\Delta v+g(u, v, w)= \\
\Delta w+h(u, v, w)=0
\end{array}\right.
$$

5. Let $f(u, v, w)=-v-w, g(u, v, w)=u-w, h(u, v, w)=u+v$,
becomes:

$$
\left\{\begin{array}{l}
\Delta u-v-w=0 \tag{22}\\
\Delta v+u-w=0 \\
\Delta w+u+v=0
\end{array}\right.
$$

Let $\varphi(u, v)=u^{2}+v^{2}+w^{2}$. Condition (ii) from Theorem 1.1 becomes:

$$
\frac{\partial \varphi}{\partial u} f(u, v, w)+\frac{\partial \varphi}{\partial v} g(u, v, w)+\frac{\partial \varphi}{\partial w} h(u, v, w) \leq 0
$$

φ satisfies this condition, and the hessian of φ is $\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ which is positive definite. We have the following result:

Theorem 2.4. If (u, v, w) is a solution of (22) then $u^{2}+v^{2}+w^{2}$ verifies MP.
6. Let $f(u, v, w)=-\beta v-\gamma w, g(u, v, w)=\alpha u-\gamma w, h(u, v, w)=\alpha u+\beta v$,
(21) becomes:

$$
\left\{\begin{array}{l}
\Delta u-\beta v-\gamma w=0 \tag{23}\\
\Delta v+\alpha u-\gamma w=0 \\
\Delta w+\alpha u+\beta v=0
\end{array}\right.
$$

Let $\varphi(u, v)=\alpha u^{2}+\beta v^{2}+\gamma w^{2}$. Condition (ii) from Theorem 1.1 is verified by φ. The hessian of φ is $\left(\begin{array}{lll}2 \alpha & 0 & 0 \\ 0 & 2 \beta & 0 \\ 0 & 0 & 2 \gamma\end{array}\right)$ which is positive definite if $\alpha, \beta, \gamma \geq 0$.

Theorem 2.5. If (u, v, w) is a solution of (24), and $\alpha, \beta, \gamma \geq 0$, then $\alpha u^{2}+$ $\beta v^{2}+\gamma w^{2}$ verifies MP.
7. Let $f(u, v, w)=w-v, g(u, v, w)=u-w, h(u, v, w)=v-u$, (21) becomes:

$$
\left\{\begin{array}{l}
\Delta u+w-v=0 \tag{24}\\
\Delta v+u-w=0 \\
\Delta w+v-u=0
\end{array}\right.
$$

Let $\varphi_{1}(u, v, w)=u^{2}+v^{2}+w^{2}$. (ii) from Theorem 1.1 is verified by φ, and the hessian of φ is $\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ which is positive definite.

Theorem 2.6. If (u, v, w) is a solution of (24) then $u^{2}+v^{2}+w^{2}$ verifies MP.
Let now $\varphi_{2}(u, v)=u^{2}+v^{2}+w^{2}+u v+u w+v w . \varphi$ verifies the condition (ii) from Theorem 1.1. The hessian of φ is:

$$
\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & \frac{3}{2} & 0 \\
0 & 0 & \frac{7}{6}
\end{array}\right)
$$

and it is positive definite. In this way we obtain the following result:
Theorem 2.7. If (u, v, w) is a solution of (230 then $u^{2}+v^{2}+w^{2}+u v+u w+v w$ verifies $M P$.

Remark 2.8. It is obvious that the example from above prove the fact that the functional corresponding to a system, and which satisfy am maximum principle, is not unique.
8. Let $f(u, v, w)=-u+v-w, g(u, v, w)=-u-v+w, h(u, v, w)=u-v-w$, (21) becomes:

$$
\left\{\begin{array}{l}
\Delta u-u+v-w=0 \tag{25}\\
\Delta v-u-v+w=0 \\
\Delta w+u-v-w=0
\end{array}\right.
$$

Let $\varphi(u, v)=u^{2}+v^{2}+w^{2}$. (ii) becomes $-2\left(u^{2}+v^{2}+w^{2}\right) \leq 0$, and the hessian of φ, as we saw, is positive definite. We have:

Theorem 2.8. If (u, v, w) is a solution of (25) then $u^{2}+v^{2}+w^{2}$ verifies MP.
Remark 2.9. If $f(u, v, w)=-\alpha u+\beta v-\gamma w, g(u, v, w)=-\alpha u-\beta v+$ $\gamma w, h(u, v, w)=\alpha u-\beta v-\gamma w$, with $\alpha, \beta, \gamma \geq 0$, and $(\mathrm{u}, \mathrm{v}, \mathrm{w})$ is a solution of the corresponding system, then $\alpha u^{2}+\beta v^{2}+\gamma w^{2}$ verifies MP.

Let us suppose now that $c \neq 0$. Condition (ii) from Theorem 1.1 becomes:

$$
\begin{gathered}
-\frac{\partial \varphi}{\partial y_{1}} f_{1}-\ldots-\frac{\partial \varphi}{\partial y_{m}} f_{m}+c\left(\varphi-\frac{\partial \varphi}{\partial y_{1}} y_{1}-\ldots-\frac{\partial \varphi}{\partial y_{m}} y_{m}\right) \geq 0 \\
\left(f_{1}+c y_{1}\right) \frac{\partial \varphi}{\partial y_{1}}+\ldots+\left(f_{m}+c y_{m}\right) \frac{\partial \varphi}{\partial y_{m}} \leq c \varphi
\end{gathered}
$$

Let $\varphi=y_{1}^{2}+\ldots+y_{m}^{2}$. We have:

$$
\begin{equation*}
2 y_{1} f_{1}+\ldots+2 y_{m} f_{m}+c\left(y_{1}^{2}+\ldots+y_{m}^{2}\right) \leq 0 \tag{26}
\end{equation*}
$$

If $m=2$ then (26) becomes:

$$
\begin{equation*}
2 u f(u, v)+2 v g(u, v)+c\left(u^{2}+v^{2}\right) \leq 0 \tag{27}
\end{equation*}
$$

Remark 2.10. If $f=c u$ and $g=c v$, condition (27) is verified for $c \leq 0$, and so $u^{2}+v^{2}$ verifies MP.

Remark 2.11. If $f(u, v)=-\alpha u+\beta v, g(u, v)=-\beta u-\gamma v$, then condition (27) is verified for $\alpha, \beta \geq 0$, and $c \leq 0$

Remark 2.12. In general case if $c \leq 0$ and $t f\left(t_{1}, \ldots, t_{k-1}, t, t_{k+1}, \ldots, t_{m}\right) \leq 0$, then $\sum_{i=1}^{m} u_{i}^{2}$ satisfies MP.

Remark 2.13. If we take $\varphi(u, v)=\alpha u^{2}+\beta v^{2}+\gamma w^{2}$ (for the system with f and g like in remark 11), then condition (27) take place if $c \leq 0, \alpha, \gamma>0, \beta^{2}<\alpha \gamma$.

References

[1] Cosner C., Schaefer P., On the development of functionals which satisfy a maximum principle, Applicable Analysis, 26(1987), 45-60
[2] Figueiredo D., Mitidieri E., A maximum principle for an elliptic system and applications to semiliniar problem, SIAM J. MATH. ANAL., 17(4), 1986, 836-849.
[3] Rus A. I., Maximum principles for elliptic system, International series of numerical mathematics, 107, Birkhnauser Verlag, Basel, 1992.

Babeş-Bolyai University, Faculty of Business

