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FUNCTIONALS WHICH SATISFY A MAXIMUM PRINCIPLE

CRISTIAN CHIFU-OROS

Abstract. The purpose of this paper is to present some examples of func-
tionals, defined on the solutions of an elliptic equation, which satisfy a

maximum principle.

1. Introduction

Let © be a domain in R™ with boundary 0f2. Let us consider the following

differential operator:

n 82 n )
Lu = - . 1
u i]zz:l Qi 8xzamj + ijzz bz ('9% +c ( )

We assume that L satisfies the following maximum principles ([1]):

MP: There is a subset I' C 9Q such that, if:
1. u € C(Q)
2. the derivatives of u occurring in L are continuous in Q\T
3. Lu > 0,in Q\I'
then sup ¢ (u) = SUp (u)
Q

Let us consider the following system:

Luy + fr(x,u) =0, k=1,m, z € Q. (2)

Let ¢ € C*(R™). The following result is given in [3] (see also [1]):
Theorem 1.1. Let u be a solution of (2). If:
(i) the hessian of ¢ is positive semidefinite,

i) — 35 22W a1 ew) [oty) - 3 89;‘”

k=1 Ouk k=1
then sup ¢ (u) = sup ¢ (u)
a r

yr| > 0,Vy € R™,
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The purpose of this paper is to use the Theorem 1.1 for constructing func-
tionals defined on the solution of system (2), which satisfy a maximum principle.
If ¢ = 0, then the condition (ii) from Theorem 1.1, becomes:

-3 Mfk(%y) >0,vy e R™
k=1

S 260 5 0y < 0wy e BT

—1 Yk
0 3]
i 1+...+ifm§0,VyeRm
ayl aym
We assume fi(x,y) = fr(y), and we can choose ¢ by solving the partial differential
equation:
dy1  dyz dym
T h T (3)
1 f2 fm

in the form ¢(y) = k, where k is a constant.

2. Examples of functionals which satisfies MP

We will consider the system given in [1]

Au+ f(u,v) =0
Av+ g(u,v) =0

1
1. Let f(u,v) = _EU’ g(u,v) = au. We have:

1
Au——-v=0

B (5)
Av+au=0

The functional corresponding to this system is p(u,v) = au® + Bv?. Hence, since
a >0, >0, ¢ satisfies Theorem 1.1. We have:
Theorem 2.1. If (u,v) is a solution of (5) and o > 0, 3 > 0, then au? + Bv?
verifies MP.
Remark 2.1. This result represent a generalization of example 1, given in
[1].
2. Let f(u,v) = —au — pv, g(u,v) = ou + yv.We have:
Au—oau—pPv=0
Av+déu+~yv =0
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The equation corresponding to this system is:

du v
—au— v du+yv

If u = zv, we obtain:
vz + 0 1
122+ (a+8)z+0 v

vz 49
(a+d)z+p0

dv

d if t dz=InF ill have:
and if we pu f722+ z =In F(z), we will have

o(u,v) =& [UF (%)} ,® € C1(R)

U
We can consider p(u,v) = vF (7>, but because of F, the properties of such
v
functional are very hard to study.

What we can observe is that if o« = § we have:

Yz + « _ 1d
V22 4+ 20z + 8 T

In this way we will obtain:

o(u,v) = (\/'yuQ + auv + ﬂv2)

where ® € C'(R).
If we put ®(t) = 2, then:

o(u,v) = yu? + auv + fv?.

2y «
Theorem 2.2. If (u,v) is a solution of (6), and the matriz 7 is

a 203
positive semidefinite i.e. v > 0, a® < 483, then yu? + auv + Bv? verifies MP.

Remark 2.2. This result represents a generalization of 1.

3. In the general case of system (4)

Au+ f(u,v) =0
Av+ g(u,v) =0

d
the corresponding equation is & fwv) :
dv  g(u,v)
g(u,v)du — f(u,v)dv = 0. (7)
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We consider the differential form w = g(u,v)du — f(u,v)dv. w is a total

differential if:
dg af

o ou ()
We will choose ¢ in the form:
(u,v)
plu0) = [ guv)du fuv)do+ C 9)
(0,0
The conditions of Theorem 1.1, becomes:
[ 9g(u,v)
0 d < 1
gluv) [ 20 / v <0 (10)
0 0
o9 [ 0f*w,v)
= — [ —7dv > 11
ou / Ou? dv20 (11)

0

o9 [ 02f(u,v) [ o%(u,v)  Of 99 0f\?

(au‘/auz dv o g 2 \a o (12)
0 0

Because of (8) we have:

Pf g g / “f o 39 /829 _of
ou?
0

0w Qudv’ Ov? 8uav

In these conditions, (10), (11), (12), becomes

0<0

% >0 (13)
It is obvious that (14) or (15) are satisfied if:

% <0. (16)

Theorem 2.3. In conditions (8), (13), (14/15), (16), if (u,v) is a solution
of (4), then (9) verifies MP.

Remark 2.3. If f(u,v) = f(v), g(u,v) = g(u), the conditions from above
are: g(u) >0, f(v) < 0. This case appears in [1].
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As an example if f(u,v) = u — 2v, g(u,v) = 2u — v, then the conditions of
Theorem 2.3 are satisfied and this implies that (u — v)? verifies MP.
Let us consider now the functions from 2, i.e.
f(u,v) = —au — o
g(u,v) = yu + dv
From (8) we have § = a, and so g is g(u,v) = yu + awv.
Conditions (13), (14/15), (16) are: v > 0, 3 < 0, o®> < 3. In conclusion if
(u,v) is a solution of (4), with f and g as above, and v > 0, 3 < 0, a? < v, then
%'yu2 + 2auv + %BUQ verifies MP.
Remark 2.4. In this way ( but choosing another method) we have obtained
a functional as in 2, and the condition are the same.

4. Let us consider the system

—Au=Af(z,u) —v )
—Av =0u—yv

This system appears in [2] and the authors are looking for the existence of a positive
solution. We will try to find a functional with the properties from Theorem 1.1.

Let f(z,u) = f(u). We have:

—Au =X\ -
u=Af(u) —v as)
—Av =du —yv
We will put f1(u,v) = Af(u) — v, g1(u,v) = du — yv, and obtain:
Au+ f1(u,v) =0
u+ fi(u,v) (19)
Av+gl(uav) =0
From (8) we have —y = —Af(u), i.e. f(u) = %u
(19) becomes:
Au+yu—v=0
U+ yu— v (20)

Av+du—yv =0
The conditions (13), (14/15),(16), are satisfied if § > 0, v < 6.
So, if § > 0, 42 < 6,, and (u,v) is a solution of (20), then %6u2 + 2yuv + %’UQ,
verifies MP.
Remark 2.5. This is a particular case of example given at 3.
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Remark 2.6. If we try to find ¢, in the classical way, well obtain du? +
2yuv + v?, which, in the same conditions, verifies MP.

Remark 2.7. We can try to find a integrating factor for

(6u —yv)du + (v — Af(u))dv =0

from:
ou Ou , _
(du — )5~ = (v = Af(w) 5 + (=7 + Af(u))u = 0.
Let us consider now the system:
Au+ flu,v,w) =0
Av + g(u,v,w) = (21)
Aw + h(u,v,w) =0
5. Let f(u,v,w) = —v —w, g(u,v,w) = u — w, h(u,v,w) = u + v, (21)
becomes:
Au—v—w=0
Av+u—w=0 (22)
Aw+u+v=0

Let ¢(u,v) = u? + v? + w?. Condition (ii) from Theorem 1.1 becomes:

¢

ou

de Op
- L < 0.
(u,v,w) + 5 g(u,v,w) + 6wh(u,v,w) <0

2 0 0
o satisfies this condition, and the hessian of ¢ is 0 2 0 which is positive

0 0 2
definite. We have the following result:

Theorem 2.4. If (u,v,w) is a solution of (22) then u®+v?+w? verifies MP.
6. Let f(u,v,w) = —fv — yw, g(u,v,w) = au — yw, h(u,v,w) = au + Pv,
(21) becomes:
Au—pPv—yw=0
Av+oau—vyw =0 (23)
Aw+au+ fv=0
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Let ¢(u,v) = au? + pv? + yw?. Condition (ii) from Theorem 1.1 is verified
2 0 0
by ¢. The hessianof pis | 0 28 0 which is positive definite if «, 5,7 > 0.

0 0 2y
Theorem 2.5. If (u,v,w) is a solution of (24), and o, 3,7 > 0, then au? +

Bv? + yw? verifies MP.

7. Let f(u,v,w) = w—v, gu,v,w) = u—w, h(u,v,w) = v—u, (21) becomes:

Au+w—v=0
Av+u—w=0 (24)
Aw+v—u=0

Let @1 (u,v,w) = u? +v? + w?. (ii) from Theorem 1.1 is verified by ¢, and
2 00
the hessian of ¢ is 0 2 0 which is positive definite.

0 0 2
Theorem 2.6. If (u,v,w) is a solution of (24) then u®+v?+w? verifies MP.

Let now o (u,v) = u? +v% + w? + uv + uw + vw. ¢ verifies the condition (ii)

from Theorem 1.1. The hessian of ¢ is:

2 1 1 2 0 0
121 |~0 20
11 2 00 ¢

and it is positive definite. In this way we obtain the following result:

Theorem 2.7. If (u,v,w) is a solution of (230 then u?+v?+w? +uv+uw+vw
verifies MP.

Remark 2.8. It is obvious that the example from above prove the fact that
the functional corresponding to a system, and which satisfy am maximum principle,
is not unique.

8. Let f(u,v,w) = —ut+v—w, g(u,v,w) = —u—v+w, h(u,v,w) = u—v—w,
(21) becomes:

Au—u+v—w=0
Av—u—v+w=0 (25)
Av+u—v—w=0
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Let p(u,v) = u? + v? + w?. (ii) becomes —2(u? + v? + w?) < 0, and the
hessian of ¢, as we saw, is positive definite. We have:

Theorem 2.8. If (u,v,w) is a solution of (25) then u®+v?+w? verifies MP.

Remark 2.9. If f(u,v,w) = —au + fv — yw, g(u,v,w) = —au — fv +
yw, h(u,v,w) = au — fv — yw, with a, 3,7 > 0, and (u,v,w) is a solution of the
corresponding system, then au? 4+ Bv? + yw? verifies MP.

Let us suppose now that ¢ # 0. Condition (ii) from Theorem 1.1 becomes:

—g—; 1...83;fnfm+c<<p§;1y1 ;y(iym> >0
(ot ) 52+ ot U+ cm) 5 < 0
Let ¢ = y? + ... + y2,. We have:
201f1 4 o+ 2+ e (U + ..+ y2) <0 (26)
If m = 2 then (26) becomes:
2uf (u,v) + 2vg(u,v) + c(u® +v?) <0 (27)

Remark 2.10. If f = cu and g = cv, condition (27) is verified for ¢ < 0, and
so u? + v? verifies MP.
Remark 2.11. If f(u,v) = —au + Bv, g(u,v) = —Bu — yv, then condition
(27) is verified for o, 3 > 0, and ¢ <0
Remark 2.12. In general case if ¢ < 0 and ¢f (1, ..., tp—1, ty tht1, ooy bin) < 0,
then i u? satisfies MP.
lﬂRemark 2.13. If we take o(u,v) = au? + Bv? + yw? (for the system with f
and g like in remark 11), then condition (27) take place if ¢ <0, o,y > 0, 8% < 7.
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