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AN EXISTENCE UNIQUENESS THEOREM FOR AN INTEGRAL
EQUATION MODELLING INFECTIOUS DISEASES

TIBERIU TRIF

Abstract. By using a global inversion theorem due to R. Plastock [3], we

prove an existence uniqueness result concerning the initial-value problem

for the delay nonlinear integral equation x(t) = ψ(t) +

∫ t

t−τ

f(s, x(s))ds.

We establish also the continuous dependence on ψ of the solution of this

equation.

1. Introduction

To describe the spread of certain infectious diseases, K. L. Cooke and J. L.

Kaplan [1] proposed the following delay integral equation:

x(t) =
∫ t

t−τ

f(s, x(s))ds. (1)

In this equation, x(t) is the proportion of infectives in a population at time t, τ is

the length of time an individual remains infectious, and f(t, x(t)) is the proportion of

new infectives per unit time.

It should be mentioned that Eq. (1) can be also interpreted as an evolution

equation for a single species population. In this case, x(t) is the number of individuals

at time t, τ is the lifetime, and f(t, x(t)) is the number of new births per unit time.

It is assumed that each individual lives exactly to the age τ , and then dies.

In this paper we are concerned with the initial-value problem associated to

the equation

x(t) = ψ(t) +
∫ t

t−τ

f(s, x(s))ds. (2)
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More precisely, we look for positive continuous solutions of Eq. (2), when the propor-

tion φ(t) of infectives is known for t ∈ [−τ, 0], i.e.

x(t) = φ(t) for all t ∈ [−τ, 0]. (3)

Obviously, we must assume that φ and ψ satisfy the equality

φ(0) = ψ(0) +
∫ 0

−τ

f(s, φ(s))ds. (4)

Conditions ensuring the existence of at least one positive continuous solution

of the initial-value problem (2)–(3) (with ψ = 0) have been given by R. Precup

[4, 5, 6], E. Kirr [2], R. Precup and E. Kirr [7], and T. Trif [12]. It should be noted

that, essentially, all these papers make use of different fixed point theorems. In the

present paper we provide another approach of the problem (2)–(3). Namely, we obtain

at once an existence uniqueness result, as well as the continuous dependence on ψ

of the solution, for the initial-value problem (2)–(3) by using the following global

inversion theorem due to R. Plastock [3] as the basic tool:

Theorem 1 ([3, Corollary 2.3]). Let E and F be Banach spaces, let A : E →

F be a local homeomorphism, and let u : R+ ×R+ → R+ be a continuous function.

Assume that the following conditions are satisfied:

(i) u(·, s) is strictly increasing for every s > 0 and u(0, s) = 0 for all s ∈ R+;

(ii) lim
‖x‖→∞

‖A(x)‖ = ∞;

(iii) there exists a completely continuous operator A1 : E → F such that the

operator A2 := A+A1 satisfies

‖A2(x)−A2(y)‖ ≥ u(‖x− y‖, r)

for every r > 0 and all x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r.

Then A is a (global) homeomorphism.

2. Main result

Concerning the initial-value problem (2)–(3) we will use the following hy-

potheses:

74



AN INTEGRAL EQUATION MODELLING INFECTIOUS DISEASES

(H1) f : [−τ,∞[ × R → R is a continuous function whose partial derivative

with respect to the second argument, denoted by f ′x(t, x), is continuous on

[−τ,∞[ × R;

(H2) a is a positive real number, while φ : [−τ, 0] → [a,∞[ and ψ : [0,∞[ → R

are continuous functions satisfying (4);

(H3) there exists a locally integrable function b : [−τ,∞[ → R such that

f(t, u) ≥ b(t) for all (t, u) ∈ [−τ,∞[ × [a,∞[

and

ψ(t) +
∫ t

t−τ

b(s)ds > a for all t ∈ R+;

(H4) there exist a continuous function g : R+ → R+ and a continuous nonde-

creasing function h : R+ → R+ satisfying∫ ∞

1

1
h(u)

du = ∞, (5)

such that

|f(t, u)| ≤ g(t)h(|u|) for all (t, u) ∈ R+ ×R.

Theorem 2. Suppose that the hypotheses (H1)–(H4) are fulfilled. Let T

be an arbitrary positive real number and let E be the Banach space consisting of all

continuous functions from [−τ, T ] to R, endowed with the usual sup-norm. Then the

operator A : E → E, defined by

A(x)(t) := x(t)− φ(t) + ψ(0) if t ∈ [−τ, 0]

A(x)(t) := x(t)−
∫ t

t−τ
f(s, xφ(s))ds if t ∈ ]0, T ]

for all x ∈ E and all t ∈ [−τ, T ], where xφ : [−τ, T ] → R is the function defined by

xφ(t) :=

 φ(t) if t ∈ [−τ, 0]

x(t) if t ∈ ]0, T ],

is a global homeomorphism. In particular, there exists a unique continuous function

x : [−τ, T ] → [a,∞[, satisfying (3) and (2) for all t ∈ ]0, T ].

Proof. It is immediately seen that A is correctly defined because the hy-

potheses (H1) and (H2) guarantee that A(x) is a continuous function for each x ∈ E.
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Further, let A1 : E → E be the operator defined by A1(x) := IdE(x)−A(x), i.e.

A1(x)(t) := φ(t)− ψ(0) if t ∈ [−τ, 0]

A1(x)(t) :=
∫ t

t−τ
f(s, xφ(s))ds if t ∈ ]0, T ]

for all x ∈ E and all t ∈ [−τ, T ].

From the definitions of A and A1 it follows that for all x, y ∈ E we have

|A(x)(t)−A(y)(t)| = |x(t)− y(t)|

|A1(x)(t)−A1(y)(t)| = 0

if t ∈ [−τ, 0], whilst

|A(x)(t)−A(y)(t)| ≤ |x(t)− y(t)|+
∫ t

0

|f(s, x(s))− f(s, y(s))|ds

|A1(x)(t)−A1(y)(t)| ≤
∫ t

0

|f(s, x(s))− f(s, y(s))|ds

if t ∈ ]0, T ]. These inequalities ensure that A and A1 are continuous and that A1 is

completely continuous, by virtue of the Arzelá–Ascoli theorem.

Now we prove that A is a local homeomorphism. In fact, we will prove a little

bit more: for all x ∈ E and all r > 0, the restriction of A to the ball B(x, r) is injective.

To see this, let x ∈ E and r > 0 be arbitrarily chosen. Further, let y, z ∈ B(x, r) be so

that A(y) = A(z). Since A(y)(t) = y(t)−φ(t)+ψ(0) and A(z)(t) = z(t)−φ(t)+ψ(0)

for all t ∈ [−τ, 0], it follows that y(t) = z(t) for all t ∈ [−τ, 0]. On the other hand, if

we set mx := min x([0, T ]), Mx := max x([0, T ]), and

M := max { |f ′x(s, u)| | s ∈ [0, T ], u ∈ [mx − r,Mx + r] },

then for each t ∈ [0, T ] it holds that

y(t)−
∫ t

t−τ

f(s, yφ(s))ds = z(t)−
∫ t

t−τ

f(s, zφ(s))ds,

hence

|y(t)− z(t)| ≤
∫ t

t−τ

|f(s, yφ(s))− f(s, zφ(s))|ds

≤
∫ t

0

|f(s, y(s))− f(s, z(s))|ds

≤ M

∫ t

0

|y(s)− z(s)|ds.
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By the Gronwall inequality we conclude that y(t) = z(t) for all t ∈ [0, T ]. Hence y = z

and A is a local homeomorphism, as claimed.

Next, we prove that A satisfies condition (ii) in Theorem 1. To this end,

remark that for each x ∈ E and each t ∈ [0, T ] it holds that

x(t) = A(x)(t) +
∫ t

t−τ

f(s, xφ(s))ds.

Taking into account the hypotheses (H2) and (H4), we deduce that

|x(t)| ≤ ‖A(x)‖+
∫ 0

−τ

f(s, φ(s))ds+
∫ t

0

|f(s, x(s))|ds

≤ ‖A(x)‖+ φ(0) +
∫ t

0

g(s)h(|x(s)|)ds.

By a modified version of the Gronwall inequality (see M. Rădulescu and S. Rădulescu

[9, p. 103]) we conclude that∫ |x(t)|

‖A(x)‖+φ(0)

1
h(u)

du ≤
∫ t

0

g(s)ds ≤
∫ T

0

g(s)ds

for all x ∈ E and all t ∈ [0, T ]. This inequality and (5) imply the validity of the

condition (ii) in Theorem 1.

In conclusion, all the conditions in Theorem 1 are satisfied if the function u :

R+ ×R+ → R+ is defined by u(r, s) := r. Therefore, A is a global homeomorphism,

hence there exists a unique x ∈ E such that A(x) = ψ̃, where ψ̃ : [−τ, T ] → R is the

function defined by

ψ̃(t) :=

 ψ(0) if t ∈ [−τ, 0]

ψ(t) if t ∈ ]0, T ].

Clearly, x satisfies (3) and (2) for all t ∈ ]0, T ]. We claim that x(t) ≥ a for all

t ∈ [−τ, T ]. To see this, set

T0 := inf { t ∈ [−τ, T ] | ∀ s ∈ [−τ, t] : x(s) ≥ a }.

According to (H2), we have T0 ≥ 0. Assume that T0 < T . Since the function

∀ t ∈ R+ 7−→ ψ(t) +
∫ t

t−τ

b(s)ds ∈ R

is continuous, it follows from (H3) that the real number ε, defined by

ε := min
t∈[0,T ]

(
ψ(t) +

∫ t

t−τ

b(s)ds
)
− a,
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is positive. Set α := min x([−τ, T ]), β := max x([−τ, T ]),

γ := max { |f(s, u)| | s ∈ [−τ, T ], u ∈ [α, β] },

and then choose δ > 0 such that 4γδ ≤ ε and

|ψ(t)− ψ(T0)| <
ε

2
for all t ∈ [T0, T0 + δ] ∩ [0, T ].

The assumption T0 < T implies the existence of a point t ∈ [T0, T0 + δ] ∩ [0, T ] such

that x(t) < a. But, on the other hand, we have

x(t) = ψ(t) +
∫ T0

T0−τ

f(s, x(s))ds−
∫ t−τ

T0−τ

f(s, x(s))ds+
∫ t

T0

f(s, x(s))ds

≥ ψ(T0) +
∫ T0

T0−τ

b(s)ds−
∫ t−τ

T0−τ

|f(s, x(s))|ds−
∫ t

T0

|f(s, x(s))|ds

+ψ(t)− ψ(T0)

≥ a+ ε− 2γ(t− T0)−
ε

2
≥ a+

ε

2
− 2γδ ≥ a.

The obtained contradiction shows that T0 = T . Consequently, x(t) ≥ a for all t ∈

[−τ, T ]. 2

Suppose that the hypotheses (H1)–(H4) are satisfied. Let T and E be as in

the statement of Theorem 2, and let x : [−τ, T ] → [a,∞[ be the unique continuous

function satisfying (3) and (2) for all t ∈ ]0, T ]. Further, let ψn : [0,∞[ → R (n ∈ N)

be a sequence of continuous functions satisfying

ψn(0) = φ(0)−
∫ 0

−τ

f(s, φ(s))ds

and

ψn(t) +
∫ t

t−τ

b(s)ds > a for all t ∈ R+,

for each positive integer n. According to Theorem 2, for every n there exists a unique

continuous function xn : [−τ, T ] → [a,∞[ such that

xn(t) = φ(t) for all t ∈ [−τ, 0]

xn(t) = ψn(t) +
∫ t

t−τ
f(s, xn(s))ds for all t ∈ ]0, T ].

Corollary 3. If (ψn) → ψ uniformly on [0, T ], then (xn) → x uniformly on

[−τ, T ].
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Proof. For each positive integer n, let ψ̃n : [−τ, T ] → R be the function

defined by

ψ̃n(t) :=

 ψn(0) if t ∈ [−τ, 0]

ψn(t) if t ∈ ]0, T ].

Then for all n we have xn = A−1(ψ̃n). On the other hand, x = A−1(ψ̃), where ψ̃

is defined as in the proof of Theorem 2. Since A−1 is continuous and (ψ̃n) → ψ̃

uniformly on [−τ, T ], we conclude that (xn) → x uniformly on [−τ, T ]. 2

Corollary 4. Suppose that the hypotheses (H1)–(H4) are fulfilled. Then there

exists a unique continuous function x : [−τ,∞[ → [a,∞[, satisfying (3) and (2) for

all t ∈ ]0,∞[.

Proof. According to Theorem 2, for each T > 0 there exists a unique continu-

ous function xT : [−τ, T ] → [a,∞[, satisfying (3) and (2) for all t ∈ ]0, T ]. Therefore,

for all T1 > T2 > 0 and all t ∈ ]0, T2] it holds that xT1(t) = xT2(t). This remark

enables us to define the function x : [−τ,∞[ → [a,∞[ as follows: given t ∈ [−τ,∞[,

select a real number T ≥ t and then set x(t) := xT (t). Clearly, x is the unique

continuous function from [−τ,∞[ to [a,∞[, satisfying (3) and (2) for all t ∈ ]0,∞[. 2

Example. Let λ be a real number satisfying

λ min
t∈[0,π]

∫ t

t−2

ln(1 + sin2 s)ds > 1 (6)

and let γ0 be a root of the equation

√
γ = λ

∫ 2

0

ln(1 + γ2 sin2 s)ds, (7)

lying in ]1,∞[ (due to (6), Eq. (7) has at least one root in ]1,∞[). Then there exists

a unique continuous function x : [−2,∞[ → [1,∞[, satisfying

x(t) = γ0 for all t ∈ [−2, 0]

x(t) =
∫ t

t−2
(λ+ s+)

√
x(s) ln

(
1 + x2(s) sin2 s

)
ds for all t ∈ ]0,∞[,

where s+ := max{0, s}.
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This follows by Corollary 4 because all the hypotheses (H1)–(H4) are fulfilled

if we choose τ := 2, a := 1,

f : [−2,∞[ × R → R f(t, u) := (λ+ t+)
√
|u| ln(1 + u2 sin2 t),

φ : [−2, 0] → R φ(t) := γ0,

ψ : [0,∞[ → R ψ(t) := 0,

b : [−2,∞[ → R b(t) := λ ln(1 + sin2 t),

g : R+ → R+ g(t) := λ+ t,

h : R+ → R+ h(u) :=
√
u ln(1 + u2).
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