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CRITICAL AND VECTOR CRITICAL SETS IN THE PLANE

LIANA ŢOPAN

Abstract. Given a non-empty set C ⊂ R2, is C the set of critical points

for some smooth function f : R2 → R or vectorial map f : R2 → R2? In

this paper we give some results in this direction.

1. Introduction

A point p ∈ R2 is critical for a smooth function f : R2 → R if its derivative

at p is zero. (df)p = 0. This means
∂f

∂x
(p) =

∂f

∂y
(p) = 0, in a smooth chart in p.

The set of all critical points of f is denoted by C(f). The image of C(f) is the set

of critical values B(f) = f(C(f)). If x is not critical, then it is regular. We say that

C ⊂ R2 is critical if C = C(f) for some smooth f : R2 → R. A proper function

has the property that f−1(K) is compact for all compact sets K. Equivalently, when

f : R2 → R, |f(x)| → ∞ iff |x| → ∞. We say that C ⊂ R2 is properly critical if f can

be chosen to be proper. Clearly, a critical set is closed. What other properties does

it have? In the compact case, there is just one other requirement.

Theorem. [No-Pu] Let C be a compact non-empty subset of R2. The

following assertions are equivalent:

1. C is critical

2. C is properly critical

3. The components of its complement are multiply connected.

A component of a topological space is a maximal connected subset of the

space. It is multiply connected if it is not simply connected. The condition on multiply

connectivity is a topological condition on the complement, not on the space. If C is

any finite set of points or a Cantor set in the plane, then it is properly critical. Their

complements are multiply connected. On the other hand, a circle is not critical. If C
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is the union of a circle and a point, then it is critical if and only if the point is inside

the circle.

If its critical set is noncompact, it is unreasonable to expect properness of

f . If C = C(f) is closed, unbounded and connected, then by Sard’s theorem, f is

constant on C, f(C) = c, and f−1(c) is noncompact, so f is not proper.

Theorem. If C ⊂ R2 is critical, compact and non-empty, then any bounded

component of its complement has disconnected boundary. In particular, no compact

curve in R2, smooth or not, is a critical set.

Given a closed, noncompact set K ⊂ R2 when is there a smooth function

f : R2 → R such that K = C(f)? We say that ∞ is arcwise accessible in U ⊂ R2 if

there is an arc α : [0,∞) → U such that α(t) →∞ as t →∞.

Theorem. [No-Pu] A closed set K ⊂ R2 is critical if and only if ∞ is arcwise

accessible in each simply connected component of R2 \K.

2. Vector critical sets

Let f : R2 → R2 be a smooth map. The point p ∈ R2 is a critical point of f

if rankpf ≤ 1. If f is given by f = (f1, f2), then in some local chart around p, p is

critical point of f if and only if the Jacobi matrix of f in p is singular, which means:

det


∂f1

∂x
(x0, y0)

∂f1

∂y
(x0, y0)

∂f2

∂x
(x0, y0)

∂f2

∂y
(x0, y0)

 = 0

The set C ⊆ R2 is vector critical if it is the critical set of some smooth map f : R2 →

R2. In which conditions will a critical set C ⊂ R2 be vector critical? For a class of

subsets of the plane, the answer is given by the following theorem:

Theorem. Any critical set C ⊂ R2 is vector critical.

Proof: Since C is critical, there is a smooth function f : R2 → R, so that

C = C(f), where

C(f) =
{

(x0, y0) ∈ R2 :
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0

}
.
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Define F : R2 → R2, by F (x, y) = (h(x, y), y), where h : R2 → R is given by

h(x, y) =

x∫
0

([∂f

∂x
(x, y)

]2

+
[∂f

∂y
(x, y)

]2)
dx.

Since h is smooth, so is F . We show that C(f) = C(F ).

The Jacobi matrix of f in some point (x0, y0) ∈ R2 is

J(F )(x0, y0) =


[∂f

∂x
(x0, y0)

]2

+
[∂f

∂y
(x0, y0)

]2 ∂h

∂y
(x0, y0)

0 1

 .

For (x0, y0) ∈ C(f), we have
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0, so

J(F )(x0, y0) =

 0
∂h

∂y
(x0, y0)

0 1


and (x0, y0) ∈ C(F ). Conversely, if (x0, y0) ∈ C(F ), it follows that[∂f

∂x
(x0, y0)

]2

+
[∂f

∂y
(x0, y0)

]2

= 0, and then
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0, so

(x0, y0) ∈ C(f). �

If, in theorem above f is supposed to be a harmonic function (this means

that f has the property
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) = 0 ), then F could be defined to be

the map F = (f, g), where g : R2 → R is the smooth map which is the solution of the

system 
∂g

∂x
(x, y) = −

∂f

∂y
(x, y)

∂g

∂y
(x, y) =

∂f

∂x
(x, y).

The converse of this theorem is not true. There are more vector critical sets

than critical. A vector critical set which is not critical is the circle in the plane. The

map F : R2 → R2 given by F (x, y) = (
x3

3
+ xy − x, y) is critical exactly on the unit

circle in R2.
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3. The family of excellent mappings

An excellent mapping is a smooth function f : R2 → R2 whose critical points

are all folds or cusps. A fold is a critical point such that, after smooth local changes

of coordinates in the domain and image, the function is of the form

f(x, y) = (x2, y),

the critical point being taken to the origin. For a cusp, after a change of coordinates,

the function is of the form

f(x, y) = (xy − x3, y),

where the critical point is taken to the origin.

For an excellent mapping, the set of critical points will consist of smooth

curves; we call these general folds of the mapping. Also, the cusp points are isolated

on the general fold. Let f be an excellent mapping and C a general fold of f through

p. Thus p will be a fold point if the image of C near p is a smooth curve with non-zero

tangent vector at p, and p will be a cusp point if the tangent vector is zero at p but

it becoming non-zero at a positive rate as we move away from p on C.

Let f : R2 → R2 be an excellent mapping. The derivative of f with respect

to V at p is the vector in R2

∇V f(p) = lim
t→0+

1
t
[f(p + tV )− f(p)].

For each p ∈ R2, consider the vectors V ′ = ∇V f(p) as a function of vectors V with

|V | = 1. We shall use a certain system of curves defined by f in an open set R ⊂ R2.

We let R contain p if the vectors V ′ are not all of the same length. For any p ∈ R,

there will be a pair of opposite directions at p such that for V in these directions,
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|V ′| is a minimum. (For V in the perpendicular direction, |V ′| will be a maximum.)

Now R is filled up by smooth curves in these directions; we call these curves curves

of minimum ∇f .

For any p ∈ R and vector V 6= 0, ∇V f(p) = 0 if and only if p is a singular

point and V is tangent to the curve of minimum ∇f .

Consider any general fold curve C. If a curve of minimum ∇f cuts C at a

positive angle at p, then for the tangent vector V (p), ∇V f(p) 6= 0, and hence p is

a fold point. Suppose C is tangent to a curve of minimum ∇f at p. Then p is not

a fold point, and hence is a cusp point, since f is excellent. Set V ∗ = ∇V∇V f(p);

then V ∗ 6= 0. Since ∇V f(p) = 0, ∇vf(p′) is approximately in the direction of ±V ∗

for p′ on C near p. It follows that ∇W f(p) is a multiple of V ∗, for all vectors W .

As we move along the general fold through p, ∇V f(p′) changes from a negative to

a positive multiple of V ∗ (approximately); hence V (p′) cutes the curves of minimum

∇f in opposite senses on the two sides of p. Therefore the curves of minimum ∇f

lying on one side of C cut C on both sides of p. We call this side of C the upper side

and the other the lower side.

The image of C has a cusp at f(p), pointing in the direction of −V ∗. For

any vector W not tangent to C at p, ∇W f(p) is a positive or negative multiple of V ∗,

according as W points into the upper or lower side of C.
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Let f and g be mappings R2 → R2 and ε(p) a positive continuous function

in R. We say g is an ε-approximation to f if

|g(p)− f(p)| < ε(p), ∀p ∈ R.

If f and g are r-smooth, we say g is an (r, ε)-approximation to f if this

inequality holds, and also the similar inequalities for all partial derivatives

of orders ≤ r, using fixed coordinate systems. We speak of general

approximations and r-approximations in the two cases.

Let f : R2 → R2 be an excellent mapping. We describe certain approxima-

tions g to f which have the singularities of f and also further singularities.
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(a) Arbitrary approximations: For any smooth curve C in the plane which

touches no general fold, we may introduce two new folds, one at C and one near C.

For each p ∈ C, let pt, −1 ≤ t ≤ 1, denote the points of a line segment Sp

approximately perpendicular to C in p, with p0 = p. We may choose these segments

so that they cover a neighborhood U of C which touches no general fold of f . We

change f to obtain g as follows: as t runs from −1 to 1, let g(pt) run along f(Sp)

from f(p−1) to f(p), then back a little, then on through f(p) to f(p1). If f and C

are smooth, we may construct g to be smooth. C is a fold for g and so is a curve C ′,

consisting of the points p1/2, for example. We may let g = f in R2 \U . With U small

enough, g is an arbitrarily good approximation of f .

(b)Approximations with first derivatives: Let C0 be a curve of fold points of

f , without cusps. It may be the whole or a part of a complete general fold of f . We

show that we may define g to be an arbitrarily good approximation of f together with

first derivatives, so that there is a new pair of folds near C0. If C0 is closed, there will

be no new cusps for g; otherwise, the new folds will meet in a pair of cusp points for

g.

We may let pt denote points of a neighborhood of C0, as in (a), so that the

image of each Sp under f is an arc folded over on itself, the fold occurring at p. Let

g(pt) = f(pt) for −1 ≤ t ≤ 0; as t runs from 0 to 1, let g(pt) move along f(Sp)

towards f(p1), then back a little, and then forward again to f(p1). So, we obtain two

new folds.

We show that we may make g approximate to f near a given point p of C0.

Then, the approximation is possible near the all of C0.

We may choose the coordinates so that f , near p, is given by

f(x, y) = (x2, y).

We may define a smooth function φ : R → R, so that:

1. φ(−t) = φ(t), for all t ∈ R

2. φ(0) = 1

3. φ(t) = 0, for |t| ≥ 1

4. 0 ≤ φ′(t) ≤ φ′(− 1
2 ) = α, for t < 0.
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For ε > 0, define g : R2 → R2 by

g(x, y) =

x2 +
10ε2

α
φ

x− 2ε

ε

 , y

 .

g is smooth and the Jacobian matrix of g has the form

J(g)(x, y) =

 2x +
10ε

α
· φ′

x− 2ε

ε

 0

0 1



For x ∈ (−∞, ε] ∪ [3ε,∞), φ

x− 2ε

ε

 = 0. So, p is also a critical point of g.

Moreover, as

detJ(g)(2ε, y) = 4ε +
10ε

α
· φ′(0) = 4ε > 0

detJ(g)

5ε

2
, y

 = 5ε +
10ε

α
· φ′

1

2

 = 5ε +
10ε

α
· (−α) = −5ε < 0

detJ(g)(3ε, y) = 6ε +
10ε

α
· φ′(1) = 6ε > 0,

then there are two numbers x1 ∈ (2ε, 5ε
2 ) and x2 ∈ ( 5ε

2 , 3ε), so that

det J(g)(x1, y) = det J(g)(x2, y) = 0 :

these define the points of the new folds.

Also, g is an approximation of f with first derivatives:∣∣∣∣2x +
10ε

α
φ′

(
x− 2ε

ε

)
− 2x

∣∣∣∣ =
∣∣∣∣10ε

α
φ′

(
x− 2ε

ε

)∣∣∣∣ ≤ 10ε, ∀x ∈ R.

We show now how we may insert cusps. We consider several types of approx-

imation.

(a)Arbitrarily approximation: We show that we may insert a pair of nearby

arcs where the new function g will have fold points and run them together to give the

new cusps.
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CRITICAL AND VECTOR CRITICAL SETS IN THE PLANE

We consider the smooth curve C, which touches no general fold of f and

p ∈ C, as before. Suppose that near the regular point p, f is given by f(x, y) = (x, y).

Define φ as before and define g : R2 → R2 by

g(x, y) =
(

x +
2ε

α
φ

(x

ε

)
φ

(y

ε

)
, y

)
.

Then g is smooth, is an arbitrarily good approximation of f and g = f outside a

small neighborhood of p. The critical points of g are those of f and those given by

det J(g)(x, y) = det

 1 +
2

α
φ

y

ε

 φ′

x

ε

 2

α
φ

x

ε

 φ′

y

ε


0 1

 = 0,

or

1 +
2

α
φ

y

ε

 φ′

x

ε

 = 0.

Since detJ(g)(0, 0) = 1 > 0, det J(g)

ε

2
, 0

 = 1 +
2

α
· 1 · (−α) = −1 < 0,

and detJ(g)(2ε, 0) = 1 > 0, it is clear that there are two folds cutting the x-axis. If

φ is sufficiently simple shape, these come together in two cusps.

(b)Approximations with first derivatives: Let p be a fold point of f , on a

critical curve of f which contains no cusp points. Near p, f is given by f(x, y) =

(x2, y). We define g : R2 → R2, by

g(x, y) =
(

x2 +
10ε2

α
φ

(
x− 2ε

ε

)
φ

(y

ε

)
φ

(y

ε

)
, y

)
,

with φ chosen as before. Outside a little neighborhood of p, g = f . We have

J(g)(x, y) =

 2x +
10ε

α
φ′

x− 2ε

ε

 φ

y

ε

 ∂g

∂y
(x, y)

0 1

 ,

so detJ(g)(0, 0) =
10ε

α
φ′(−2)φ(0) = 0, which means p is a critical point of g. Since

det J(g)(2ε, 0) = 4ε +
10ε

α
φ′(0)φ(0) = 4ε > 0
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det J(g)

5ε

2
, 0

 = 5ε +
10ε

α
(−α)φ(0) = −5ε < 0

det J(g)(3ε, 0) = 6ε +
10ε

α
φ′(1)φ(0) = 6ε > 0,

det J(g) becomes zero for two points of the x-axis. We obtain two new folds, joined

at two cusp points, and g is an arbitrarily good approximation of f , together with

first derivatives:∣∣∣∣∣∣2x +
10ε

α
φ′

x− 2ε

ε

 φ

y

ε

− 2x

∣∣∣∣∣∣ =

∣∣∣∣∣∣
10ε

α
φ′

x− 2ε

ε

 φ

y

ε

∣∣∣∣∣∣ <

<
10ε

α
· α · 1 = 10ε, ∀ (x, y) ∈ R2.

(c) Approximations with first and second derivatives: Let p be a cusp point of f . Near

p, f is given by f(x, y) = (xy − x3, y). Define g near p by setting

g(x, y) =
(
xy − x3

[
1− 2φ

(x

ε

)
φ

(y

ε

)]
, y

)
.

Then

J(g)(x, y) =


y − 3x2

1− 2φ

x

ε

 φ

y

ε

 + 2x3 ·
1

ε
φ′

x

ε

 φ

y

ε

 ∂g

∂y
(x, y)

0 1


The curve C of general fold of g coincides with the original critical curve

C0: y = 3x2 of f for |x| ≥ ε, it contains p and, by symmetry, is in the x-direction.

Since
∂f1

∂x
(p) =

∂f1

∂y
(p) = 0,

∂2f1

∂x2
∂x∂y(p) = 1 şi

∂3f1

∂x3
(p) = 6,

p is a cusp point for g [Wh]. At points of C where x ≤ −ε, g = f and

J(g)(x, y)

 y − 3x2 x

0 1

, so
∂2f1

∂x2
(x, y) = −6x > 0. For x ≥ ε, g = f and

∂2f1

∂x2
(x, y) = −6x < 0. On the other hand, since

∂2f1

∂x2
(p) = 0 and

∂3f1

∂x3
(p) > 0,

we have that
∂2f1

∂x2
(x, y) has the same sign as x for x 6= 0 and |x| small enough.
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Therefore, as x runs from −ε to ε, if we run along C,
∂J

∂x
=

∂2f1

∂x2
changes sign at least

three times. With the function φ of simple shape, it will change sign exactly three

times; that is g will have three cusp points. We have thus introduced two new cusps,

the three cusps lying on a single general fold curve.

Differentiating g, it follows that g is an arbitrarily good approximation of f ,

together with first and second derivatives.

Let f : R2 → R2 be an excellent mapping and p a cusp point on the general

fold C. Suppose there is a smooth curve A which moves from p to∞ into the lower side

of C and which touches no general fold. Then there is arbitrarily good approximation

g to f which agrees with f outside a neighborhood U of A, and for which the part of

the fold near p is replaced by a pair of folds going near A, to ∞, without cusp points.

This may be seen as follows. Around p, f is given by f(x, y) = (xy − x3, y).

Each line y = a > 0 is mapped by f so as to fold over on itself twice. The lines

y = a ≤ 0 have no such folds. We need merely insert such folds near the negative

y-axis, to join the above folds. These can be extended down along all of A.

We saw that cusps may be eliminated from regions by arbitrarily good ap-

proximations. This is not true for folds.

Theorem 3.1. Let p be a fold point of the excellent mapping f . Then for any

neighborhood U of p, each sufficiently good approximation g to f which is excellent

has a fold point in U .

Proof: Since p is a fold point, there are two points p1 and p2 in U where the

Jacobian has opposite signs. Let Ui be a circular neighborhood of pi (i = 1, 2) which

touches no fold, and let U ′
i be an interior circular neighborhood. For a sufficiently

good approximation g to f , if gt is the deformation of g into f ,

gt(q) = g(q) + t[f(q)− g(q)] (0 ≤ t ≤ 1),

then the image of the boundary ∂Ui does not touch the image of U ′
i under f :

gt(q) 6= f(q′), q ∈ ∂Ui, q′ ∈ U ′
i , 0 ≤ t ≤ 1.

Hence g(Ui) and f(Ui) cover f(U ′
i) the same algebraic number of times. For f , this

number is ±1. Hence there is a point p′i in U ′
i such that the Jacobian of g at p′i is of
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the same sign as the Jacobian of f in Ui. But the Jacobians of g at p′1 and at p′2 are

of opposite sign. Then the segment p′1 p′2 contains a singular point of g, and since g

is excellent, there is a fold point of g in U . �

Theorem 3.2. If Q is a bounded closed set in which f is non-singular, then

any sufficiently good approximation g to f is non-singular in Q.

Proof: It follows since the Jacobian involves only first derivatives. �

Theorem 3.3. Let the arc A have end points p1 and p2 where f is non-

singular. Then, for any sufficiently good 1-approximation g to f which is excellent,

any arc A′ from p1 to p2 which cuts only fold points of f and g cuts the same number

of folds (mod 2) for each.

Proof: This is clear, since the Jacobian of f and of g have the same sign at

each pi. �

Theorem 3.4. Let p be a cusp point of f . Then for any neighborhood U of

p, each sufficiently good 1-approximation g of f which is excellent has a cusp point in

U .

Proof: There is a curve A = p1 p2 p3 p4 of minimum ∇f in U , which cuts the

fold C through p at the points p2 and p3. The open arc p2 p3 lies in the upper part

of C and the open arcs p1 p2 and p3 p4 lie in the lower part. There is an arc B from

p1 to p4 in the lower part of C, lying in U , such that A and B bound a region R′

filled by curves of minimum ∇f . For any sufficiently good 1-approximation g to f ,

there will be an arc A∗ of minimum ∇g, near A, which will bound, with part of B,

a region R∗ filled by curves of minimum ∇g. Also, g will be non-singular in B, and

there will be fold points of g in R∗. The set Q of fold and cusp points of g in the

closure R∗ is a closed set. There is a lowest curve D of minimum ∇g in R∗ which

touches Q in a point p∗. Since p∗ is not in B, p∗ ∈ R∗. p∗ is a singular point of g.

Also, by definition of D, the general fold of g through p∗ does not cross the curve D,

and hence is tangent to D. Therefore, p∗ is not a fold point of g and it follows that

p∗ is a cusp point of g. �

Theorem 3.5. For any bounded closed set Q in which the only singularities

of f are fold points, any sufficiently good 2-approximation g of f which is excellent

has only folds in Q.
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Proof: Let p be a fold point of f in Q and let A be a short segment perpen-

dicular to the fold, centered at p. Since J(f) is of opposite signs at the two ends of

A, so F (g) will be. Hence J(g) will vanish somewhere on A. Since f is excellent, the

directional derivative of J(f) in the direction of A is non-zero, hence the same is true

for g and g has just one general fold cutting A. Thus the general folds of g are like

those of f in Q, if the 2-approximation is good enough. Since the directions of curves

of minimum ∇g and of general folds for g are nearly parallel to the similar curves for

f , the conditions for fold points will be satisfied at all general fold points of g in Q,

for a good approximation. Hence g will have no cusp points in Q. �

Theorem 3.6. Let U be a neighborhood of the cusp point p of f . Then for

any sufficiently good 2-approximation g to f which is excellent, there will be a cusp

point p′ of g in U , on a general fold C ′; there will be no other general folds of g in

U , and the number of critical points of g on C ′ in U will be odd.

Proof: There will be a unique general fold C ′ of g in U . At two points p1,

p2 of the general fold C of f , on opposite sides of p, the curves of minimum ∇f cut

C in opposite senses; the same will be true, using g, for similar points p′1, p′2 of C ′.

Hence there will be an odd number of cusps of g between these points. There will be

no cusps in C ′ ∩ U outside these points. �

Theorem 3.7. With U , p and f as in the last theorem, any sufficiently good

3-approximation g to f has a unique general fold in U , with a unique cusp point on

it.

Proof: There is a unique C ′ as in the last theorem, with a cusp point p′.

Since ∇v ∇v f(p) 6= 0, the similar relation ∇v′ ∇v′ g(p′) 6= 0 holds. We see that ∇v′g

is in opposite directions on opposite sides of p′ on C ′, and hence p′ is the only cusp

of g in U . �
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