A UNIVALENCE CONDITION

DORINA RĂDUCANU AND PAULA CURT

Abstract

In this paper we obtain a sufficient condition for univalence concerning holomorphic mappings of the unit ball in the space of n-complex variables.

1. Introduction

Let \mathbf{C}^{n} be the space of n -complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the Euclidean inner product $\langle z \cdot w\rangle=\sum_{k=1}^{n} z_{k} \bar{w}_{k}$ and norm $\|z\|=\langle z, z\rangle^{\frac{1}{2}}$.

Let B^{n} denote the open unit ball in \mathbf{C}^{n},i.e. $B^{n}=\left\{z \in \mathbf{C}^{n}:\|z\|<1\right\}$.We denote by $\mathcal{L}\left(\mathbf{C}^{n}\right)$ the space of continuous linear operators from \mathbf{C}^{n} into \mathbf{C}^{n},i.e $. n \times n$ complex matrices $A=\left(A_{j k}\right)$ with the standard operator norm

$$
\|A\|=\sup \{\|A z\|:\|z\|<1\}, \quad A \in \mathcal{L}\left(\mathbf{C}^{n}\right)
$$

$I=\left(I_{j k}\right)$ denotes the identity in $\mathcal{L}\left(\mathbf{C}^{n}\right)$.
Let $H\left(B^{n}\right)$ be the class of holomorphic mappings

$$
f(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right), \quad z \in B^{n}
$$

from B^{n} into \mathbf{C}^{n}. We say that $f \in H\left(B^{n}\right)$ is locally biholomorphic in B^{n} if f has a local holomorphic inverse at each point in B^{n} or equivalently, if the derivative

$$
D f(z)=\left(\frac{\partial f_{k}(z)}{\partial z_{j}}\right)_{1 \leq j, k \leq n}
$$

is nonsingular at each point $z \in B^{n}$.
A mapping $v \in H\left(B^{n}\right)$ is called a Schwarz function if $\|v(z)\| \leq\|z\|$, for all $z \in B^{n}$.

If $f, g \in H\left(B^{n}\right)$ then f is subordinate to $g(f \prec g)$ in B^{n} if there exists a Schwarz function v such that $f(z)=g(v(z)), z \in B^{n}$.

A function $L: B^{n} \times[0, \infty) \rightarrow \mathbf{C}^{n}$ is a subordination chain if $L(\cdot, t)$ is holomorphic and univalent in $B^{n}, L(0, t)=0$, for all $t \in[0, \infty)$ and $L(z, s) \prec L(z, t)$, whenever $0 \leq s \leq t<\infty$.

The subordination chain $L: B^{n} \times[0, \infty) \rightarrow \mathbf{C}^{n}$ is a normalized subordination chain if $D L(0, t)=e^{t} I$, for $t \in[0, \infty)$.

A basic result in the theory of n-complex variables subordination chains is due to J. A. Pfaltzgraff.

Theorem 1. [5] Let $L(z, t)=e^{t} z+\ldots$ be a function from $B^{n} \times[0, \infty)$ into \mathbf{C}^{n} such that:
(i) $L(\cdot, t) \in H\left(B^{n}\right)$, for all $t \in[0, \infty)$
(ii) $L(z, t)$ is a locally absolutely continuous function of t, locally uniformly with respect to $z \in B^{n}$.

Let $h(z, t)$ be a function from $B^{n} \times[0, \infty)$ into \mathbf{C}^{n} which satisfies the following conditions:
(iii) $h(\cdot, t) \in H\left(B^{n}\right), h(0, t)=0, D h(0, t)=I$ and $\operatorname{Re}\langle h(z, t), z\rangle \geq 0$, for all $t \in[0, \infty)$ and $z \in B^{n}$.
(iv) For each $T>0$ and $r \in(0,1)$ there is a number $K=K(r, T)$ such that $\|h(z, t)\| \leq K(r, T)$, when $\|z\| \leq r$ and $t \in[0, T]$.
(v) For each $z \in B^{n}, h(z, \cdot)$ is a measurable function on $[0, \infty)$.
Suppose $h(z, t)$ satisfies

$$
\begin{equation*}
\frac{\partial L(z, t)}{\partial t}=D L(z, t) h(z, t), \text { a.e } t \in[0, \infty), \text { for all } z \in B^{n} \tag{1}
\end{equation*}
$$

Further, suppose there is a sequence $\left(t_{m}\right)_{m \geq 0}, t_{m}>0$ increasing to ∞ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} e^{-t_{m}} L\left(z, t_{m}\right)=F(z) \tag{2}
\end{equation*}
$$

locally uniformly in B^{n}.
Then for each $t \in[0, \infty), L(\cdot, t)$ is univalent in B^{n}.
P. Curt obtained a version of Theorem 1 for subordination chains which are not normalized .

Theorem 2. [2] Let $L(z, t)=a_{1}(t) z+\ldots, a_{1}(t) \neq 0$ be a function from $B^{n} \times[0, \infty)$ into \mathbf{C}^{n} such that:
(i) $L(\cdot, t) \in H\left(B^{n}\right)$ for all $t \in[0, \infty)$
(ii) $L(z, t)$ is a locally absolutely continuous function of t, locally uniformly with respect to $z \in B^{n}$
(iii) $a_{1}(t) \in C^{1}[0, \infty)$ and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$.

Let $h(z, t)$ be a function from $B^{n} \times[0, \infty)$ into \mathbf{C}^{n} which satisfies the following conditions:
(iv) $h(\cdot, t) \in H\left(B^{n}\right), h(0, t)=0$ and $\operatorname{Re}\langle h(z, t), z\rangle \geq 0$, for all $t \in[0, \infty)$ and $z \in B^{n}$
(v) For each $z \in B^{n}, h(z, \cdot)$ is a measurable function on $[0, \infty)$
(vi)For each $T>0$ and $r \in(0,1)$, there exists a number $K=K(r, T)$ such that $\|h(z, t)\| \leq K(r, T)$, when $\|z\| \leq r$ and $t \in[0, T]$.

Suppose $h(z, t)$ satisfies

$$
\begin{equation*}
\frac{\partial L(z, t)}{\partial t}=D L(z, t) h(z, t), \text { a.e. } t \in[0, \infty), \text { for all } z \in \mathbf{B}^{n} \tag{3}
\end{equation*}
$$

Further suppose there is a sequence $\left(t_{m}\right)_{m \geq 0}, t_{m}>0$ increasing to ∞ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{L\left(z, t_{m}\right)}{a_{1}\left(t_{m}\right)}=F(z) \tag{4}
\end{equation*}
$$

locally uniformly in B^{n}.
Then for each $t \in[0, \infty), L(\cdot, t)$ is univalent in B^{n}.

2. Univalence conditions

By using Theorem 2, we obtain an univalence condition which generalize some n-dimensional univalence criteria [2], [3], [5].

Theorem 3. Let $f: B^{n} \rightarrow \mathbf{C}^{n}$ be a locally biholomorphic function in $B^{n}, f(0)=0, D f(0)=I$ and let $a:[0, \infty) \rightarrow \mathbf{C}$ be a function which satisfies the conditions:
(i) $a \in C^{1}[0, \infty), a(0)=1, a(t) \neq 0$, for all $t \in[0, \infty)$
(ii) $\lim _{t \rightarrow \infty}|a(t)|=\infty$
(iii) $\operatorname{Re} \frac{a^{\prime}(t)}{a(t)}>0$, for all $t \in[0, \infty)$.

If

$$
\begin{gather*}
\max _{\|z\|=e^{-t}}\left\|(a(t)-\|z\|)(D f(z))^{-1} D^{2} f(z)(z, \cdot)+\frac{a(t)-a^{\prime}(t)}{2} I\right\|< \\
<\frac{\left|a(t)+a^{\prime}(t)\right|}{2} \tag{5}
\end{gather*}
$$

for all $t \in[0, \infty)$, then f is an univalent function in B^{n}.

Remark

The second derivative of a function $f \in H\left(B^{n}\right)$ is a symmetric bilinear operator $D^{2} f(z)(\cdot, \cdot)$ on $\mathbf{C}^{n} \times \mathbf{C}^{n}$ and $D^{2} f(z)(w, \cdot)$ is the linear operator obtained by restricting $D^{2} f(z)$ to $\{w\} \times \mathbf{C}^{n}$. The linear operator $D^{2} f(z)(z, \cdot)$ has the matrix representation

$$
D^{2} f(z)(z, \cdot)=\left(\sum_{m=1}^{n} \frac{\partial^{2} f_{k}(z)}{\partial z_{j} \partial z_{m}} z_{m}\right)_{1 \leq j, k \leq n}
$$

Proof. We define

$$
\begin{equation*}
L(z, t)=f\left(e^{-t} z\right)+\left(a(t) e^{t}-1\right) e^{-t} D f\left(e^{-t} z\right)(z), \quad t \in[0, \infty), z \in B^{n} \tag{6}
\end{equation*}
$$

We wish to show that $L(z, t)$ satisfies the conditions of Theorem 2 and hence $L(\cdot, t)$ is univalent in B^{n}, for all $t \in[0, \infty)$. Since $f(z)=L(z, 0)$ we obtain that f is an univalent function in B^{n}.

It is easy to check that $a_{1}(t)=a(t)$ and hence $a_{1}(t) \neq 0, \lim t \rightarrow \infty\left|a_{1}(t)\right|=$ ∞ and $a_{1} \in C^{1}[0, \infty)$.

We have $L(z, t)=a_{1}(t) z+$ (holomorphicterm). Thus $\lim _{t \rightarrow \infty} \frac{L(z, t)}{a_{1}(t)}=z$, locally uniform with respect to B^{n} and hence (4) holds with $F(z)=z$. Obviously $L(z, t)$ satisfies the absolute continuity requirements of Theorem2.

Straightforward calculations show that

$$
\begin{equation*}
D L(z, t)=\frac{a(t)+a^{\prime}(t)}{2} D f\left(e^{-t} z\right)[I-E(z, t)] \tag{7}
\end{equation*}
$$

where, for each fixed $(z, t) \in B^{n} \times[0, \infty), E(z, t)$ is the linear operator defined by

$$
\begin{align*}
& E(z, t)=-\frac{a(t)-a^{\prime}(t)}{a(t)+a^{\prime}(t)} I- \\
& -2 \frac{a(t)-e^{-t}}{a(t)+a^{\prime}(t)}\left(D f\left(e^{-t} z\right)\right)^{-1} D^{2} f\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right) \tag{8}
\end{align*}
$$

For $t=0$, we have

$$
\begin{equation*}
I-E(z, 0)=\frac{2}{1+a^{\prime}(0)} I, \quad \text { for all } z \in B^{n} \tag{9}
\end{equation*}
$$

Since $1+a^{\prime}(0) \neq 0$, we obtain that $I-E(z, 0)$ is an invertible operator.
For $t>0, E(\cdot, t): \overline{B^{n}} \rightarrow \mathcal{L}\left(\mathbf{C}^{n}, \mathbf{C}^{n}\right)$ is holomorphic and from the weak maximum modulus theorem [4] it follows that $\|E(z, t)\|$ can have no maximum in B^{n} unless $\|E(z, t)\|$ is of constant value throughout B^{n}. If $z=0$ and $t>0$ we have

$$
\|E(0, t)\|=\left|\frac{a(t)-a^{\prime}(t)}{a(t)+a^{\prime}(t)}\right|<1
$$

We also have

$$
\|E(z, t)\| \leq \max _{\|w\|=1}\|E(w, t)\|
$$

If we let $u=e^{-t} w$ with $\|w\|=1$, then $\|u\|=e^{-t}$ and by using (5) we obtain

$$
\|E(z, t)\| \leq \max _{\|w\|=1}\|E(w, t)\|=
$$

$$
=\max \|u\|=e^{-t}\left\|\frac{2(a(t)-\|u\|)}{a(t)+a^{\prime}(t)}(D f(u))^{-1} D^{2} f(u)(u, \cdot)+\frac{a(t)-a^{\prime}(t)}{a(t)+a^{\prime}(t)} I\right\|<1 .
$$

Since $\|E(z, t)\|<1$ for all $z \in B^{n}$ and $t>0$, it follows $I-E(z, t)$ is an invertible operator,too.

Further calculations show that

$$
\begin{gathered}
\frac{\partial L(z, t)}{\partial t}=\frac{a(t)+a^{\prime}(t)}{2} D f\left(e^{-t} z\right)[I-E(z, t)](z)= \\
D L(z, t)=[I-E(z, t)]^{-1}[I+E(z, t)](z) .
\end{gathered}
$$

Hence $L(z, t)$ satisfies the differential equation (3), for all $z \in B^{n}$ and $t \in$ $[0, \infty)$, where

$$
\begin{equation*}
h(z, t)=[I-E(z, t)]^{-1}[I+E(z, t)](z) \tag{10}
\end{equation*}
$$

It remains to show that $h(z, t)$ satisfies the conditions $(i v),(v)$ and (vi) of Theorem 2. Clearly $h(z, t)$ satisfies the holomorphy and measurability requirements and $h(0, t)=0$.

Since

$$
\|h(z, t)-z\|=\|E(z, t)(h(z, t)+z)\| \leq\|E(z, t)\| \cdot\|h(z, t)+z\|<\|h(z, t)+z\|
$$

We have $\langle\operatorname{Re} h(z, t), z\rangle \geq 0$, for all $(z, t) \in B^{n} \times[0, \infty)$.
By using the inequality

$$
\left\|[I-E(z, t)]^{-1}\right\| \leq[1-\|E(z, t)\|]^{-1}
$$

we obtain

$$
\|h(z, t)\| \leq \frac{1+\|E(z, t)\|}{1-\|E(z, t)\|}\|z\| .
$$

The conditions of Theorem 2 being satisfied it follows that the functions $L(z, t), t \geq 0$ are univalent in B^{n}. In particular $f(z)=L(z, 0)$ is univalent in B^{n}.

Remarks

1) If $a(t)=e^{t}, t \in[0, \infty)$, then Theorem 3 becomes the n-dimensional version of Becker's univalence criterion [4].
2) For $a(t)=\frac{e^{t}+c e^{-t}}{1+c}, t \geq 0, c \in \mathbf{C} \backslash\{-1\},|c| \leq 1$, Theorem 3 becomes the n-dimensional version of Ahlfors and Becker's univalence criterion [2].
3) If $a(t)=\frac{e^{(\alpha-1) t}+c e^{-t}}{1+c}, t \geq 0, c \in \mathbf{C} \backslash\{-1\},|c| \leq 1$ and $\alpha \in \mathbf{R}$ with $\alpha \geq 2$, we obtain the generalization of Ahlfors and Becker's n-dimensional criterion of univalence due to P. Curt [3].

References

[1] Becker, J., Loewnersche Differentialgleichung und Schichtheits - Kriterion, Math. Ann. 202 4(1973), 321-335.
[2] Curt, P., A generalization in n-dimensional complex spaces of Ahlfors and Becker's criterion for univalence, Studia, Math. XXXXIX, 1(1994), 31-38.
[3] Curt,P., Loewner chains and univalence criteria (to appear).
[4] Hille, E., Phillips, R.S., Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. 31(1957).
[5] Pfaltzgraff, J. A., Subordination chains and univalence of holomorphic mappings in \mathbf{C}^{n}, Math. Ann. 210(1974), 55-68.
[6] Pfaltzgraff, J.A. K-Quasinconformal Extension Criteria in the disk, Complex Variables, 21(1993), 293-301.

Department of Mathematics, Faculty of Sciences,
"Transilvania" University, Iuliu Maniu, 50, 2200 Braşov, Romania
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

