ON UNIFORMLY CONVEX MAPPINGS OF A BANACH SPACE INTO THE COMPLEX PLANE

DORINA RĂDUCANU

Abstract. Let *E* be a complex Banach space and let *E* be the unit ball in *E*, i.e. $B = \{x \in E : ||x|| < 1\}$. We introduce a new class of holomorphic functions in *B* and we obtain a few results concerning this new class.

1. Introduction

Let E^* be the dual space of E. For any $A \in E^*$ we consider $\chi(A) = \{x \in E : A(x) \neq 0\}$ and $\gamma(A) = E \setminus \chi(A)$. If $A \neq 0$ then $\chi(A)$ is dense in E and $\chi(A) \cap \hat{B}$ is dense \hat{B} , where $\hat{B} = \{x \in E : ||x|| = 1\}$.

Let H(B) be the family of all functions $f : B \to \mathbf{C}, f(0) = 0$ that are holomorphic in B, i.e. have the Fréchet derivative f'(x) in each point $x \in B$. If $f \in H(B)$, then in some neighbourhood V of the origin, $f(x) = \sum_{m=1}^{\infty} P_{m,f}(x)$, where the series is uniformly convergent on V and

 $P_{m,f}: E \to \mathbb{C}$ are continuous and homogeneous polynomials of degree m. Let $U = \{z \in \mathbb{C} : |z| < 1\}$. Denote by CV the family of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

that are convex in the unit disk U.

Goodman [1] defined the following subclass of CV.

Definition. A function f is called uniformly convex in U if f is in CV and has the property that for every circular arc γ contained in U, with center ζ also in U, the arc $f(\gamma)$ is a convex arc.

Goodman gave a two-variable analytic characterization of this class, denoted by UVC.

DORINA RĂDUCANU

Theorem 1. A function of the form (1) is in UCV if and only if

$$\operatorname{Re}\left\{1+\left(z-\zeta\right)\frac{f''\left(z\right)}{f'\left(z\right)}\right\} \ge 0 \quad , \quad (z,\zeta) \in U \times U.$$

$$\tag{2}$$

Also, Goodman proved that the best known bounds on the coefficients for the family UVC are $|a_n| \leq \frac{1}{n}, n \geq 2$.

Ma and Minda [3] and Ronning [4] independently found a more applicable one-variable characterization for UVC.

Theorem 2. A function f of the form (1) is in UVC if and only if

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right| , \ z \in U.$$
(3)

2. The class UCV_A

Let $A \in E^*, A \neq 0$. For any $f \in H(B)$ of the form

$$f(x) = A(x) + \sum_{n=2}^{\infty} P_{n,f}(x) , x \in B$$
 (4)

and for any $a \in \chi(A) \cap \hat{B}$ we set

$$f_a(z) = \frac{f(za)}{A(a)} \quad , \quad z \in U.$$
(5)

Obviously

$$f_{a}(z) = z + \sum_{n=2}^{\infty} \frac{P_{n,f}(a)}{A(a)} z^{n} , \quad z \in U.$$
 (6)

Moreover, it is easy to check that

$$f_{a}^{(n)}(z) = \frac{f^{(n)}(za)(a,...,a)}{A(a)} , \quad n \in \mathbf{N}, z \in U.$$
(7)

We denote by UCV_A the family of all functions $f \in H(B)$ of the form (4) such that, for any $a \in \chi(A) \cap \hat{B}$ the function f_a belongs to the class UCV.

By using the properties of the functions in UCV, we obtain a few results concerning the family UCV_A .

Theorem 3. If $f \in UCV_A$ and $a \in \hat{B}$, then

$$|P_{n,f}(a)| \le \frac{1}{n} |A(a)| , n \ge 2$$
 (8)

58

Proof. Suppose that $f \in UCV_A$. If $a \in \chi(A) \cap \hat{B}$, then $f_a \in UCV$ and hence we get (9). If $a \in \gamma(A) \cap \hat{B}$, evidently $a = \lim_{m \to \infty} a_m$, where $a_m \in X(A), m \in \mathbf{N}$. There exists $r_m \in \mathbf{R}_+$ such that $\frac{a_m}{r_m} \in \hat{B}$. Clearly $(r_m)_{m \ge 0}$ is bounded for the origin is an interior point of B. Since $\frac{a_m}{r_m} \in \chi(A) \cap \hat{B}, m \in \mathbf{N}$, by the first part of the proof we have

$$\left|P_{n,f}\left(\frac{a_m}{r_m}\right)\right| \leq \frac{1}{n} \left|A\left(\frac{a_m}{r_m}\right)\right| , m \in \mathbf{N}.$$

Hence

$$|P_{n,f}(a_m)| \le \frac{r_m^{n-1}}{n} |A(a_m)| , \ m \in \mathbf{N}.$$

By taking the limit with $m \to \infty$, we obtain $P_{n,f}(a) = 0$. Corollary 1. All $f \in UCV_A$ vanish on $\gamma(A) \cap B$. Corollary 2. If $f \in UCV_A$, then

$$||P_{n,f}|| \le \frac{1}{n} ||A||$$
, $n \ge 2$

The following theorems provide necessary and sufficient conditions for functions in H(B) to belong to the class UCV_A .

Theorem 4. Let $f \in UCV_A$ and $f'(x) \neq 0$, for all $x \in B$. Then

$$\operatorname{Re}\left\{1+\frac{f''(x)(x,x)}{f'(x)}\right\} \ge \left|\frac{f''(x)(x,x)}{f'(x)}\right| \quad , \quad x \in \chi(A) \cap B.$$

$$(9)$$

Proof. Let $x \in \chi(A) \cap B, x \neq 0$. Then $a = \frac{x}{\|x\|} \in \chi(A) \cap \hat{B}$ and hence the function f_a belongs to the class UCV. From (3) we have

$$\operatorname{Re}\left\{1+\frac{zf_{a}^{\prime\prime}\left(z\right)}{f_{a}^{\prime}\left(z\right)}\right\} \geq \left|\frac{zf_{a}^{\prime\prime}\left(z\right)}{f_{a}^{\prime}\left(z\right)}\right| \quad , \quad z \in U.$$

By using the equality

$$\frac{zf_{a}''\left(z\right)}{f_{a}'\left(z\right)} = \frac{f''\left(za\right)\left(za,za\right)}{f'\left(za\right)\left(za\right)} \ , \ z \in U$$

we obtain

$$\operatorname{Re}\left\{1+\frac{f''\left(za\right)\left(za,za\right)}{f'\left(za\right)\left(za\right)}\right\} \ge \left|\frac{f''\left(za\right)\left(za,za\right)}{f'\left(za\right)\left(za\right)}\right| \quad , \quad z \in U.$$

By setting z = ||x||, we get (9).

59

DORINA RĂDUCANU

Theorem 5. Let $f \in H(B)$, f'(0) = A and $f'(x) \neq 0$, for all $x \in B$. If

$$\operatorname{Re}\left\{1+\frac{f''(x)(x,x)}{f'(x)}\right\} \ge \left|\frac{f''(x)(x,x)}{f'(x)}\right| \quad , \quad x \in B$$

$$(10)$$

then $f \in UCV_A$.

Proof. Let
$$a \in \chi(A) \cap \hat{B}$$
. Then $f'_a(z) = f'(za)(a) \neq 0, z \in U \setminus \{0\}$ and

$$\frac{zf_{a}''(z)}{f_{a}'(z)} = \frac{f''(za)(za, za)}{f'(za)} \ , \ z \in U.$$

From (10), we obtain $f_a \in UCV$, for all $a \in \chi(A) \cap \hat{B}$. Hence $f \in UCV_A$.

References

- [1] Goodman, A.W., On uniformly convex functions, Ann. Polon. Math. 56(1991),87-92.
- [2] Janiec, E., On starlike and convex maps of a Banach space into the complex plane, Demonstratio Math. vol. XXVII, 2(1994),511-516.
- [3] Ma, W., Minda, D., Uniformly convex functions, Ann. Polon. Math. 57(1992), 166-175.
- [4] Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118, No.1,1993,190-196.

Department of Mathematics, Faculty of Sciences, "Transilvania" University, Iuliu Maniu, 50, 2200 Braşov, Romania

Received: 26.03.2002