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CATEGORICAL SEQUENCES AND APPLICATIONS

GRATIELA CICORTAS

Abstract. Ralph Fox characterized the Lusternik-Schnirelmann category
using the categorical sequences. In this paper we define the notion of G-
categorical sequence, where G is a compact Lie group, and we prove that
the result of Fox remains true for the equivariant Lusternik-Schnirelmann

category.

1. Introduction

In the study of some problems of differential geometry, L. Lusternik and
L. Schnirelmann introduced a new numerical topological invariant, defined for every
closed subset A of a manifold M, called the category (Lusternik- Schnirelmann cate-
gory) of A in M. This number is the minimum cardinality of a categorical covering of
A in M, where ” categorical covering” means a covering by categorical sets (see [5]).

This is a well-known and much studied homotopy invariant (see [3],[4],[5]).
It gives important informations about the existence of critical points: when M is a
smooth manifold, the Lusternik- Schnirelmann category of M is a lower bound for

the number of critical points of a smooth function on M.

2. Categorical sequences

Let M be a topological space. A subset A C M is called categorical in M if
there exists an open subset U C M such that A C U and U is contractible in M.

Following Fox [3], we define the category of X C M in M by the minimal
number k such that X can be covered by k categorical subsets in M. We denote

cat(X, M) = k.
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Because every subset of a contractible set in M is also contractible in M, we
obtain that every categorical subset of M is contractible in M; the converse is not
true.

A covering of X by categorical subsets of M is called a categorical covering
of X in M; a categorical covering which verifies the minimal condition from definition
is called minimal categorical covering.

Definition 2.1. A finite sequence {A1, Aa, ..., Ay = X} of closed subsets of
X is called a categorical sequence of X in M if:

(i) Ay C Ay C ... C Ay

(ii) Ay, Ag — Ay,..., Ay — Ap_1 are categorial subsets in M.

The number & is called the length of categorical sequence {A1, A, ..., Ax}.

Ralph Fox [3] established the following characterization of category in terms
of categorical sequences:

Theorem 2.1. Let M be a separable, arcwise connected, metric space, and
let X C M be a subspace such that cat(X, M) < co.

Then the category of X in M, cat(X, M), is the minimum of the lengths of

the categorical sequences of X in M.

3. Categorical sequences method for equivariant Lusternik-Schnirelmann

category

For the definition and the properties of equivariant category we follow Fadell
[2].

Let M be a topological space and let G be a compact Lie group which acts
on M. Let A be an invariant subspace of M. A homotopy H : A x I — M is called
equivariant if H(gz,t) = gH (z,t),Vx € A, Vg € G.

Definition 3.1. The set A is called G-categorical in M if there exists an
equivariant homotopy H : A x I — M such that Hy = H(-,0) is the inclusion and
H; = H(-,1) has the image in a single orbit Orb(z).

Here Orb(z) = {gx|g € G} = Gz is the orbit of the point x. The G-orbits
should be considered as ”equivariant points”. (A is G-categorical if it can be deformed
equivariant in an orbit Gz.)
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Definition 3.2. Let X be an invariant subspace of M. We say that X has
G-category k in M and we denote Geat(X, M) = k if X can be covered by k G-
categorical open subsets in M, and k is the minimal number with this property. If
X cannot be covered by a finite number of such G-categorical open subsets in M, we
say that Geat(X, M) = oo.

We define Geat(X, M) =0 if X = 0.

If G acts trivially on M, then the G-category is exactly the Lusternik-
Schnirelmann category.

In general, Geat(X, M) > cat(X/G, M/G). If the action of G on X is free,
then Geat(X, M) = cat(X/G, M/G).

For G-category we know some properties, which are contained in the following
proposition (see Fadell [2]):

Proposition 3.1. (i) (normalisation) If X is an invariant subspace of M,

G-categorical (open or closed), then
Geat(X, M) =1
(ii) (monotonicity)If X, Y are two invariant subspaces of M and X CY, then
Geat(X, M) < Geat(Y, M)
(i) (subadditivity) If X, Y are two invariant subspaces of M, then
Geat(X UY, M) < Geat(X, M) + Geat(Y, M)

(iv) (invariance) If ¢ : M — M is an equivariant homeomorphism and X

s an tnvariant subspace of M, then
Geat(X, M) = Geat(¢(X), M)

(v) (continuity) If M is a G-ANR and X 1is an invariant subspace of M, then
there is an open, invariant subset U C M such that X C U and

Geat(X, M) = Geat(U, M)

(vi) If Geat(X, M) =k, then X has k orbits.
Now, we define the corresponding notion of categorical sequence in equivari-
ant context:

33



GRATIELA CICORTAS

Definition 3.3. We say that a finite sequence {A1, As,..., Ay = X} of
closed, invariant subsets of X is a GG-categorical sequence of X in M if:

(i) Ay CAy C ... C A

(ii) Ay, Ao — Ay, ..., Ay — Ax_1 are G-categorical subsets in M.

k is called the length of G-categorical sequence {Aj, Ao, ..., Ax}.

The main result is contained in the following theorem:

Theorem 3.1. Let M be a separable, arcwise connected, metric space and
let G be a compact Lie group which acts on M. Let X be a invariant subspace of M
such that Geat(X, M) < co.

In these conditions Geat(X, M) is the minimum of the lengths of the G-
categorical sequences of X in M.

For the proof of this theorem, we need the following lemma:

Lemma 3.1. Let M be a separable, arcwise connected, metric space and let
G be a compact Lie group which acts on M. Let X andY be two invariant subspaces
of M such that X,Y are disjoint and open in their union X UY.

Then

Geat(X UY, M) = maz{Gceat(X, M), Geat(Y,M)}.

Proof. Let X = UJ,c; Xi,Y = U,¢;Yj, where the open subsets X; and Y;
are GG-categorical in M and these coverings of X and Y are minimal.

The covering {X; UYj}; j)erx. is open and G-categorical for X UY in M;it
contains a subcovering by s sets such that s = maxz{| I |,| J |}. Then Geat(X U
Y, M) > maz{Gcat(X, M), Geat(Y, M)}.

From Proposition 3.1.(ii) we obtain Geat(X, M) < Geat(X UY, M) and
Geat(Y,M) < Geat(X UY, M).

Then the above inequality holds.[]

The proof of Theorem 3.1. We follow the method established by Fox in
[3].

First, we will prove that if {A;, Ao, ..., Ax = X} is a G-categorical sequence
of X in M, then Geat(X, M) < k.

If k =1, then Geat(X, M) < 1.
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Suppose this statement true for £ < r —1; let {41, As,..., Ay = X} be a
G-categorical sequence for X in M. Because A is G-categorical in M, by Proposition
3.1(v) there is an open, invariant subset U C M such that Ay C U and U is G-
categorical in M.

We prove that {A; — U, A3 — U,..., A, — U} is a G-categorical sequence of
X — U in M (with the length » — 1). The sequence {Ay, As,..., Ay = X} is G-
categorical; then Ay C Ao C...C Ay =Xand Ap—UCA3—-UC...CA —-U=
X — U. The set A; — Ay is G-categorical in M and As — Ay C Ay — U; then the set
As — Aj is G-categorical in M. A; and U being invariant sets, we prove easily that
A — U is invariant:

Vee Ay —UVgeGeoreAdsandz ¢ U and g€ G & (z € Az and g € G)
and (x ¢ U and g € G)

We know that gz € As; suppose that gz € U. But U is invariant, so g~ 'gx € U
and we obtain that z € U; this statement is a contradiction.

In the same way, we show that all the sets Ay — U are invariants, for k = 2, r.

Also, the sets (A3 —U) —(As —U) = A3 — Ag, ..., (A, -U)— (A1 —-U) =
A, — A,_, are G-categorical in M.

We just must justify that all these sets are closed, but this is very easy:
Ay —U=AN(CU)=A4,NCU = AN (CU) = Ay — Uk =2,7.

We conclude that the sequence {As — U, A5 —U,..., A, —U=X—-U}isa

G-categorical sequence of X — U in M; from the induction hypothesis, we obtain:

Geat(X —U,M) <r—1.

By using the subadditivity property of Proposition 3.1, we obtain:

Geat(X, M) < Geat(X —U, M)+ Geat(U M) < (r—1)+1=r

Now, we will prove that there is a G-categorical sequence of X in M, such
that its length is < Geat(X, M).

For Geat(X, M) = 1 this statement is true.

Suppose that this is true also for Geat(X, M) < r—1 and let {By, Ba,..., B}
be a minimal, G-categorical, open covering of X in M.
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We define the sets:

Ci={xe Xz e B;,Vj<ix ¢ B;,Vj>i},i=1rm;

these sets are closed in X.
We consider the sets Cy and X — Bj; they are closed and disjoint in the

(metric, so) normal space X. Then there is an open subset D; C X such that
Ci1 C D
DN (X — Bl) =0

We suppose that we have j — 1 open subsets D1, Do, ..., D;_; of X such that

for i < j — 1 the following relations are true:
C;—DiUDyU...UD;_1 C D;
D;iN(X—-B;)=10

The subsets X — B; and C; — |J,_; D; are closed in X and disjoint:

i<j

(X -B;)n(C;—|JDi) c (X =B;)N(C;—Cj-1) C (X = B))NB; =0

i<j
Then there is D; C X open such that:
Cj — U D, C Dj
i<j
ﬁj NX - Bj) =0

For the subsets D1, Do, ..., D, as above, the following relations are true:

Di—D,CB —C, CByUB3U...UB,

@i -Di)cB,uBsU...UB,
i<r
We obtain that

Gcat(U(E— Di),M)<r-—1
i<r
From the induction hypothesis, there is a G-categorical sequence {A;, A, ..., Ap_1 =
Ui<,(Di — Di)} of the set |J;.,.(D; — D;) in M, and its length is k —1 <r — 1.
We prove that {XNA;, XNAy, ..., XNA,_1, X} is a G-categorical sequence
of X in M.
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All these sets are closed in X. From A; C Ay C ... C Aip_1 we obtain that
XNA; C XNAs C ... C XNAi_1 C X. The subsets Ay, Ao, ..., Ar_1 are G-invariant,
so X NA, XNAs,...,X NA,_1 are G-invariant. The subset A; is G-categorical in
M and X N A; will be also G-categorical in M. The subsets X N Ay — X N A; =
XN(As—A1),..., XNA;,_1 —XNAp_o=XN(Ax_1 — Ax_2) are G-categorical in
M, because Ay — Ay, ..., Ax_1 — Ax_o are G-categorical in M.

We just must justify that X — X N A;_; is a G-categorical subset in M. It is
easy to see that X — X NAg_1 = XfXﬁ(Uigr(EfDi)) is open in X (Uigr(E*Di)
is closed in X) and it is invariant. Every component of X — X N Aj_; is contained in
one of the sets D; C B;; every B; is G-categorical in M. By using Proposition 3.1(ii)
and Lemma 3.1 we obtain that X — X N Ai_; is G-categorical in M. O

G-categorical sequences can be used for the proof of product inequality; for
nonequivariant case, the reader can see [3] and [4].

For two G-spaces X, Y, we define the action of G on the product space X xY
by

GXx(XxY)— XxY

9(@,y) = (92, gy).
Proposition 3.2. Let X,Y two separable, arcwise connected, metric G-

spaces. If X andY are G-invariant, then

Geat(X xY) < Geat(X) + Geat(Y) — 1

Proof. Let {A;, As,..., A, = X} be a G-categorical sequence of X in X
and let {By, Ba,..., B, =Y} be a G-categorical sequence of Y in Y. We consider the

sets

Cr = U A; x Bj.
i+j=k+1
All these sets are closed and G-invariant (because 4;,1 <i <m, B;,1 < j < n are
G-invariant).
From Ay Cc...C A, =X and B; C ... C B, =Y, we obtain that C; C
oo € Cgn—1 = X xY. We only must show that {C1,Co—C4,...,Crin—1—Cmin—2}

are G-categorical in X x Y.
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A; is G-categorical in X; then there is an equivariant homotopy Hy4 : A; X
I — X such that Hx o = Hx(-,0) is the inclusion and Hx 1 = Hx(-,1) has the
image in a single orbit Orb(x 4, ). The same holds for By and the equivariant homotopy

Hy : By x I — Y, with corresponding orbit Orb(yp, ). Then
H: (A xB))xI— XxY

defined by

H((x,y),t) = (Hx (x,t), Hy (y,1))
s Gumvariant:  H(g(,p),t) = H((gzgu)t) = (Hx(gn1), Hy(gyt) =
(gHx (z,t),gHy (y,t)) = gH((z,y),t),V(z,y) € X xY,Vg € G. Also, H(-,0) is the
inclusion and H (-, 1) has the image in a single orbit Orb(x4,,yp, ). We conclude that
C is G-categorical in X x Y.

Writing Ck+1—Ck = U (Ai_Ai—l) X (Bj_Bj—l); 1 §k§m+n—2,
itj=k+2
(Ap = 0 and By = 0 for convenience), it is easy to see that (A; — A;_1) x (B — B;_1)

is G-categorical in X x Y and the sets (A; — A;—1) x (Bj — Bj_1), (Ay — A1) X
(Bjs — Bji—1),i+j=14ji#4,j#j, satisfy the assumption of Lemma 3.1.
Then Cy41 — C is G-categorical in X x Y. O
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