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CATEGORICAL SEQUENCES AND APPLICATIONS

GRAŢIELA CICORTAŞ

Abstract. Ralph Fox characterized the Lusternik-Schnirelmann category

using the categorical sequences. In this paper we define the notion of G-

categorical sequence, where G is a compact Lie group, and we prove that

the result of Fox remains true for the equivariant Lusternik-Schnirelmann

category.

1. Introduction

In the study of some problems of differential geometry, L. Lusternik and

L. Schnirelmann introduced a new numerical topological invariant, defined for every

closed subset A of a manifold M, called the category (Lusternik- Schnirelmann cate-

gory) of A in M. This number is the minimum cardinality of a categorical covering of

A in M, where ”categorical covering” means a covering by categorical sets (see [5]).

This is a well-known and much studied homotopy invariant (see [3],[4],[5]).

It gives important informations about the existence of critical points: when M is a

smooth manifold, the Lusternik- Schnirelmann category of M is a lower bound for

the number of critical points of a smooth function on M.

2. Categorical sequences

Let M be a topological space. A subset A ⊂ M is called categorical in M if

there exists an open subset U ⊂ M such that A ⊂ U and U is contractible in M .

Following Fox [3], we define the category of X ⊂ M in M by the minimal

number k such that X can be covered by k categorical subsets in M . We denote

cat(X, M) = k.

2000 Mathematics Subject Classification. 58E05.

Key words and phrases. Lusternik-Schnirelmann category, G-category, G-categorical sequence.

31
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Because every subset of a contractible set in M is also contractible in M , we

obtain that every categorical subset of M is contractible in M ; the converse is not

true.

A covering of X by categorical subsets of M is called a categorical covering

of X in M ; a categorical covering which verifies the minimal condition from definition

is called minimal categorical covering.

Definition 2.1. A finite sequence {A1, A2, . . . , Ak = X} of closed subsets of

X is called a categorical sequence of X in M if:

(i) A1 ⊂ A2 ⊂ . . . ⊂ Ak

(ii) A1, A2 −A1, . . . , Ak −Ak−1 are categorial subsets in M.

The number k is called the length of categorical sequence {A1, A2, . . . , Ak}.

Ralph Fox [3] established the following characterization of category in terms

of categorical sequences:

Theorem 2.1. Let M be a separable, arcwise connected, metric space, and

let X ⊂ M be a subspace such that cat(X, M) < ∞.

Then the category of X in M , cat(X, M), is the minimum of the lengths of

the categorical sequences of X in M.

3. Categorical sequences method for equivariant Lusternik-Schnirelmann

category

For the definition and the properties of equivariant category we follow Fadell

[2].

Let M be a topological space and let G be a compact Lie group which acts

on M. Let A be an invariant subspace of M. A homotopy H : A× I −→ M is called

equivariant if H(gx, t) = gH(x, t),∀x ∈ A,∀g ∈ G.

Definition 3.1. The set A is called G-categorical in M if there exists an

equivariant homotopy H : A × I −→ M such that H0 = H(·, 0) is the inclusion and

H1 = H(·, 1) has the image in a single orbit Orb(x).

Here Orb(x) = {gx|g ∈ G} = Gx is the orbit of the point x. The G-orbits

should be considered as ”equivariant points”. (A is G-categorical if it can be deformed

equivariant in an orbit Gx.)
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Definition 3.2. Let X be an invariant subspace of M. We say that X has

G-category k in M and we denote Gcat(X, M) = k if X can be covered by k G-

categorical open subsets in M , and k is the minimal number with this property. If

X cannot be covered by a finite number of such G-categorical open subsets in M, we

say that Gcat(X, M) = ∞.

We define Gcat(X, M) = 0 if X = ∅.

If G acts trivially on M , then the G-category is exactly the Lusternik-

Schnirelmann category.

In general, Gcat(X, M) ≥ cat(X/G,M/G). If the action of G on X is free,

then Gcat(X, M) = cat(X/G,M/G).

For G-category we know some properties, which are contained in the following

proposition (see Fadell [2]):

Proposition 3.1. (i) (normalisation) If X is an invariant subspace of M ,

G-categorical (open or closed), then

Gcat(X, M) = 1

(ii) (monotonicity)If X, Y are two invariant subspaces of M and X ⊆ Y, then

Gcat(X, M) ≤ Gcat(Y,M)

(iii) (subadditivity) If X, Y are two invariant subspaces of M , then

Gcat(X ∪ Y, M) ≤ Gcat(X, M) + Gcat(Y, M)

(iv) (invariance) If φ : M −→ M is an equivariant homeomorphism and X

is an invariant subspace of M , then

Gcat(X, M) = Gcat(φ(X),M)

(v) (continuity) If M is a G-ANR and X is an invariant subspace of M, then

there is an open, invariant subset U ⊆ M such that X ⊆ U and

Gcat(X, M) = Gcat(U,M)

(vi) If Gcat(X, M) = k, then X has k orbits.

Now, we define the corresponding notion of categorical sequence in equivari-

ant context:
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Definition 3.3. We say that a finite sequence {A1, A2, . . . , Ak = X} of

closed, invariant subsets of X is a G-categorical sequence of X in M if:

(i) A1 ⊂ A2 ⊂ . . . ⊂ Ak

(ii) A1, A2 −A1, . . . , Ak −Ak−1 are G-categorical subsets in M.

k is called the length of G-categorical sequence {A1, A2, . . . , Ak}.

The main result is contained in the following theorem:

Theorem 3.1. Let M be a separable, arcwise connected, metric space and

let G be a compact Lie group which acts on M. Let X be a invariant subspace of M

such that Gcat(X, M) < ∞.

In these conditions Gcat(X, M) is the minimum of the lengths of the G-

categorical sequences of X in M .

For the proof of this theorem, we need the following lemma:

Lemma 3.1. Let M be a separable, arcwise connected, metric space and let

G be a compact Lie group which acts on M. Let X and Y be two invariant subspaces

of M such that X, Y are disjoint and open in their union X ∪ Y.

Then

Gcat(X ∪ Y, M) = max{Gcat(X, M), Gcat(Y,M)}.

Proof. Let X =
⋃

i∈I Xi, Y =
⋃

i∈I Yj , where the open subsets Xi and Yj

are G-categorical in M and these coverings of X and Y are minimal.

The covering {Xi ∪ Yj}(i,j)∈I×J is open and G-categorical for X ∪ Y in M ;it

contains a subcovering by s sets such that s = max{| I |, | J |}. Then Gcat(X ∪

Y, M) ≥ max{Gcat(X, M), Gcat(Y,M)}.

From Proposition 3.1.(ii) we obtain Gcat(X, M) ≤ Gcat(X ∪ Y, M) and

Gcat(Y, M) ≤ Gcat(X ∪ Y, M).

Then the above inequality holds.�

The proof of Theorem 3.1. We follow the method established by Fox in

[3].

First, we will prove that if {A1, A2, . . . , Ak = X} is a G-categorical sequence

of X in M, then Gcat(X, M) ≤ k.

If k = 1, then Gcat(X, M) ≤ 1.
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Suppose this statement true for k ≤ r − 1; let {A1, A2, . . . , Ak = X} be a

G-categorical sequence for X in M. Because A is G-categorical in M, by Proposition

3.1(v) there is an open, invariant subset U ⊂ M such that A1 ⊂ U and U is G-

categorical in M.

We prove that {A2 − U,A3 − U, . . . , Ar − U} is a G-categorical sequence of

X − U in M (with the length r − 1). The sequence {A1, A2, . . . , Ak = X} is G-

categorical; then A1 ⊂ A2 ⊂ . . . ⊂ Ak = X and A2 − U ⊂ A3 − U ⊂ . . . ⊂ Ar − U =

X − U. The set A2 − A1 is G-categorical in M and A2 − A1 ⊂ A2 − U ; then the set

A2 − A1 is G-categorical in M. A2 and U being invariant sets, we prove easily that

A2 − U is invariant:

∀x ∈ A2 − U,∀g ∈ G ⇔ x ∈ A2 and x /∈ U and g ∈ G ⇔ (x ∈ A2 and g ∈ G)

and (x /∈ U and g ∈ G)

We know that gx ∈ A2; suppose that gx ∈ U. But U is invariant, so g−1gx ∈ U

and we obtain that x ∈ U ; this statement is a contradiction.

In the same way, we show that all the sets Ak−U are invariants, for k = 2, r.

Also, the sets (A3−U)− (A2−U) = A3−A2, . . . , (Ar −U)− (Ar−1−U) =

Ar −Ar−1 are G-categorical in M.

We just must justify that all these sets are closed, but this is very easy:

Ak − U = Ak ∩ (CU) = Ak ∩ CU = Ak ∩ (CU) = Ak − U, k = 2, r.

We conclude that the sequence {A2 − U,A3 − U, . . . , Ak − U = X − U} is a

G-categorical sequence of X − U in M ; from the induction hypothesis, we obtain:

Gcat(X − U,M) ≤ r − 1.

By using the subadditivity property of Proposition 3.1, we obtain:

Gcat(X, M) ≤ Gcat(X − U,M) + Gcat(U,M) ≤ (r − 1) + 1 = r

Now, we will prove that there is a G-categorical sequence of X in M, such

that its length is ≤ Gcat(X, M).

For Gcat(X, M) = 1 this statement is true.

Suppose that this is true also for Gcat(X, M) ≤ r−1 and let {B1, B2, . . . , Br}

be a minimal, G-categorical, open covering of X in M.
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We define the sets:

Ci = {x ∈ X|x ∈ Bj ,∀j ≤ i, x /∈ Bj ,∀j > i}, i = 1, r;

these sets are closed in X.

We consider the sets C1 and X − B1; they are closed and disjoint in the

(metric, so) normal space X. Then there is an open subset D1 ⊂ X such that

C1 ⊂ D1

D1 ∩ (X −B1) = ∅

We suppose that we have j−1 open subsets D1, D2, . . . , Dj−1 of X such that

for i ≤ j − 1 the following relations are true:

Ci −D1 ∪D2 ∪ . . . ∪Di−1 ⊂ Di

Di ∩ (X −Bi) = ∅

The subsets X −Bj and Cj −
⋃

i<j Di are closed in X and disjoint:

(X −Bj) ∩ (Cj −
⋃
i<j

Di) ⊂ (X −Bj) ∩ (Cj − Cj−1) ⊂ (X −Bj) ∩Bj = ∅

Then there is Dj ⊂ X open such that:

Cj −
⋃
i<j

Di ⊂ Dj

Dj ∩ (X −Bj) = ∅

For the subsets D1, D2, . . . , Dr as above, the following relations are true:

D1 −D1 ⊂ B1 − C1 ⊂ B2 ∪B3 ∪ . . . ∪Br⋃
i≤r

(Di −Di) ⊂ B2 ∪B3 ∪ . . . ∪Br

We obtain that

Gcat(
⋃
i≤r

(Di −Di),M) ≤ r − 1

From the induction hypothesis, there is a G-categorical sequence {A1, A2, . . . , Ak−1 =⋃
i≤r(Di −Di)} of the set

⋃
i≤r(Di −Di) in M, and its length is k − 1 ≤ r − 1.

We prove that {X∩A1, X∩A2, . . . , X∩Ak−1, X} is a G-categorical sequence

of X in M.
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All these sets are closed in X. From A1 ⊂ A2 ⊂ . . . ⊂ Ak−1 we obtain that

X∩A1 ⊂ X∩A2 ⊂ . . . ⊂ X∩Ak−1 ⊂ X. The subsets A1, A2, . . . , Ak−1 are G-invariant,

so X ∩A1, X ∩A2, . . . , X ∩Ak−1 are G-invariant. The subset A1 is G-categorical in

M and X ∩ A1 will be also G-categorical in M. The subsets X ∩ A2 − X ∩ A1 =

X ∩ (A2 −A1), . . . , X ∩Ak−1 −X ∩Ak−2 = X ∩ (Ak−1 −Ak−2) are G-categorical in

M, because A2 −A1, . . . , Ak−1 −Ak−2 are G-categorical in M.

We just must justify that X −X ∩Ak−1 is a G-categorical subset in M. It is

easy to see that X−X∩Ak−1 = X−X∩(∪i≤r(Di−Di)) is open in X (∪i≤r(Di−Di)

is closed in X) and it is invariant. Every component of X −X ∩Ak−1 is contained in

one of the sets Di ⊂ Bi; every Bi is G-categorical in M. By using Proposition 3.1(ii)

and Lemma 3.1 we obtain that X −X ∩Ak−1 is G-categorical in M. �

G-categorical sequences can be used for the proof of product inequality; for

nonequivariant case, the reader can see [3] and [4].

For two G-spaces X, Y, we define the action of G on the product space X×Y

by

G× (X × Y ) −→ X × Y

g(x, y) = (gx, gy).

Proposition 3.2. Let X, Y two separable, arcwise connected, metric G-

spaces. If X and Y are G-invariant, then

Gcat(X × Y ) ≤ Gcat(X) + Gcat(Y )− 1

Proof. Let {A1, A2, . . . , Am = X} be a G-categorical sequence of X in X

and let {B1, B2, . . . , Bn = Y } be a G-categorical sequence of Y in Y. We consider the

sets

Ck =
⋃

i+j=k+1

Ai ×Bj .

All these sets are closed and G-invariant (because Ai, 1 ≤ i ≤ m, Bj , 1 ≤ j ≤ n are

G-invariant).

From A1 ⊂ . . . ⊂ Am = X and B1 ⊂ . . . ⊂ Bn = Y, we obtain that C1 ⊂

. . . ⊂ Cm+n−1 = X×Y. We only must show that {C1, C2−C1, . . . , Cm+n−1−Cm+n−2}

are G-categorical in X × Y.
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A1 is G-categorical in X; then there is an equivariant homotopy HA : A1 ×

I −→ X such that HX,0 = HX(·, 0) is the inclusion and HX,1 = HX(·, 1) has the

image in a single orbit Orb(xA1). The same holds for B1 and the equivariant homotopy

HY : B1 × I −→ Y, with corresponding orbit Orb(yB1). Then

H : (A1 ×B1)× I −→ X × Y

defined by

H((x, y), t) = (HX(x, t),HY (y, t))

is G-invariant: H(g(x, y), t) = H((gx, gy), t) = (HX(gx, t),HY (gy, t)) =

(gHX(x, t), gHY (y, t)) = gH((x, y), t),∀(x, y) ∈ X × Y,∀g ∈ G. Also, H(·, 0) is the

inclusion and H(·, 1) has the image in a single orbit Orb(xA1 , yB1). We conclude that

C1 is G-categorical in X × Y.

Writing Ck+1 −Ck =
⋃

i+j=k+2

(Ai −Ai−1)× (Bj −Bj−1), 1 ≤ k ≤ m + n− 2,

(A0 = ∅ and B0 = ∅ for convenience), it is easy to see that (Ai−Ai−1)× (Bj −Bj−1)

is G-categorical in X × Y and the sets (Ai − Ai−1) × (Bj − Bj−1), (Ai′ − Ai′−1) ×

(Bj′ −Bj′−1), i + j = i′ + j′; i 6= i′, j 6= j′, satisfy the assumption of Lemma 3.1.

Then Ck+1 − Ck is G-categorical in X × Y. �
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